Leakage-Resilient Primitives using Re-keying
Journées Codage et Cryptographie 2014

Sonia Belaïd1,2

École Normale Supérieure, 45 rue d’Ulm 75005 Paris
Thales Communications & Security

Sonia.Belaid@ens.fr
Side-Channel Attacks

- physical leakage
 - timing
 - power consumption
 - temperature
 - ...

- statistical treatment

- key recovery
Countermeasures against Side-Channel Attacks

Masking

Sensitive values randomized:

\[x \] replaced by \((x_m, m_0, \ldots, m_{d-1}) \)

\[x = x_m \times m_0 \times \cdots \times m_{d-1} \]

Drawbacks of Masking

- higher-order attacks
- performances

Re-keying

Drawbacks of Masking
Countermeasures against Side-Channel Attacks

Masking

Sensitive values randomized:

\[x \text{ replaced by } (x_m, m_0, \ldots, m_{d-1}) \]

\[x = x_m \times m_0 \times \cdots \times m_{d-1} \]

Drawbacks of Masking

- Higher-order attacks
- Performances

Re-keying

Drawbacks of Masking
Goal:

▶ build leakage-resilient primitives
▶ practical for use in constrained devices

Leakage-Resilient Cryptography Model
- only computation leaks
- bounded amount of leakage per invocation
- unlimited number of invocations

Practical constraints:
- limited code size
- limited storage
- reasonable execution time
Outline

1. Leakage-Resilient Encryption Scheme
2. Leakage-Resilient PRNG with Input
3. Conclusion
Outline

1. Leakage-Resilient Encryption Scheme
2. Leakage-Resilient PRNG with Input
3. Conclusion
Encryption Scheme

plaintext \rightarrow \text{encryption scheme} \rightarrow \text{ciphertext}

- secret key

Goal: efficient and leakage-resilient encryption scheme

Related Work: Kocher's patent 1999 but
- multiple use of the same key
- no security proof

Contribution: Leakage-Resilient Symmetric Encryption via Re-keying
Michel Abdalla, Sonia Belaïd, Pierre-Alain Fouque
CHES 2013: 471-488
Encryption Scheme

Goal: efficient and leakage-resilient encryption scheme

Related Work: Kocher’s patent 1999 but
- multiple use of the same key
- no security proof

Contribution: Leakage-Resilient Symmetric Encryption via Re-keying
Michel Abdalla, Sonia Belaïd, Pierre-Alain Fouque
CHES 2013: 471-488
Leakage-Resilient Encryption Scheme

Leakage-Resilient PRNG with Input

Contributions

<table>
<thead>
<tr>
<th>Scheme 1</th>
<th>LR encryption scheme using a LR PRF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scheme 2</td>
<td>Instantiation of Scheme 1 with the [FPS12] LR PRF</td>
</tr>
<tr>
<td>Scheme 3</td>
<td>more efficient and still LR encryption scheme with a tweaked (not LR and not PRF) function</td>
</tr>
</tbody>
</table>
Schemes 1 and 2

- Re-keying Primitive
 - leakage-resilient PRF

- Block Cipher
 - as a PRF
 - not leakage-resilient

- instantiated with the [FPS12] LR PRF

Faust, Pietrzak, Schipper: Practical Leakage-Resilient Symmetric Cryptography. CHES 2012
Schemes 1 and 2

- **Re-keying Primitive**
 - leakage-resilient PRF

- **Block Cipher**
 - as a PRF
 - not leakage-resilient

- instantiated with the [FPS12] LR PRF
 Faust, Pietrzak, Schipper: Practical Leakage-Resilient Symmetric Cryptography. CHES 2012
Schemes 1 and 2

- Re-keying Primitive
 - leakage-resilient PRF

- Block Cipher
 - as a PRF
 - not leakage-resilient

- instantiated with the [FPS12] LR PRF

Faust, Pietrzak, Schipper: Practical Leakage-Resilient Symmetric Cryptography. CHES 2012
Schemes 1 and 2

- **Re-keying Primitive**
 - leakage-resilient PRF

- **Block Cipher**
 - as a PRF
 - not leakage-resilient

- instantiated with the [FPS12] LR PRF
 Faust, Pietrzak, Schipper: Practical Leakage-Resilient Symmetric Cryptography. CHES 2012
Schemes 1 and 2

- **Re-keying Primitive**
 - leakage-resilient PRF

- **Block Cipher**
 - as a PRF
 - not leakage-resilient

- instantiated with the [FPS12] LR PRF

Faust, Pietrzak, Schipper: Practical Leakage-Resilient Symmetric Cryptography. CHES 2012
Schemes 1 and 2

- Re-keying Primitive
 - leakage-resilient PRF

- Block Cipher
 - as a PRF
 - not leakage-resilient

- instantiated with the [FPS12] LR PRF
 Faust, Pietrzak, Schipper: Practical Leakage-Resilient Symmetric Cryptography. CHES 2012
Scheme 3: More Efficient LR Encryption Scheme

LR Encryption Scheme from

✅ re-keying function
 (not LR, not PRF)

✅ block cipher

with

✅ short-cuts between keys

✅ uniformly random values:
 - one triplet per level [FPS12],
 - PRG with public seed [YS13]

but

❌ additional constraint on the message
Security Aspects

- block cipher with **random inputs** → plaintext added to the output
- **same primitive** for the block cipher and the weak PRFs
- secret keys used at most **three times**:
 - avoid the recomputation of previous keys
Instantiation

weak PRF
Instantiation

weak PRF

block cipher
Instantiation

- weak PRF
- block cipher
- PRG
Instantiation

weak PRF

unmasked AES

block cipher

PRG
Outline

1. Leakage-Resilient Encryption Scheme
2. Leakage-Resilient PRNG with Input
3. Conclusion
Pseudo-Random Generators

Goal: efficient and leakage-resilient PRNG

Related Works:
- PRNG with input: Dodis et al. CCS'13
- Leaking-resilient: Yu et al. CCS'10

Contribution: Leakage-Resilient PRNG with Input

Michel Abdalla, Sonia Belaïd, David Pointcheval, Sylvain Ruhault, Damien Vergnaud
Pseudo-Random Generators

Goal: efficient and leakage-resilient PRNG

Related Works: PRNG
- robust with input: *Dodis et al. CCS’13*
- leakage-resilient: *Yu et al. CCS’10*

Contribution: Leakage-Resilient PRNG with Input
Michel Abdalla, Sonia Belaïd, David Pointcheval, Sylvain Ruhault, Damien Vergnaud
PRNG with Input from CCS 2013

- **setup()** outputs \(seed = (X, X') \);
- \(S = \text{refresh}(S, I; X) = S \cdot X + I \);
- \((S, R) = \text{next}(S; X') = G([X'S]^m) \).

\[G : \{0, 1\}^m \rightarrow \{0, 1\}^{n+\ell} \text{ is a secure PRG \((K \leftarrow [X'S]^m) \).} \]
Security Properties

Attacker A Capabilities

Robustness
If enough entropy is provided, A cannot distinguish (S, R) from a uniformly random string with a significant advantage.
Security Properties

Attacker A Capabilities

- ask for outputs (S, R)
Security Properties

Attacker A Capabilities

- ask for outputs (S, R)
- compromise the inputs I
Security Properties

Attacker \mathcal{A} Capabilities

- ask for outputs (S, R)
- compromise the inputs I
- compromise the internal state S
Security Properties

Attacker A Capabilities

- ask for outputs (S, R)
- compromise the inputs I
- compromise the internal state S

Robustness

If enough entropy is provided, A cannot distinguish (S, R) from a uniformly random string with a significant advantage.
New Security Properties

Attacker A^L Capabilities

- ask for outputs (S, R)
- compromise the inputs I
- compromise the internal state S
New Security Properties

Attacker A^L Capabilities

- ask for outputs (S, R)
- compromise the inputs I
- compromise the internal state S

- collect the leakage: λ bits of information on the manipulated data at each invocation
New Security Properties

Attacker $\mathcal{A}^{\mathcal{L}}$ Capabilities

- ask for outputs (S, R)
- compromise the inputs I
- compromise the internal state S
- collect the leakage: λ bits of information on the manipulated data at each invocation

Robustness with Leakage

If enough entropy is provided, $\mathcal{A}^{\mathcal{L}}$ cannot distinguish (S, R) from a uniformly random string with a significant advantage.
Limitations in Presence of Leakage: Generator \(G \)

- \(\text{setup}() \) outputs \(\text{seed} = (X, X') \);
- \(S = \text{refresh}(S, I; X) = S \cdot X + I \);
- \((S, R) = \text{next}(S; X') = G([X' S]^m) \).

\[\rightarrow \text{Diffential Power Analysis of } G \]
New Generic Construction

- \textbf{setup}() outputs \textbf{seed} = (X, X', X'');
- \(S = \text{refresh}(S, I; X) = S \cdot X + I; \)
- \((S, R) = \text{next}(S; X', X'') = G([X'S]^m, X''). \)

New security property for PRG G

\(G \) is a leakage-resilient and secure PRG.
Leakage-Resilient Instantiation

\[(K_0 || \ldots || K_{\kappa-1} || C) \leftarrow [X'S]_1^m\]

\(m\) is \((\kappa + 1)\) times larger than in CCS’13
Practical Analysis

CCS’13 (2^{−40} security):

- internal state S: 489 bits
- threshold: $\gamma^* = 449$
- AES: 5 calls with 1 secret key

- Efficiency: about **five times** slower than CCS 13
- Security: higher security levels can be achieved with a tweaked instantiation

Our Construction (2^{−40} security):

- internal state S: 1408 bits
- threshold: $\gamma^* = 1370$
- AES: 12 calls with 6 secret keys (2 calls per secret key)
Outline

1. Leakage-Resilient Encryption Scheme
2. Leakage-Resilient PRNG with Input
3. Conclusion
Conclusion

Summary

- \textit{leakage-resilient} and \textit{efficient} symmetric encryption
- \textit{leakage-resilient} and \textit{efficient} PRNG with input

Further Work

- \textit{more efficient} leakage-resilient primitives
- leakage-resilience evaluation of different \textit{modes of operation}
Thank you