100, rue des maths 38610 Gières / GPS : 45.193055, 5.772076 / Directeur : Louis Funar

Stefano Pigola

On the global $W^{2,p}$ regularity of solutions of the Poisson equation on complete manifolds
Jeudi, 20 Février, 2020 - 14:00
Résumé : 

I will give an overview of some recent results concerning the validity and the failure of a global estimate of the form  $ | \nabla u |_{L^p(M)} + | \mathrm{Hess}(u) |_{L^p(M)} \leq C { | u |_{L^p(M)} + | f |_{L^p(M)}}$, where $u$ is a smooth solution of the Poisson equation $\Delta u = f$ and $C>0$ is a constant that depends on the geometry of the underlying complete Riemannian manifold $(M,g)$.

Institution de l'orateur : 
Thème de recherche : 
Théorie spectrale et géométrie
logo uga logo cnrs