100, rue des maths 38610 Gières / GPS : 45.193055, 5.772076 / Directeur : Thierry Gallay

Michel van Garrel

Nombre de courbes rationnelles dans des géométries logarithmiques versus locales
星期一, 12 二月, 2018 - 14:0015:00
Résumé : 
Soit X une variété projective lisse et soit D un diviseur effectif. Il est bien connu que D correspond à un fibré en droites O(-D), ce qui amène à considérer deux géométries liées à D. D'un côté, il y a la géométrie dite logarithmique de la paire (X,D). De l'autre côté, il y a la géométrie dite locale de l'espace total de O(-D).
Dans cette collaboration avec Tom Graber et Helge Ruddat, nous montrons que dans un sens approprié (en termes d'invariants de Gromov-Witten logarithmiques et locaux), le nombre de courbes rationnelles logarithmiques de (X,D) est à un facteur près égal au nombre de courbes rationnelles de O(-D).
Pour l’exposé, je vais surtout me limiter au cas du plan projective avec diviseur anticanonique lisse. Je vais décrire de façon non-technique ce que sont ces courbes, comment les compter et esquisser une preuve du résultat.
Institution de l'orateur : 
Hamburg Universität
Thème de recherche : 
Algèbre et géométries
Salle : 
Salle 04
logo uga logo cnrs