Mardi, 7 Février, 2006 - 15:00
Prénom de l'orateur :
Bruno
Nom de l'orateur :
SCHAPIRA
Résumé :
A la fin des années 80, Heckman et Opdam ont développé une
nouvelle théorie qui est (entre autres) une généralisation, en dimension
plus grande que 1, des fonctions hypergéométriques de Gauss. Mais
cette théorie généralise aussi l'analyse harmoniques radiale sur les
espaces symmétriques G/K (de type non compact), et lui apporte de nouveaux outils
tres puissants. Cette théorie est en fait le
pendant dans un cadre à courbure négative de la théorie de Dunkl. Je
consacrerai donc une premiere partie de l'exposé à une introduction à
cette théorie et aux principaux attraits qu elle présente, puis je
parlerai de quelques résultats nouveaux.
Institution de l'orateur :
Orléans
Thème de recherche :
Analyse
Salle :
04