Sparse Permutations with Low Differential Uniformity

Valentin Suder (Inria Paris-Rocquencourt)

Joint work with

Pascale Charpin (Inria Paris-rocquencourt) and
Gohar Kyureghyan (Otto-von-Guericke University of Magdeburg)

1Published in \textit{Finite Fields and Their Applications} 28 (2014) 214–243 (available online).
Outline

Preliminaries

Symmetric Cryptography
APN/AB Functions

Previous works

Permutations by Switching
Negative Answers

Main Results

Compositional Inverses
\[F_{s,1,\gamma}(x) = x^s + \gamma \, Tr(x) \]
\[F(x) = x^{-1} + \gamma \, Tr(x^t) \]

Conclusion
Outline

Preliminaries

Symmetric Cryptography
APN/AB Functions

Previous works

Main Results

Conclusion
Block Ciphers

\[M \in \mathbb{F}_2^m: \text{plaintext}, \]
\[C \in \mathbb{F}_2^m: \text{ciphertext}, \]
\[K \in \mathbb{F}_2^k: \text{key}. \]

Block Cipher

\[E : \mathbb{F}_2^m \times \mathbb{F}_2^k \rightarrow \mathbb{F}_2^m \]
\[(M, K) \mapsto E(M, K) = C. \]

For a fixed key \(K \in \mathbb{F}_2^k, \)
\[E_K(M) \mapsto C, \text{ is a permutation of } \mathbb{F}_2^m. \]
Block Ciphers

\(M \in \mathbb{F}_2^m \): plaintext,

\(C \in \mathbb{F}_2^m \): ciphertext,

\(K \in \mathbb{F}_2^k \): key.

Block Cipher

\[
E : \mathbb{F}_2^m \times \mathbb{F}_2^k \rightarrow \mathbb{F}_2^m \\
(M, K) \mapsto E(M, K) = C.
\]

For a fixed key \(K \in \mathbb{F}_2^k \),

\(E_K(M) \mapsto C \), is a permutation of \(\mathbb{F}_2^m \).

Problems? In practice: \(m \geq 64 \) and \(k \geq 80 \) (!!!)

- For one key \(K \), \(E_K \) permutes \(2^{64} \) elements!
Block Ciphers

\(M \in \mathbb{F}_2^m \): plaintext,
\(C \in \mathbb{F}_2^m \): ciphertext,
\(K \in \mathbb{F}_2^k \): key.

Block Cipher

\[
E : \mathbb{F}_2^m \times \mathbb{F}_2^k \rightarrow \mathbb{F}_2^m \quad (M, K) \mapsto E(M, K) = C.
\]

For a fixed key \(K \in \mathbb{F}_2^k \),
\(E_K(M) \mapsto C \), is a permutation of \(\mathbb{F}_2^m \).

Problems? In practice: \(m \geq 64 \) and \(k \geq 80 \) (!!!)

- For one key \(K \), \(E_K \) permutes \(2^{64} \) elements!
- \(2^{80} \) different permutations!
Substitution Permutation Networks

Add Round Key

$$\mathbb{F}_2^m \times \mathbb{F}_2^m \rightarrow \mathbb{F}_2^m$$

$$(M, \text{SubK}) \mapsto M \oplus \text{SubK}.$$

$M = (M_0, \ldots, M_{m/n-1}), \ M_i \in \mathbb{F}_2^n \text{ (word)}.$

SBox (substitution)

Nonlinear Permutation:

$$S : \mathbb{F}_2^n \rightarrow \mathbb{F}_2^n$$

$$M_i \mapsto (S_0(M_i), \ldots, S_{n-1}(M_i)).$$

In practice: $n = 4, 8.$

Permutation (diffusion)

Linear Permutation:

$$\mathbb{F}_2^m \rightarrow \mathbb{F}_2^m.$$
Unique Univariate Polynomial Representation of an SBox

\[F : \mathbb{F}_{2^n} \rightarrow \mathbb{F}_{2^n} \]
\[x \mapsto \sum_{i=0}^{2^n-1} a_i x^i, \quad a_i \in \mathbb{F}_{2^n}. \]

Definition

The component functions of a function \(F \) are

\[x \mapsto Tr(\lambda F(x)), \quad \lambda \in \mathbb{F}_{2^n}^*. \]

\(Tr : \mathbb{F}_{2^n} \rightarrow \mathbb{F}_2 \) is the absolute trace.

Definition

The algebraic degree of a function \(F \) is

\[\deg(F) = \max \{ wt(i) \mid a_i \neq 0 \}. \]

\(wt : \mathbb{F}_2^n \rightarrow \mathbb{N} \) is the binary Hamming weight.

\(F \) is said *sparse* if few of the \(a_i \)'s are nonzero.
Differential Uniformity

\[F : \mathbb{F}_{2^n} \rightarrow \mathbb{F}_{2^n} \]

Definition
The differential uniformity of \(F \) is defined as

\[
\delta(F) = \max_{a \neq 0, \ b \in \mathbb{F}_{2^n}} \# \{ x \mid F(x) + F(x + a) = b \}.
\]

\(F \) is called **APN** (almost perfect nonlinear) if \(\delta(F) = 2 \).

Facts about APN functions
APN functions have optimal resistance against *differential attacks*. Only one APN permutation is known for \(n \) even (Dillon’s function, \(n = 6 \)).
Nonlinearity

\[F : \mathbb{F}_{2^n} \rightarrow \mathbb{F}_{2^n} \]

Definition

The nonlinearity of \(F \) is defined as

\[
\mathcal{NL}(F) = 2^{n-1} - \max_{\alpha \neq 0, \beta \in \mathbb{F}_{2^n}} \left(2^{n-1} - \text{wt}(x \mapsto \text{Tr}(\alpha F(x) + \beta x)) \right).
\]

\(F \) is called **AB** (almost bent) if for all \(\alpha \neq 0, \beta \in \mathbb{F}_{2^n} \)

\[
\mathcal{NL}(F) = 2^{n-1} - 2^{\frac{n-1}{2}}.
\]

Facts about AB functions

Exist for \(n \) odd only!!

AB function have optimal resistance against *linear attacks*.

Any AB function is also APN.
Properties

\[F : \mathbb{F}_{2^n} \rightarrow \mathbb{F}_{2^n} \]

Proposition

Differential uniformity and nonlinearity are invariants under:

- compositional inversion (when talking about permutations).
- “Extended Affine” (EA)-equivalence (i.e. \(F \sim_{EA} G \) if there exist affine permutations \(A_0 \) and \(A_1 \) and some affine function \(A_2 \) such that \(G = A_0 \circ F \circ A_1 + A_2 \)).
Outline

Preliminaries

Previous works

Permutations by Switching
Negative Answers

Main Results

Conclusion
Permutations by switching

P. Charpin and G. Kyureghyan [SETA08] [FFA09] [AMS10]:

Theorem

Let G be a permutation on \mathbb{F}_2, f be any Boolean function on \mathbb{F}_2. Then

$$F(x) = G(x) + \gamma f(x), \quad \gamma \in \mathbb{F}_{2^n}^*,$$

is a permutation of \mathbb{F}_{2^n} if and only if

$$f \circ G^{-1}(x) + f \circ G^{-1}(x + \gamma) = 0 \quad \text{for all } x \in \mathbb{F}_{2^n}.$$

Let $\lambda \in \mathbb{F}_{2^n}$: \[Tr(\lambda F(x)) = Tr(\lambda G(x)) + Tr(\lambda \gamma)f(x).\]
Permutations by switching

P. Charpin and G. Kyureghyan [SETA08] [FFA09] [AMS10]:

Theorem

Let G be a permutation on \mathbb{F}_2, f be any Boolean function on \mathbb{F}_2. Then

$$F(x) = G(x) + \gamma f(x), \quad \gamma \in \mathbb{F}_2^*,$$

is a permutation of \mathbb{F}_{2^n} if and only if

$$f \circ G^{-1}(x) + f \circ G^{-1}(x + \gamma) = 0 \quad \text{for all } x \in \mathbb{F}_{2^n}.$$

Let $\lambda \in \mathbb{F}_{2^n}$:

$$\text{Tr}(\lambda F(x)) = \text{Tr}(\lambda G(x)) + \text{Tr}(\lambda \gamma) f(x).$$

Proposition

Let $\delta(G) = \rho$, then $\delta(F) \leq 2 \rho$.
Particular case with monomials

Definition
Let $1 \leq s, t \leq 2^n - 2$ and $\gamma \in \mathbb{F}_{2^n}^*$.

$$F_{s,t,\gamma}(x) = x^s + \gamma \text{Tr}(x^t).$$

Theorem
$F_{s,t,\gamma}$ is a permutation on \mathbb{F}_{2^n} if and only if

$$\gcd(s, 2^n - 1) = 1,$$

$$t \equiv 2^i(2^i + 1)s \pmod{2^n - 1} \quad \text{for some } 0 \leq i, j \leq n-1, \ i \neq n/2,$$

and either (a) or (b) holds:

(a) $i = 0$ and $\text{Tr}(\gamma) = 0$.

(b) $i > 0$ and $\gamma \in \mathbb{F}_{2\gcd(2i, n)}$ with $\text{Tr}(\gamma^{2^i+1}) = 0$.
Properties

\[F_{s,t,\gamma}(x) = x^s + \gamma \text{Tr}(x^t). \]

Fact: \(x \mapsto x^s \) is APN \(\Rightarrow \) \(\gcd(s, 2^n - 1) = 3 \) if \(n \) is even and 1 otherwise.

Proposition

- If \(n \) is *even* and \(x \mapsto x^s \) is APN then \(F \) is not a permutation.
- If \(n \) is *odd* and \(t = s(2^i + 1) \) where \(\gcd(i, n) = 1 \). Then \(F \) is not a permutation. It is a 2 \to 1 function when \(\gcd(s, 2^n - 1) = 1 \) and \(\gamma = 1 \).

Proposition

There is no permutation on \(\mathbb{F}_{2^n} \) of the shape

\[F(x) = x^{2^j + 1} + \gamma \text{Tr}(x^{(2^i + 1)(2^j + 1)}), \]

with \(\gcd(i, n) = 1 \) and \(\gcd(j, n) = 1 \).
Outline

Preliminaries

Previous works

Main Results

Compositional Inverses

\[F_{s,1,\gamma}(x) = x^s + \gamma Tr(x) \]
\[F(x) = x^{-1} + \gamma Tr(x^t) \]

Conclusion
Compositional inverses

\[F(x) = G(x) + \gamma f(x), \quad \gamma \in \mathbb{F}_{2^n}^*. \]

Theorem

If \(F \) is a permutation on \(\mathbb{F}_{2^n} \) (i.e. \(f \circ G^{-1}(x) + f \circ G^{-1}(x + \gamma) = 0 \)), then

\[F^{-1} = G^{-1} \circ Q, \]

where \(Q(x) = x + \gamma f \circ G^{-1}(x). \)

Because

\[F = Q \circ G \quad \text{and} \quad Q = Q^{-1}. \]
Compositional inverses

\[F_{s,t,\gamma}(x) = x^s + \gamma \text{Tr}(x^t). \]

Theorem

Let \(F_{s,t,\gamma} \) be a permutation on \(\mathbb{F}_{2^n} \) with \(t = s(2^i + 1) \) for some \(i \). Let \(\sigma = s^{-1} \pmod{2^n - 1} \). Then,

\[
F_{s,t,\gamma}^{-1}(x) = (x + \gamma \text{Tr}(x^{2^i+1}))^\sigma
= x^\sigma + \left(\sum_{j < \sigma} x^j \gamma^{\sigma-j} \right) \text{Tr}(x^{2^i+1}).
\]

Definition: Let \(a = \sum a_i 2^i \) and \(b = \sum b_i 2^i \). If \(a_i \geq b_i \) for all \(i \) then \(b \preceq a \) and \(b \prec a \) if \(a \neq b \).
Main Results

\[F_{s,1,\gamma}(x) = x^s + \gamma \text{Tr}(x) \]

Special case when \(t = 1 \)

\[F_{s,1,\gamma}(x) = x^s + \gamma \text{Tr}(x) \]

Theorem

\(F_{s,1,\gamma} \) is a permutation on \(\mathbb{F}_{2^n} \) if and only if

1. \(s = \frac{2^j}{2^i+1} \pmod{2^n-1} \)\(^\dagger\) for some \(i > 0 \) and \(j \geq 0 \); AND
2. \(\gcd(i,n) = \gcd(2i,n) \); AND
3. \(\gamma \in \mathbb{F}_{2^{\gcd(i,n)}} \) such that \(\text{Tr}(\gamma^{2^i+1}) = 0 \).

Moreover (when \(j = 0 \)),

\[F_{s,1,\gamma}^{-1}(x) = x^{2^i+1} + (\gamma^{2^i+1} + \gamma^{2^i}x + \gamma x^{2^i}) \text{Tr}(x^{2^i+1}). \]

In this case,

\[\delta(F_{s,1,\gamma}) = 2^{\gcd(i,n)}, \quad \mathcal{N}\mathcal{L}(F_{s,1,\gamma}) = 2^{n-1} - 2^{(n+\gcd(i,n)-2)/2}, \]

and \(\deg(F_{s,1,\gamma}) = \frac{n-\gcd(i,n)+2}{2} \)\(^\dagger\), \(\deg(F_{s,1,\gamma}^{-1}) = 3 \).

\(^\dagger\) (On inversion in \(\mathbb{Z}_{2^n-1} \) [KS13])
Main Results\[F_{s,1,\gamma}(x) = x^s + \gamma \text{Tr}(x) \]

Specific Classes\[F_{s,1,\gamma}(x) = x^s + \gamma \text{Tr}(x) \]

Let \(n = 2m \), with \(m \) odd. Take

1. \(\gcd(i, n) = 2; \)
2. \(s = \frac{1}{2^{i+1}}; \)
3. \(\gamma \in \mathbb{F}_{2}^* \) such that \(\text{Tr}(\gamma^{2^{i}+1}) = 0 \) (i.e. \(\gamma = 1 \)).

Then
\[F_{s,1,\gamma}(x) = x^{\frac{1}{2^{i}+1}} + \text{Tr}(x) \]

is a permutation on \(\mathbb{F}_{2^n} \). Moreover
\[\delta(F_{s,1,\gamma}) = 4, \quad \mathcal{N}\mathcal{L}(F_{s,1,\gamma}) = 2^{n-1} - 2^m \quad \text{and} \quad \deg(F_{s,1,\gamma}) = m. \]

Its compositional inverse is
\[F_{s,1,\gamma}^{-1}(x) = x^{2^{i}+1} + (1 + x + x^{2^{i}+1}) \text{Tr}(x^{2^{i}+1}). \]
Main Results

\[F(x) = x^{-1} + \gamma \text{Tr}(x^t) \]

With the multiplicative inverse function

Before getting started ...

Lemma

Let \(F(x) = x^{-1} + \gamma f(x) \) where \(f \) is any boolean function on \(\mathbb{F}_{2^n} \). Then

\[
\delta(F) \in \begin{cases}
\{2, 4\} & \text{when } n \text{ is odd}, \\
\{4, 6\} & \text{when } n \text{ is even}.
\end{cases}
\]

It is worth noticing that

\[\text{for } n \text{ even }, \forall f, \forall \gamma, \quad F \text{ can not be APN.} \]
Main Results

\[F(x) = x^{-1} + \gamma \text{Tr}(x^t) \]

Specific Classes

\[F(x) = x^{-1} + \gamma \text{Tr}(x^t) \]

Proposition

Let \(1 \leq i \leq n \) with \(i \neq n/2 \), \(\gamma \in \mathbb{F}_2^{\gcd(2i,n)} \) such that \(\text{Tr}(\gamma^{2i+1}) = 0 \), and

\[F_{i,\gamma}(x) = x^{-1} + \gamma \text{Tr}(x^{2^{n-1}-2^{i-1}-1}). \]

Then \(F_{i,\gamma}(x) \) is a permutation on \(\mathbb{F}_{2^n} \) with

\[\delta(F_{i,\gamma}) \in \begin{cases}
\{2, 4\} & \text{when } n \text{ is odd,} \\
\{4, 6\} & \text{when } n \text{ is even.}
\end{cases} \]

Remark: when \(\text{Tr}(\gamma^{2i+1}) = 1 \), \(F_{i,\gamma}(x) \) is \(2 - to - 1 \), with the same differential uniformity.
Outline

Preliminaries

Previous works

Main Results

Conclusion
Conclusion and Perspectives

- Little is known about the *nonlinearity* of the functions $F_{s,t,\gamma}$.

- Although we have a *good upper bound* on differential uniformity, it is generally *difficult* to get general result.

- Other classes of functions remain to be studied:
 - $x^{2^k-2^k+1} + \gamma \text{Tr}(x^{2^i+1})$,
 - $x^s + \gamma \text{Tr}(x^t + x^r)$,
 - ...
Thank you!