UMR 5582 - Laboratoire de mathématiques
Published on UMR 5582 - Laboratoire de mathématiques (https://www-fourier.univ-grenoble-alpes.fr)

Accueil > Real enumerative geometry and finite type invariants.

Real enumerative geometry and finite type invariants. [1]

Jeudi, 23 Février, 2006 - 11:45
Prénom de l'orateur : 
Michael
Nom de l'orateur : 
POLYAK
Résumé : 

Complex enumerative geometry deals with counting algebraic-geometric
objects satisfying certain restrictions, e.g. counting a number of
algebraic curves of a fixed degree passing through a fixed set of
points and tangent to some fixed algebraic curves.
I will discuss a real counterpart of such problems, where some objects
may be taken smooth instead of rigid algebraic and one counts curves
with signs. I will then explain a relation of these problems with the
theory of finite type invariants and propose a general setting to
produce such invariants (using evaluation maps of configuration spaces
and homology intersections).

Institution de l'orateur : 
Technion - Israel Institute of Technology Haifa
Thème de recherche : 
Topologie
Salle : 
04

Source URL: https://www-fourier.univ-grenoble-alpes.fr/?q=fr/content/real-enumerative-geometry-and-finite-type-invariants

Liens
[1] https://www-fourier.univ-grenoble-alpes.fr/?q=fr/content/real-enumerative-geometry-and-finite-type-invariants