100, rue des maths 38610 Gières / GPS : 45.193055, 5.772076 / Directeur : Thierry Gallay

Sunsuke Yamana

Anticyclotomic p-adic spinor L-functions for PGSp(4)
Thursday, 7 June, 2018 - 10:30
Résumé : 

The Boecherer conjecture is a generalization of the Waldspurger formula and relates squares of Bessel periods of genus two Siegel cusp forms to the central L-values. 
This conjecture was currently proved by Furusawa and Morimoto for the special Bessel period, and the general case is a work-in-progress.  
In this talk I will construct a square root of an anticyclotomic p-adic L-function with explicit interpolation formulas for Siegel cusp forms of genus 2 and scalar weight greater than 1 with respect to paramodular groups of square-free level, assuming the Boecherer conjecture for the L-values with anticyclotomic twist. 
This is a joint work with Ming-Lun Hsieh. 

Thème de recherche : 
Théorie des nombres
Salle : 
Salle 4
logo uga logo cnrs