UMR 5582 - Laboratoire de mathématiques
Published on UMR 5582 - Laboratoire de mathématiques (https://www-fourier.univ-grenoble-alpes.fr)

Accueil > Marcos Cossarini

Marcos Cossarini [1]

Discrete Metric Geometry
Jeudi, 23 Mars, 2023 - 14:00
Résumé : 
A wallsystem on a surface is a 1-submanifold satisfying certain conditions. It allows us to define a discrete notion of length and area: the length of a curve is the number of times that it crosses the wallsystem, and the area of the surface is the number of self-intersections of the wallsystem.  We will see how to approximate any Riemannian (or self-reverse Finsler) metric on a compact surface by a wallsystem, and we'll discuss applications to the filling area conjecture and the inverse problem for boundary distances.
 
Institution de l'oratrice / orateur: 
Université Gustave Eiffel
Thème de recherche : 
Théorie spectrale et géométrie
Salle : 
4

Source URL: https://www-fourier.univ-grenoble-alpes.fr/?q=fr/content/marcos-cossarini

Liens
[1] https://www-fourier.univ-grenoble-alpes.fr/?q=fr/content/marcos-cossarini