Motivations PRNG Security Model Java SecureRandom Analysis Android SHA1PRNG Attack against Tor
o 000 000 (e]e} 0000

(In)Security of Java SecureRandom
Implementations

M. Cornejo! S. Ruhault?

1Ecole Normale Supérieure, INRIA, Paris, France

2DI/ENS, ENS-CNRS-INRIA and Oppida, France

Journées Codage et Cryptographie, 2014

Conclusion

Motivations PRNG Security Model Java SecureRandom Analysis Android SHA1PRNG Attack against Tor Conclusion
o] 000 000 [e]e] 0000

Outline

© Motivations

© PRNG Security Model

© Java SecureRandom Analysis
@ Android SHA1PRNG

© Attack against Tor

© Conclusion

Motivations PRNG Security Model Java SecureRandom Analysis Android SHA1PRNG
° 000 000 oo
Motivations

Need for randomness
o key generation
@ encryption (paddings, 1V)
e signature (DSA)

@ security protocols (nonces)

Recent vulnerabilities
@ Mind your Ps and Qs
@ OpenSSL PRNG bug on Debian
@ Android PRNG bug

Attack against Tor Conclusion
0000

Motivations PRNG Security Model Java SecureRandom Analysis Android SHA1PRNG Attack against Tor Conclusion

[] 000 000 [e]e] 0000
Motivations
Need for randomness =
L] LY
o key generation ". =
. . ¢ :\\: o
@ encryption (paddings, 1V) v

@ signature (DSA)

@ security protocols (nonces)

Recent vulnerabilities
@ Mind your Ps and Qs i -
@ OpenSSL PRNG bug on Debian
@ Android PRNG bug

Need for Randomness = Need for Security Analysis of PRNGs

Motivations PRNG Security Model Java SecureRandom Analysis Android SHA1PRNG Attack against Tor Conclusion
o @00 000 (e]e} 0000

PRNG Security Model

How to model a PRNG 7
Two operations

@ input collection | — PRNG

@ output generation PRNG — R
Where

@ R are contructed to be random

@ [are not supposed random

@ Operations are not synchronised

0110101101

Motivations PRNG Security Model Java SecureRandom Analysis Android SHA1PRNG Attack against Tor Conclusion
o @00 000 (e]e} 0000

PRNG Security Model

How to model a PRNG 7
Two operations

@ input collection | — PRNG

@ output generation PRNG — R
Where

@ R are contructed to be random

@ [are not supposed random

@ Operations are not synchronised l
0110101101

Need for an internal state S, s.t. (/,S) - S — (R, S)
Entropy is collected in S, Output is generated from S J

(o] Io} [e]e]e} (e} 0000

PRNG Security Model

Dodis et al PRNG Model
A PRNG is a triple of algorithms (setup, refresh, next):
@ setup, seed generation algorithm
e refresh, entropy collecting algorithm, (S,/) — S’
@ next, output algorithm, S — (R, S’)
Where :
@ seed is a public parameter
@ [is an input
@ S and S’ are values of the internal state
@ R is the output of the PRNG

Motivations PRNG Security Model Java SecureRandom Analysis Android SHA1PRNG Attack against Tor Conclusion

Reference
Security Analysis of PRNG With Input:/dev/random is not Robust. [DPRVW], ACM-CCS'13.

v

Motivations PRNG Security Model Java SecureRandom Analysis Android SHA1PRNG Attack against Tor Conclusion
o] ooe 000 [e]e] 0000

PRNG Security Model

Security properties ?
Attacker A can:
@ ask for outputs: S — (R, S’)
e compromise inputs: (S,/) = S’

@ compromise internal state: (S,/) — S’ -

A wants to distinguish R from random 1

0110101101

Motivations PRNG Security Model Java SecureRandom Analysis Android SHA1PRNG Attack against Tor
o] ooe 000 [e]e] 0000

PRNG Security Model

Security properties ?
Attacker A can:
@ ask for outputs: S — (R, S’)
e compromise inputs: (S,/) = S’

@ compromise internal state: (S,/) — S’ -

A wants to distinguish R from random 1

Conclusion

0110101101

How do we link this model with Java Implementations ?

Motivations PRNG Security Model Java SecureRandom Analysis Android SHA1PRNG Attack against Tor Conclusion
o] 000 @00 [e]e] 0000

Randomness in Java

Java Execution Model

@ Java source code — compiled into Java bytecode. (()

@ Java bytecode — executed in a Virtual Machine (JVM).) <—_
Java SecureRandom Class

o Part of the Java Cryptographic Architecture

. . ..“

Providers T o
Android — SHA1PRNG, SUN — SHA1PRNG, NativePRNG, ‘e @
Bouncycastle — SHA1PRNG, ...

Previous Work
[MMS13] Randomly Failed! The state of randomness in current java implementations. In

Topics in Cryptology, CT-RSA 2013

Motivations PRNG Security Model Java SecureRandom Analysis Android SHA1PRNG Attack against Tor
o] 000 (o] Yo} [e]e] 0000

Randomness in Java

Java Security Model
The Java Security Model relies on: ((
@ Protection of the environment from the Java —
application. —
@ But not protection of the Java application from / \
the environment.)
A Java application X
@ runs in a dedicated process \ /
@ runs in user mode and is not protected by the
kernel. é A
@ can be interrupted (or analysed) by a concurrent f;
process A

Conclusion

Motivations PRNG Security Model Java SecureRandom Analysis Android SHA1PRNG Attack against Tor Conclusion
o 000 0®0 oo 0000

Randomness in Java

Java Security Model
The Java Security Model relies on: ((
@ Protection of the environment from the Java t:)
application.
@ But not protection of the Java application from / \
the environment.)
A Java application X \/
@ runs in a dedicated process \ /
@ runs in user mode and is not protected by the
kernel. 8 A
@ can be interrupted (or analysed) by a concurrent 5*’
process

‘The PRNG Internal State can be compromised ! ‘

Motivations PRNG Security Model Java SecureRandom Analysis Android SHA1PRNG Attack against Tor Conclusion
o 000 ocoe oo 0000

Implementation Analysis

How do we link this model with Java Implementations 7

Source code
fieldl;
field2;

Security Model
Internal State S
setup — S
refresh(S, 1) — S’
next(S) — (R, S")

instructionl;
instruction2;
instruction3;

Internal state identification
fieldl;
field2;

Internal State S

1 Algorithms identification
0110101101 setup | instructioni;

refresh | instruction2;
next instruction3;

Motivations PRNG Security Model Java SecureRandom Analysis Android SHA1PRNG Attack against Tor Conclusion
o 000 ocoe oo 0000

Implementation Analysis

How do we link this model with Java Implementations ?

Source code
fieldl;
field2;

Security Model
Internal State S
setup — S
refresh(S, 1) — S’
next(S) — (R, S")

instructioni;
instruction2;
instruction3;

Internal state identification
fieldl;
field2;

Internal State S

1 Algorithms identification
0110101101 setup instructioni;

refresh | instruction2;
next instruction3;

‘Vulnerabilities can be identified in implementations !

Motivations PRNG Security Model Java SecureRandom Analysis Android SHA1PRNG Attack against Tor Conclusion
o 000 000 (3] 0000

Android SHA1PRNG case

@ setup (Ho: SHAL init vector) S: | 0 ‘ 0 ‘ 0 ‘ Ho ‘
@ refresh (S’ = SHAL(S||/)) S: | | ‘ 0 ‘ 0 ‘ H, ‘
@ Implemented! H; = C(Ho, /)

next (R = SHA1(S||ctr))
Implemented! R = H, = C(Hu, (0]|1)) R:

Motivations PRNG Security Model Java SecureRandom Analysis Android SHA1PRNG Attack against Tor Conclusion
o 000 000 (3] 0000

Android SHA1PRNG case

@ setup (Ho: SHAL init vector) S: | 0 ‘ 0 ‘ 0 ‘ Ho ‘

@ refresh (S’ = SHAL(S||/)) S | | ‘ 0 ‘ 0 ‘ H, ‘
@ Implemented! H; = C(Ho, I)

@ next (R = SHA1(S||ctr))
@ Implemented! R = H> = C(Hy, (0[|1)) R:

| What if [/] =512 7|

Motivations PRNG Security Model Java SecureRandom Analysis Android SHA1PRNG Attack against Tor Conclusion
o 000 000 oe 0000

Android SHA1PRNG case

@ setup (Ho: SHAL init vector) S | 0 ‘ 0 ‘ 0 ‘ Ho ‘
o refresh (S’ = Hy = C(Ho, 1)) S: | 0 ‘ 0 ‘ 0 ‘ Hy ‘
ss[o Ji] o [H |

R = H> =C(H 1
@ next (> = C(Ha, (0]|1)) R:

otivations

ava SecureRandom Analysis

@ setup (Ho: SHAL init vector)

@ refresh (S’ = Hy = C(Ho, 1))

@ next (R = H> = C(H1, (0[[1))

@ next (R = Hs)

Android SHA1PRNG case

Android SHA1PRNG Attack a T Conclusion
ss[o Jo] o [H|
ss[o Jo] o [H |
ss| o [1] o Ho |

g
ss| o J2] o | Hs|

R = Hs = C(H>, (0][2))]

Android SHA1PRNG not even pseudo-random (for version < 4.2.2) | ‘

Motivations PRNG Security Model Java SecureRandom Analysis Android SHA1PRNG Attack against Tor Conclusion
o] 000 000 [e]e] @000

Internal State Compromise

Java Platform Debugger Architecture

e JPDA

o A standardized infrastructure for third-party debuggers
o Defines a set of instructions to control the application execution and
memory managment

@ Debug a running application remotely or locally

@ From a different process it is possible to modify the memory

Java SecureRandom Analysis Android SHA1PRNG Attack against Tor Conclusion

Motivations PRNG Security Model
oo €000

[e] [e]e]e} [e]e]e}

Internal State Compromise

Java Platform Debugger Architecture

e JPDA

o A standardized infrastructure for third-party debuggers
o Defines a set of instructions to control the application execution and

memory managment
@ Debug a running application remotely or locally
@ From a different process it is possible to modify the memory

Attack Idea
@ Force the JVM in debug mode

@ JAVA_OPTIONS=¢-Xdebug -Xrunjdwp:transport=
dt_socket,address=8998,server=y, suspend=n’

@ Wait for the execution and modify the memory

Motivations PRNG Security Model Java SecureRandom Analysis Android SHA1PRNG Attack against Tor Conclusion
o] 000 000 (e} ©0e@00

Malicious Code Implementation

Concrete Implementation !
Malicious code can:
@ ask for outputs: S — (R, S’)
e compromise inputs: (S,/) = S’
@ compromise internal state: (S,/) — S’ é -

Malicious code can compromise PRNG ! 1

0110101101

Motivations PRNG Security Model Java SecureRandom Analysis Android SHA1PRNG

[e]

Attack against Tor
000 000 (e} ©0e@00

Malicious Code Implementation

Concrete Implementation !
Malicious code can:

@ ask for outputs: S — (R, S’)

e compromise inputs: (S,/) = S’

@ compromise internal state: (S,/) — S’ P -

Malicious code can compromise PRNG ! ‘ 1
v
0110101101

Concrete Attack !

@ Only a small part of the internal state needs to be compromised !

@ e.g. SUN SHA1PRNG: only 32 compromised bits (out of 352) are
necessary to compromise the PRNG !

@ No remote communication is required !

Conclusion

Motivations PRNG Security Model Java SecureRandom Analysis Android SHA1PRNG Attack against Tor Conclusion
o 000 000 oo 0000

Attack against a full Java Tor Client

The Tor Network o
P
@ Tor is a anonymous and resistant to ‘oY

X ‘o @
censorship network.

@ Each node encrypts the traffic and l
send it through a random path.

@ Full Open Source Java
implementation : Orchid

@ Relies on SUN SHA1PRNG

Motivations PRNG Security Model Java SecureRandom Analysis

[e] [e]e]e} [e]e]e}

Android SHA1PRNG Attack against Tor Conclusion
(e]e) [ele]e])

Attack against a full Java Tor Client

The Tor Network

@ Tor is a anonymous and resistant to
censorship network.

@ Each node encrypts the traffic and
send it through a random path.

@ Full Open Source Java
implementation : Orchid

@ Relies on SUN SHA1PRNG

Attack

@ Connect to the application with the
JDPA.

o Wait for random path generation.
o Compromise 32 bits (of 352) of S.

@ Always use the same path !

Motivations PRNG Security Model Java SecureRandom Analysis Android SHA1PRNG
o 000 000 oo

Java SecureRandom Analysis

@ First analysis with a strong security model.

Attack against Tor
0000

@ Concrete implementation of attacks in the security model.

@ New vulnerabilities.

e Concrete attack on security applications.

Conclusion

Recommandations
@ Update Android !
@ Ensure that memory can't be corrupted.

@ Rely on system PRNG: e.g. use NativePRNG.

	Motivations
	PRNG Security Model
	Java SecureRandom Analysis
	Android SHA1PRNG
	Attack against Tor
	Conclusion

