Discrete logarithms: Recent progress in small characteristic

Antoine Joux
CryptoExperts
Chaire de Cryptologie de la Fondation de l’UPMC — LIP6

Journées C2, 28 mars 2014
Discrete logarithms

- Given a multiplicative group G with generator g
- Computing discrete logarithms is inversing $n \rightarrow g^n$
- Hard in general and used as a hard problem in cryptography
- Algorithmic viewpoint
 - Generic algorithms (for any G)
 - Pohlig-Hellman
 - Baby step, Giant step and Pollard’s Rho
 - Specific algorithms (make use of group representation)
Classical groups for Dlog in Cryptography

- Integers modulo p
- More general finite fields \mathbb{F}_{p^k}
- Elliptic curves over finite fields
Index calculus algorithms

• Relation generation phase
 • Generates many sparse equations
 • Modulo group order for discrete log
 (Modulo 2 for factoring)

• Linear algebra phase
 • Large sparse system
 • Numbers of unknowns in range up to dozens of millions
 • Number of equations potentially very large
 • Need to use large computers to solve such systems

• Individual logarithm phase
\[L_Q(\beta, c) = \exp((c + o(1))(\log Q)^\beta(\log \log Q)^{1-\beta}). \]
Discrete Logarithms, simplified FFS [JL06]

- Finite field of the form \mathbb{F}_{p^k}
- Choose two univariate polynomials f_1 and f_2
 - with degrees d_1 and d_2 and $d_1 d_2 \geq k$.
 - Such that $x - f_1(f_2(x))$ has:
 - an irreducible factor of degree k (modulo p).
- This defines the finite field by the relations:
 - $x = f_1(y)$ and $y = f_2(x)$
Commutative diagram

\[
\begin{array}{ccc}
\mathbb{F}_p[X, Y] & \xrightarrow{X \mapsto f_1(Y)} & \mathbb{F}_p[Y] \\
\downarrow{Y \mapsto f_2(X)} & & \downarrow{X \mapsto x} \\
\mathbb{F}_p[X] & & \mathbb{F}_p[Y] \\
\downarrow{X \mapsto x} & & \downarrow{Y \mapsto y} \\
\mathbb{F}_{p^k} & & \mathbb{F}_{p^k}
\end{array}
\]
Discrete Logarithms, simplified FFS [JL06]

- Optimal for $p = L_{p^k}(1/3)$
- Choose smoothness basis $x - \alpha$ and $y - \alpha$
- Consider elements:

$$xy + ay + bx + c = x f_2(x) + af_2(x) + bx + c$$
$$= y f_1(y) + ay + bf_1(y) + c$$

- When both sides split \Rightarrow Relation
- Heuristic cost of finding relation (sieving):

$$(d_1 + 1)! (d_2 + 1)!$$

- Individual log. descent negligible compared to initial phase
Nice special case – Kummer extensions

- Assume \(k \mid p - 1 \), then \(\mathbb{F}_{p^k} \) can be defined by \(x^k - t \)
- If \(k = d_1 d_2 - 1 \), let \(y = x^{d_1} \) and \(tx = y^{d_2} \) (i.e. \(tx = x^{d_1 d_2} \))
- Reduces size of smoothness basis by \(k \)
 - Indeed:
 \[
 (X + \alpha)^p = X^p + \alpha = t^{(p-1)/k}X + \alpha = \mu(X + \alpha/\mu),
 \]
 \[
 (Y + \alpha)^p = \mu^{d_1}(Y + \alpha/\mu^{d_1}).
 \]
 where \(\mu \) is a \(k \)-th root of unity in \(\mathbb{F}_p \).

- Can be generalized to \(k = d_1 d_2 + 1 \) using \(y = x^{d_1} \) and \(x = t/y^{d_2} \)
Linear change of variables [J13]

- Further restrict to $y = x^{d_1}$
- Then:

$$xy + ay + bx + c = x^{d_1+1} + ax^{d_1} + bx + c$$

- Perform change of variable: $x = aX$, we get:

$$a^{d_1+1}(X^{d_1+1} + X^{d_1} + b \cdot a^{-d_1}(X + c/(ab)))$$

- Change of variable does not affect splitting property
- One good left-hand side $\Rightarrow p$ good left-hand sides
- Amortized cost of relation reduced to

$$\left(\frac{(d_1 + 1)!}{p - 1} + 1\right) \cdot (d_2 + 1)!$$
Case of Kummer extensions

- Assume $k | p - 1$, i.e. \mathbb{F}_{p^k} can be defined by $x^k - t$
- If $k = d_1 d_2 - 1$, let $y = x^{d_1}$ and $tx = y^{d_2}$
 - $x^{d_1 + 1} + ax^{d_1} + bx + c \Rightarrow a^{d_1 + 1} (X^{d_1 + 1} + X^{d_1} + b \cdot a^{-d_1} (X + c / (ab))$.
 - $(y^{d_2 + 1} + by^{d_2}) / t + ay + c \Rightarrow b^{d_2 + 1} ((Y^{d_2 + 1} + Y^{d_2}) / t + a \cdot b^{-d_2} (Y + c / (ab))$.
- In both cases $\lambda = c / (ab)$ is shared by the two sides
Assume that:
- \(X^{d_1+1} + X^{d_1} + \theta_X(X + \lambda) \) splits and
- \((Y^{d_2+1} + Y^{d_2})/t + \theta_Y(Y + \lambda) \) splits.

Find \(a \) and \(b \) such that \(\theta_X = b \cdot a^{-d_1} \) and \(\theta_Y = a \cdot b^{-d_2} \)?

This implies \(\theta_X^{d_2} \theta_Y = a^{-d_1 d_2 + 1} = a^{-k} \).

Possible iff \(\theta_X^{d_2} \theta_Y \) is a \(k \)-th power

Gives \(k \) (conjugate) solutions!

From \(a \) recover \(b \) and \(c \)

Roots obtained by change of variable
Impact in the medium prime case

- In theory, reduces constant in $L(1/3)$ complexity of function field sieve.

- In practice, Kummer extensions esp. good for records:
 - First 1175-bit field $\mathbb{F}_{p^{47}}$ with p close to 2^{25}
 - Then 1425-bit field $\mathbb{F}_{p^{57}}$ with p close to 2^{25}
 - Previous finite field record was 923 bits
 - Timings: about 32000 CPU-hours compared to 895000 CPU-hours

\begin{align*}
47 &= 6 \cdot 8 - 1 \\
57 &= 7 \cdot 8 + 1
\end{align*}
Define finite field by a relation:

$$x^{p^\ell} = \frac{h_0(x)}{h_1(x)},$$

which gives degree $k = \deg(I(x))$ extension, where $I(x)$ is a divisor of $h_1(x)x^{p^\ell} - h_0(x)$.

We have a systematic relation:

$$x^{p^\ell} - x = \prod_{\alpha \in \mathbb{F}_{p^\ell}} (x - \alpha).$$
Small characteristic – Basic idea [J13b]

- Use a more general change of variable: \(x = \frac{aX + b}{cX + d} \), we get:

\[
(cX + d) \cdot (aX + b)^{p^\ell} - (aX + b) \cdot (cX + d)^{p^\ell} =
(cX + d) \cdot \prod_{\alpha \in \mathbb{F}_{p^\ell}} ((a - \alpha c)X + (b - \alpha d))
\]

- Moreover, after expanding the left-hand size, we find:

\[
(ca^q - ac^q)X^{q+1} + (da^q - bc^q)X^q + (cb^q - ad^q)X + (db^q - bd^q),
\]

where \(q = p^\ell \).

It becomes a low degree polynomial after multiplying by \(h_1 \) and replacing \(h_1(X)X^q \).

- As a consequence, multiplicative relations are very easy to find
Small characteristic – Choice of a, b, c and d

- If a, b, c and d are in \mathbb{F}_q left-hand side is:

 $$(ad - bc)(X^q - X) \Rightarrow \text{Trivial relation}$$

- Take a, b, c and d in small extension field such as \mathbb{F}_{q^2}

- Some choices of (a, b, c, d) are equivalent. Good parametrization is:

\[PGL_2(\mathbb{F}_{q^2})/PGL_2(\mathbb{F}_q)\]
Small characteristic – Resulting Complexity [J13b]

- Logarithms of smoothness basis in polynomials time
 - Because base field is very small compared to extension field
- Hard part is individual logarithms
 - Usual descent algorithm not good enough
 - Need to be completed by new descent algorithm
- Resulting complexity is:

\[L\left(\frac{1}{4} + o(1)\right). \]

- Practical application:
 - New records in \(F_{2^{1778}}, F_{2^{4080}} \) and \(F_{2^{6168}} \) recently announced
 - Other records by Göloğlu, Granger, McGuire and Zumbrägel

- \(1778 = 2 \cdot 7 \cdot (2^7 - 1) \), 220 CPU-hours
- \(4080 = 2 \cdot 8 \cdot (2^8 - 1) \), 14100 CPU-hours
- \(6168 = 3 \cdot 8 \cdot (2^8 + 1) \) 550 CPU-hours
Resulting Complexity

\[\max(q, k)^O(\log k) \]

- **small** \(p \)
- **medium** \(p \)
- **high** \(p \)

SNFS

FFS

NFS
Descent strategies

- Continued fractions (high degrees)
- Classical descent (for high to mid degrees, need subfield)
- Bilinear descent (for mid to low degrees)
- Quasi-polynomial descent (all degrees)
Continued fractions

- Given target $Z(x)$ find matrix:
 \[
 \begin{pmatrix}
 A_1(x) & A_2(x) \\
 B_1(x) & B_2(x)
 \end{pmatrix},
 \text{such that}
 \]
 \[
 Z(x) \equiv \frac{A_1(x)}{B_1(x)} \equiv \frac{A_2(x)}{B_2(x)} \pmod{I(x)}.
 \]

- With continued fraction or half-Gcd algorithms.
- Reduce degree by 2. Many representations:
 \[
 Z(x) \equiv \frac{c_1(x)A_1(x) + c_2(x)A_2(x)}{c_1(x)B_1(x) + c_2(x)B_2(x)} \pmod{I(x)}.
 \]
Classical descent

- Need two variables x and y
- If $q = p^ℓ$, let:

\[
y = x^{p^{ℓ_1}} \quad \text{then} \quad \frac{y^{p^{ℓ_2}}}{x^{p^{ℓ}}} = \frac{h_0(x)}{h_1(x)}.
\]

- Let $F(x, y)$ be a (low degree) bivariate polynomial, then:

\[
F(x, x^{p^{ℓ_1}})^{p^{ℓ_2}} = \tilde{F}(x^{p^{ℓ_2}}, h_0(x)/h_1(x)) \quad \text{in } \mathbb{F}_{q^k}.
\]

- Need to force $z(x)$ as divisor of $F(x, x^{p^{ℓ_1}})$ (linear algebra)
- Low arity in descent
Bilinear descent

- Search for k_1 and k_2 such that:

$$z(x) | \text{Num} \left(\tilde{k}_1 \left(\frac{h_0(x)}{h_1(x)} \right) k_2(x) - k_1(x) \tilde{k}_2 \left(\frac{h_0(x)}{h_1(x)} \right) \right).$$

- Then $z(x)$ appears on the left in:

$$k_1(x)^p \cdot k_2(x) - k_1(x) \cdot k_2(x)^p = k_2(x) \cdot \prod_{\alpha \in \mathbb{F}_p^\ell} (k_1(x) - k_2(x)).$$

- Arity q in descent
How to find \(k_1 \) and \(k_2 \)?

- Algebraic approach: divisibility condition as a bilinear system
 - In general, use Groebner bases
 - For low-degree, it degenerates into easy linear algebra

- Lattice reduction approach:
 - Further assume that \(k_1 \) and \(k_2 \) split into linear term
 - Since \(z(x) \) is irreducible, it encodes a finite field
 - Take logarithms of elements:

\[
\frac{x - \alpha}{h_0(x)/h_1(x) - \alpha^q}.
\]

 - Find low weight sum of logarithms equal to 0
 - Is there a more direct/efficient approach?
Quasi-polynomial descent

- Make $z(x)$ appear on the right in:

$$(z(x) + \lambda_1)^{p^\ell} \cdot (z(x) + \lambda_2) - (z(x) + \lambda_1) \cdot (z(x) + \lambda_2)^{p^\ell} =$$

$$(z(x) + \lambda_2) \cdot \prod_{\alpha \in \mathbb{F}_{p^\ell}} ((1 + \alpha)z(x) + \lambda_1 + \alpha \lambda_2)$$

- Need $\approx q^2$ equations.
- Simultaneous descent of all $z(x) + \lambda$
- Requires extra linear algebra step
- Arity q^2 in descent
Descent Tree

- Continued fractions, **at most one application**
- Classical descent, **many levels possible**
- Bilinear descent, **in practice 4-5 levels max.**
- Quasi-polynomial descent **in practice 2 levels max.**
Conclusion

Questions ?