UMR 5582 - Laboratoire de mathématiques
Published on UMR 5582 - Laboratoire de mathématiques (https://www-fourier.univ-grenoble-alpes.fr)

Accueil > Arithmetic harmonic analysis, Macdonald polynomials and the topology of the Riemann-Hilbert monodromy map.

Arithmetic harmonic analysis, Macdonald polynomials and the topology of the Riemann-Hilbert monodromy map. [1]

星期一, 17 十月, 2005 - 12:30
Prénom de l'orateur : 
Tamas
Nom de l'orateur : 
Hausel
Résumé : 

We show that abelian and non-abelian Fourier transform over finite fields is the right tool to count solutions of holomorphic moment map equations over finite fields. Using the character theory of GL(n,F_q), due to Green and of gl(n,F_q) due to Letellier, this will give a wealth of information on Betti numbers of those hyperkähler moduli spaces, which arise by a finite holomorphic symplectic quotient construction.
These include: toric hyperkähler varieties, Nakajima's quiver varieties, Hilbert schemes of n points and moduli spaces of Yang-Mills instantons on C^2;
GL(n,C) representation varieties of Riemann surfaces, and moduli spaces of flat GL(n,C) connections on algebraic curves.
This is partly joint work with Emmanuel Letellier and Fernando
Rodriguez-Villegas.

Thème de recherche : 
Algèbre et géométries
Salle : 
04

Source URL: https://www-fourier.univ-grenoble-alpes.fr/?q=zh-hans/content/arithmetic-harmonic-analysis-macdonald-polynomials-and-topology-riemann-hilbert-monodromy

链接
[1] https://www-fourier.univ-grenoble-alpes.fr/?q=zh-hans/content/arithmetic-harmonic-analysis-macdonald-polynomials-and-topology-riemann-hilbert-monodromy