UMR 5582 - Laboratoire de mathématiques
Published on UMR 5582 - Laboratoire de mathématiques (https://www-fourier.univ-grenoble-alpes.fr)

Accueil > Restrictions of irreducible unitary representations.

Restrictions of irreducible unitary representations. [1]

Lundi, 28 Novembre, 2005 - 11:30
Prénom de l'orateur : 
Esther
Nom de l'orateur : 
GALINA
Résumé : 

Given a reductive Lie group G and P a closed subgroup an
important problem is to know if the restriction to P of an irreducible unitary representation of G is irreducible. If G=GL(n,K), K=R or C, and P is the isotropy group of the vector
(0,...,0,1), this is exactly the Kirillov's conjecture. Here we present the ideas of Barush's proof of it and how they could be solved using D-modules arguments. This point of view will permit solve the problem for other pairs (G,P) with similar properties.

Thème de recherche : 
Algèbre et géométries
Salle : 
04

Source URL: https://www-fourier.univ-grenoble-alpes.fr/?q=fr/content/restrictions-irreducible-unitary-representations&destination=node/20624

Liens
[1] https://www-fourier.univ-grenoble-alpes.fr/?q=fr/content/restrictions-irreducible-unitary-representations