
Motivations PRNG Security Model Java SecureRandom Analysis Android SHA1PRNG Attack against Tor Conclusion

(In)Security of Java SecureRandom
Implementations

M. Cornejo1 S. Ruhault2

1École Normale Supérieure, INRIA, Paris, France

2DI/ENS, ENS-CNRS-INRIA and Oppida, France

Journées Codage et Cryptographie, 2014

Motivations PRNG Security Model Java SecureRandom Analysis Android SHA1PRNG Attack against Tor Conclusion

Outline

1 Motivations

2 PRNG Security Model

3 Java SecureRandom Analysis

4 Android SHA1PRNG

5 Attack against Tor

6 Conclusion

Motivations PRNG Security Model Java SecureRandom Analysis Android SHA1PRNG Attack against Tor Conclusion

Motivations

Need for randomness
key generation
encryption (paddings, IV)
signature (DSA)
security protocols (nonces)

Recent vulnerabilities
Mind your Ps and Qs
OpenSSL PRNG bug on Debian
Android PRNG bug

Motivations PRNG Security Model Java SecureRandom Analysis Android SHA1PRNG Attack against Tor Conclusion

Motivations

Need for randomness
key generation
encryption (paddings, IV)
signature (DSA)
security protocols (nonces)

Recent vulnerabilities
Mind your Ps and Qs
OpenSSL PRNG bug on Debian
Android PRNG bug

Need for Randomness =⇒ Need for Security Analysis of PRNGs

Motivations PRNG Security Model Java SecureRandom Analysis Android SHA1PRNG Attack against Tor Conclusion

PRNG Security Model

How to model a PRNG ?
Two operations

input collection I → PRNG
output generation PRNG → R

Where
R are contructed to be random
I are not supposed random
Operations are not synchronised

0110101101

Motivations PRNG Security Model Java SecureRandom Analysis Android SHA1PRNG Attack against Tor Conclusion

PRNG Security Model

How to model a PRNG ?
Two operations

input collection I → PRNG
output generation PRNG → R

Where
R are contructed to be random
I are not supposed random
Operations are not synchronised

0110101101

Need for an internal state S , s.t. (I , S) → S → (R , S)

Entropy is collected in S , Output is generated from S

Motivations PRNG Security Model Java SecureRandom Analysis Android SHA1PRNG Attack against Tor Conclusion

PRNG Security Model

Dodis et al PRNG Model
A PRNG is a triple of algorithms (setup, refresh, next):

setup, seed generation algorithm
refresh, entropy collecting algorithm, (S , I) → S ′

next, output algorithm, S → (R,S ′)

Where :
seed is a public parameter
I is an input
S and S ′ are values of the internal state
R is the output of the PRNG

Reference
Security Analysis of PRNG With Input:/dev/random is not Robust. [DPRVW], ACM-CCS’13.

Motivations PRNG Security Model Java SecureRandom Analysis Android SHA1PRNG Attack against Tor Conclusion

PRNG Security Model

Security properties ?
Attacker A can:

ask for outputs: S → (R,S ′)

compromise inputs: (S , I) → S ′

compromise internal state: (S , I) → S ′

A wants to distinguish R from random

0110101101

Motivations PRNG Security Model Java SecureRandom Analysis Android SHA1PRNG Attack against Tor Conclusion

PRNG Security Model

Security properties ?
Attacker A can:

ask for outputs: S → (R,S ′)

compromise inputs: (S , I) → S ′

compromise internal state: (S , I) → S ′

A wants to distinguish R from random

0110101101

How do we link this model with Java Implementations ?

Motivations PRNG Security Model Java SecureRandom Analysis Android SHA1PRNG Attack against Tor Conclusion

Randomness in Java

Java Execution Model
Java source code → compiled into Java bytecode.
Java bytecode → executed in a Virtual Machine (JVM).

Java SecureRandom Class
Part of the Java Cryptographic Architecture

Providers
Android → SHA1PRNG, SUN → SHA1PRNG, NativePRNG,
Bouncycastle → SHA1PRNG, . . .

Previous Work
[MMS13] Randomly Failed! The state of randomness in current java implementations. In

Topics in Cryptology, CT-RSA 2013

Motivations PRNG Security Model Java SecureRandom Analysis Android SHA1PRNG Attack against Tor Conclusion

Randomness in Java

Java Security Model
The Java Security Model relies on:

Protection of the environment from the Java
application.
But not protection of the Java application from
the environment.

A Java application
runs in a dedicated process
runs in user mode and is not protected by the
kernel.
can be interrupted (or analysed) by a concurrent
process

Motivations PRNG Security Model Java SecureRandom Analysis Android SHA1PRNG Attack against Tor Conclusion

Randomness in Java

Java Security Model
The Java Security Model relies on:

Protection of the environment from the Java
application.
But not protection of the Java application from
the environment.

A Java application
runs in a dedicated process
runs in user mode and is not protected by the
kernel.
can be interrupted (or analysed) by a concurrent
process

The PRNG Internal State can be compromised !

Motivations PRNG Security Model Java SecureRandom Analysis Android SHA1PRNG Attack against Tor Conclusion

Implementation Analysis

How do we link this model with Java Implementations ?

0110101101

Source code
field1;

field2;

instruction1;

instruction2;

instruction3;

Security Model
Internal State S

setup → S
refresh(S, I) → S′

next(S) → (R,S′)

Internal state identification

Internal State S
field1;

field2;

Algorithms identification
setup instruction1;

refresh instruction2;

next instruction3;

Motivations PRNG Security Model Java SecureRandom Analysis Android SHA1PRNG Attack against Tor Conclusion

Implementation Analysis

How do we link this model with Java Implementations ?

0110101101

Source code
field1;

field2;

instruction1;

instruction2;

instruction3;

Security Model
Internal State S

setup → S
refresh(S, I) → S′

next(S) → (R,S′)

Internal state identification

Internal State S
field1;

field2;

Algorithms identification
setup instruction1;

refresh instruction2;

next instruction3;

Vulnerabilities can be identified in implementations !

Motivations PRNG Security Model Java SecureRandom Analysis Android SHA1PRNG Attack against Tor Conclusion

Android SHA1PRNG case

setup (H0: SHA1 init vector) 0 0 0S : H0

refresh (S ′ = SHA1(S ||I))
Implemented! H1 = C(H0, I)

I 0 0S : H1

next (R = SHA1(S ||ctr))
Implemented! R = H2 = C(H1, (0||1))

I 1 0S : H2

H2R:

Motivations PRNG Security Model Java SecureRandom Analysis Android SHA1PRNG Attack against Tor Conclusion

Android SHA1PRNG case

setup (H0: SHA1 init vector) 0 0 0S : H0

refresh (S ′ = SHA1(S ||I))
Implemented! H1 = C(H0, I)

I 0 0S : H1

next (R = SHA1(S ||ctr))
Implemented! R = H2 = C(H1, (0||1))

I 1 0S : H2

H2R:

What if |I | = 512 ?

Motivations PRNG Security Model Java SecureRandom Analysis Android SHA1PRNG Attack against Tor Conclusion

Android SHA1PRNG case

setup (H0: SHA1 init vector) 0 0 0S : H0

refresh (S ′ = H1 = C(H0, I)) 0 0 0S : H1

next (R = H2 = C(H1, (0||1))
0 1 0S : H2

H2R:

Motivations PRNG Security Model Java SecureRandom Analysis Android SHA1PRNG Attack against Tor Conclusion

Android SHA1PRNG case

setup (H0: SHA1 init vector) 0 0 0S : H0

refresh (S ′ = H1 = C(H0, I)) 0 0 0S : H1

next (R = H2 = C(H1, (0||1))
0 1 0S : H2

H2R:

next (R = H3)

0 2 0S : H3

H3R:

R = H3 = C(H2, (0||2)) !!

Android SHA1PRNG not even pseudo-random (for version < 4.2.2) !

Motivations PRNG Security Model Java SecureRandom Analysis Android SHA1PRNG Attack against Tor Conclusion

Internal State Compromise

Java Platform Debugger Architecture
JPDA

A standardized infrastructure for third-party debuggers
Defines a set of instructions to control the application execution and
memory managment

Debug a running application remotely or locally
From a different process it is possible to modify the memory

Motivations PRNG Security Model Java SecureRandom Analysis Android SHA1PRNG Attack against Tor Conclusion

Internal State Compromise

Java Platform Debugger Architecture
JPDA

A standardized infrastructure for third-party debuggers
Defines a set of instructions to control the application execution and
memory managment

Debug a running application remotely or locally
From a different process it is possible to modify the memory

Attack Idea
Force the JVM in debug mode
JAVA_OPTIONS=‘-Xdebug -Xrunjdwp:transport=
dt_socket,address=8998,server=y,suspend=n’

Wait for the execution and modify the memory

Motivations PRNG Security Model Java SecureRandom Analysis Android SHA1PRNG Attack against Tor Conclusion

Malicious Code Implementation

Concrete Implementation !
Malicious code can:

ask for outputs: S → (R,S ′)

compromise inputs: (S , I) → S ′

compromise internal state: (S , I) → S ′

Malicious code can compromise PRNG !

0110101101

Motivations PRNG Security Model Java SecureRandom Analysis Android SHA1PRNG Attack against Tor Conclusion

Malicious Code Implementation

Concrete Implementation !
Malicious code can:

ask for outputs: S → (R,S ′)

compromise inputs: (S , I) → S ′

compromise internal state: (S , I) → S ′

Malicious code can compromise PRNG !

0110101101

Concrete Attack !
Only a small part of the internal state needs to be compromised !
e.g. SUN SHA1PRNG: only 32 compromised bits (out of 352) are
necessary to compromise the PRNG !
No remote communication is required !

Motivations PRNG Security Model Java SecureRandom Analysis Android SHA1PRNG Attack against Tor Conclusion

Attack against a full Java Tor Client

The Tor Network
Tor is a anonymous and resistant to
censorship network.
Each node encrypts the traffic and
send it through a random path.
Full Open Source Java
implementation : Orchid
Relies on SUN SHA1PRNG

Motivations PRNG Security Model Java SecureRandom Analysis Android SHA1PRNG Attack against Tor Conclusion

Attack against a full Java Tor Client

The Tor Network
Tor is a anonymous and resistant to
censorship network.
Each node encrypts the traffic and
send it through a random path.
Full Open Source Java
implementation : Orchid
Relies on SUN SHA1PRNG

Attack
Connect to the application with the
JDPA.
Wait for random path generation.
Compromise 32 bits (of 352) of S .
Always use the same path !

Motivations PRNG Security Model Java SecureRandom Analysis Android SHA1PRNG Attack against Tor Conclusion

Conclusion

Java SecureRandom Analysis
First analysis with a strong security model.
Concrete implementation of attacks in the security model.
New vulnerabilities.
Concrete attack on security applications.

Recommandations
Update Android !
Ensure that memory can’t be corrupted.
Rely on system PRNG: e.g. use NativePRNG.

	Motivations
	PRNG Security Model
	Java SecureRandom Analysis
	Android SHA1PRNG
	Attack against Tor
	Conclusion

