Representations of quivers

Michel Brion

Abstract

We give an introduction to the theory of quiver representations, in its algebraic and geometric aspects. The main result is Gabriel's theorem that characterizes quivers of finite representation type.

Résumé. Nous donnons une introduction à la théorie des représentations des carquois, sous ses aspects algébrique et géométrique. Le résultat principal est le théorème de Gabriel qui caractérise les carquois de type de représentation fini.

Introduction

Quivers are very simple mathematical objects: finite directed graphs. A representation of a quiver assigns a vector space to each vertex, and a linear map to each arrow. Quiver representations were originally introduced to treat problems of linear algebra, for example, the classification of tuples of subspaces of a prescribed vector space. But it soon turned out that quivers and their representations play an important role in representation theory of finite-dimensional algebras; they also occur in less expected domains of mathematics including Kac-Moody Lie algebras, quantum groups, Coxeter groups, and geometric invariant theory.

These notes present some fundamental results and examples of quiver representations, in their algebraic and geometric aspects. Our main goal is to give an account of a theorem of Gabriel characterizing quivers of finite orbit type, that is, having only finitely many isomorphism classes of representations in any prescribed dimension: such quivers are exactly the disjoint unions of Dynkin diagrams of types $A_{n}, D_{n}, E_{6}, E_{7}, E_{8}$, equipped with arbitrary orientations. Moreover, the isomorphism classes of indecomposable representations correspond bijectively to the positive roots of the associated root system.

This beautiful result has many applications to problems of linear algebra. For example, when applied to an appropriate quiver of type D_{4}, it yields a classification of triples of subspaces of a prescribed vector space, by finitely many combinatorial invariants. The

[^0]corresponding classification for quadruples of subspaces involves one-parameter families (the so-called tame case); for r-tuples with $r \geq 5$, one obtains families depending on an arbitrary number of parameters (the wild case).

Gabriel's theorem holds over an arbitrary field; in these notes, we only consider algebraically closed fields, in order to keep the prerequisites at a minimum. Section 1 is devoted to the algebraic aspects of quiver representations; it requires very little background. The geometric aspects are considered in Section 2, where familiarity with some affine algebraic geometry is assumed. Section 3, on representations of finitely generated algebras, is a bit more advanced, as it uses (and illustrates) basic notions of affine schemes. The reader will find more detailed outlines, prerequisites, and suggestions for further reading, at the beginning of each section.

Many important developments of quiver representations fall beyond the limited scope of these notes; among them, we mention Kac's far-reaching generalization of Gabriel's theorem (exposed in [11]), and the construction and study of moduli spaces (surveyed in the notes of Ginzburg, see also [17]).

Conventions. Throughout these notes, we consider vector spaces, linear maps, algebras, over a fixed field k, assumed to be algebraically closed. All algebras are assumed to be associative, with unit; modules are understood to be left modules, unless otherwise stated.

1 Quiver representations: the algebraic approach

In this section, we present fundamental notions and results on representations of quivers and of finite-dimensional algebras.

Basic definitions concerning quivers and their representations are formulated in Subsection 1.1, and illustrated on three classes of examples. In particular, we define quivers of finite orbit type, and state their characterization in terms of Dynkin diagrams (Gabriel's theorem).

In Subsection 1.2, we define the quiver algebra, and identify its representations with those of the quiver. We also briefly consider quivers with relations.

The classes of simple, indecomposable, and projective representations are discussed in Subsection 1.3, in the general setting of representations of algebras. We illustrate these notions with results and examples from quiver algebras.

Subsection 1.4 is devoted to the standard resolutions of quiver representations, with applications to extensions and to the Euler and Tits forms.

The prerequisites are quite modest: basic material on rings and modules in Subsections 1.1-1.3; some homological algebra (projective resolutions, Ext groups, extensions) in Subsection 1.4.

We generally provide complete proofs, with the exception of some classical results for which we refer to [3]. Thereby, we make only the first steps in the representation theory of quivers and finite-dimensional algebras. The reader will find more complete expositions in the books $[1,2,3]$ and in the notes [5]; the article [6] gives a nice overview of the subject.

1.1 Basic definitions and examples

Definition 1.1.1. A quiver is a finite directed graph, possibly with multiple arrows and loops. More specifically, a quiver is a quadruple

$$
Q=\left(Q_{0}, Q_{1}, s, t\right)
$$

where Q_{0}, Q_{1} are finite sets (the set of vertices, resp. arrows) and

$$
s, t: Q_{1} \longrightarrow Q_{0}
$$

are maps assigning to each arrow its source, resp. target.
We shall denote the vertices by letters i, j, \ldots. An arrow with source i and target j will be denoted by $\alpha: i \rightarrow j$, or by $i \xrightarrow{\alpha} j$ when depicting the quiver.

For example, the quiver with vertices i, j and arrows $\alpha: i \rightarrow j$ and $\beta_{1}, \beta_{2}: j \rightarrow j$ is depicted as follows:

Definition 1.1.2. A representation M of a quiver Q consists of a family of vector spaces V_{i} indexed by the vertices $i \in Q_{0}$, together with a family of linear maps $f_{\alpha}: V_{s(\alpha)} \rightarrow$ $V_{t(\alpha)}$ indexed by the arrows $\alpha \in Q_{1}$.

For example, a representation of the preceding quiver is just a diagram

where V, W are vector spaces, and f, g_{1}, g_{2} are linear maps.
Definition 1.1.3. Given two representations $M=\left(\left(V_{i}\right)_{i \in Q_{0}},\left(f_{\alpha}\right)_{\alpha \in Q_{1}}\right), N=\left(W_{i}, g_{\alpha}\right)$ of a quiver Q, a morphism $u: M \rightarrow N$ is a family of linear maps $\left(u_{i}: V_{i} \rightarrow W_{i}\right)_{i \in Q_{0}}$ such
that the diagram

$$
\begin{array}{cl}
V_{s(\alpha)} & \xrightarrow{f_{\alpha}} V_{t(\alpha)} \\
u_{s(\alpha)} \downarrow & u_{t(\alpha)} \downarrow \\
W_{s(\alpha)} & \xrightarrow{g_{\alpha}} W_{t(\alpha)}
\end{array}
$$

commutes for any $\alpha \in Q_{1}$.
For any two morphisms $u: M \rightarrow N$ and $v: N \rightarrow P$, the family of compositions $\left(v_{i} u_{i}\right)_{i \in Q_{0}}$ is a morphism $v u: M \rightarrow P$. This defines the composition of morphisms, which is clearly associative and has identity element $\operatorname{id}_{M}:=\left(\operatorname{id}_{V_{i}}\right)_{i \in Q_{0}}$. So we may consider the category of representations of Q, that we denote by $\operatorname{Rep}(Q)$.

Given two representations M, N as above, the set of all morphisms (of representations) from M to N is a subspace of $\prod_{i \in Q_{0}} \operatorname{Hom}\left(V_{i}, W_{i}\right)$; we denote that subspace by $\operatorname{Hom}_{Q}(M, N)$. If $M=N$, then

$$
\operatorname{End}_{Q}(M):=\operatorname{Hom}_{Q}(M, M)
$$

is a subalgebra of the product algebra $\prod_{i \in Q_{0}} \operatorname{End}\left(V_{i}\right)$.
Clearly, the composition of morphisms is bilinear; also, we may define direct sums and exact sequences of representations in an obvious way. In fact, one may check that $\operatorname{Rep}(Q)$ is a k-linear abelian category; this will also follow from the equivalence of $\operatorname{Rep}(Q)$ with the category of modules over the quiver algebra $k Q$, see Proposition 1.2.2 below.

Definition 1.1.4. A representation $M=\left(V_{i}, f_{\alpha}\right)$ of Q is finite-dimensional if so are all the vector spaces V_{i}. Under that assumption, the family

$$
\underline{\operatorname{dim}} M:=\left(\operatorname{dim} V_{i}\right)_{i \in Q_{0}}
$$

is the dimension vector of M; it lies in the additive group $\mathbb{Z}^{Q_{0}}$ consisting of all tuples of integers $\underline{n}=\left(n_{i}\right)_{i \in Q_{0}}$.

We denote by $\left(\varepsilon_{i}\right)_{i \in Q_{0}}$ the canonical basis of $\mathbb{Z}^{Q_{0}}$, so that $\underline{n}=\sum_{i \in Q_{0}} n_{i} \varepsilon_{i}$.
Note that every exact sequence of finite-dimensional representations

$$
0 \longrightarrow M^{\prime} \longrightarrow M \longrightarrow M^{\prime \prime} \longrightarrow 0
$$

satisfies

$$
\underline{\operatorname{dim}} M=\underline{\operatorname{dim}} M^{\prime}+\underline{\operatorname{dim}} M^{\prime \prime} .
$$

Also, any two isomorphic finite-dimensional representations have the same dimension vector. A central problem of quiver theory is to describe the isomorphism classes of finite-dimensional representations of a prescribed quiver, having a prescribed dimension vector.

Examples 1.1.5. 1) The loop is the quiver L having a unique vertex i and a unique arrow α (then $s(\alpha)=t(\alpha)=i)$. Thus, a representation of L is a pair (V, f), where V is a vector space and f an endomorphism of V; the dimension vector is just the dimension of V.

A morphism from a pair (V, f) to another pair (W, g) is a linear map $u: V \rightarrow W$ such that $u f=g u$. In particular, the endomorphisms of the pair (V, f) are exactly the endomorphisms of V that commute with f.

Given a representation (V, f) having a prescribed dimension n, we may choose a basis $\left(v_{1}, \ldots, v_{n}\right)$ of V, and hence identify f with an $n \times n$ matrix A. Choosing another basis amounts to replacing A with a conjugate $B A B^{-1}$, where B is an invertible $n \times n$ matrix. It follows that the isomorphism classes of n-dimensional representations of L correspond bijectively to the conjugacy classes of $n \times n$ matrices. The latter are classified in terms of the Jordan canonical form.

In particular, there are infinitely many isomorphism classes of representations of the loop having a prescribed dimension.

More generally, for any integer $r \geq 1$, the r-loop is the quiver L_{r} having a unique vertex and r arrows $\alpha_{1}, \ldots, \alpha_{r}$.

$$
L_{2}: \quad \alpha_{1} \bigodot^{\alpha} \bigcup^{\alpha_{2}}
$$

The representations of L_{r} consist of a vector space V equipped with r endomorphisms f_{1}, \ldots, f_{r}. Thus, the isomorphism classes of representations of L_{r} having a prescribed dimension (vector) n correspond bijectively to the r-tuples of $n \times n$ matrices up to simultaneous conjugation.
2) The r-arrow Kronecker quiver is the quiver having two vertices i, j and r arrows $\alpha_{1}, \ldots, \alpha_{r}: i \rightarrow j$. The representations of K_{r} consist of two vector spaces V, W together with r linear maps $f_{1}, \ldots, f_{r}: V \rightarrow W$. The dimension vectors are pairs of non-negative integers.

$$
K_{2}: \quad i \stackrel{\alpha_{1}}{\underset{\alpha_{2}}{\longrightarrow}} j
$$

As in the preceding example, the isomorphism classes of representations with dimension vector (m, n) correspond bijectively to the r-tuples of $n \times m$ matrices, up to simultaneous multiplication by invertible $n \times n$ matrices on the left, and by invertible $m \times m$ matrices on the right.

When $r=1$, these representations are classified by the rank of the unique $n \times m$ matrix; in particular, they form only finitely many isomorphism classes.

In the case where $r=2$, the classification is due (in essence) to Kronecker and is much more involved (see e.g. [3, Thm. 4.3.2]).

When $r \geq 2$, the classification of representations of K_{r} contains that of L_{r-1} in the following sense. Consider a representation of K_{r} with dimension vector (n, n), such that the map f_{1} is invertible. Choosing appropriate bases of V and W, we may assume that f_{1} is the identity of k^{n}; then f_{2}, \ldots, f_{r} are $n \times n$ matrices, uniquely determined up to simultaneous conjugation. As a consequence, such representations of K_{r} form infinitely many isomorphism classes.
3) We denote by S_{r} the quiver having $r+1$ vertices i_{1}, \ldots, i_{r}, j, and r arrows $\alpha_{1}, \ldots, \alpha_{r}$ with sources i_{1}, \ldots, i_{r} and common target j.

A representation M of S_{r} consists of $r+1$ vector spaces V_{1}, \ldots, V_{r}, W together with r linear maps $f_{i}: V_{i} \rightarrow W$. By associating with M the images of the f_{i}, one obtains a bijection between the isomorphism classes of representations with dimension vector (m_{1}, \ldots, m_{r}, n), and the orbits of the general linear group GL (n) acting on r-tuples $\left(E_{1}, \ldots, E_{r}\right)$ of subspaces of k^{n} such that $\operatorname{dim}\left(E_{i}\right) \leq m_{i}$ for all i, via $g \cdot\left(E_{1}, \ldots, E_{r}\right):=$ $\left(g\left(E_{1}\right), \ldots, g\left(E_{r}\right)\right)$. In other words, classifying representations of S_{r} is equivalent to classifying r-tuples of subspaces of a fixed vector space.

When $r=1$, one recovers the classification of representations of $K_{1} \simeq S_{1}$.
When $r=2$, one easily checks that the pairs of subspaces $\left(E_{1}, E_{2}\right)$ of k^{n} are classified by the triples $\left(\operatorname{dim}\left(E_{1}\right), \operatorname{dim}\left(E_{2}\right), \operatorname{dim}\left(E_{1} \cap E_{2}\right)\right)$, i.e., by those triples $(a, b, c) \in \mathbb{Z}^{3}$ such that $0 \leq c \leq \min (a, b)$. In particular, there are only finitely many isomorphism classes of representations having a prescribed dimension vector.

This finiteness property may still be proved in the case where $r=3$, but fails whenever $r \geq 4$. Consider indeed the representations with dimension vector $(1,1, \ldots, 1,2)$, such that the maps f_{1}, \ldots, f_{r} are all non-zero. The isomorphism classes of these representations are in bijection with the orbits of the projective linear group PGL(2) acting on the product $\mathbb{P}^{1}(k) \times \cdots \times \mathbb{P}^{1}(k)$ of r copies of the projective line. Since $r \geq 4$, there are infinitely many
orbits; for $r=4$, an explicit infinite family is provided by the representations

where $\lambda \in k$.
These examples motivate the following:
Definition 1.1.6. A quiver Q is of finite orbit type if Q has only finitely many isomorphism classes of representations of any prescribed dimension vector.

A remarkable theorem of Gabriel yields a complete description of these quivers:
Theorem 1.1.7. A quiver is of finite orbit type if and only if each connected component of its underlying undirected graph is a simply-laced Dynkin diagram.

Here the simply-laced Dynkin diagrams are those of the following list:

For example, $K_{1}=S_{1}$ has type A_{2}, whereas S_{2} has type A_{3}, and S_{3} has type D_{4}.
We shall prove the "only if" part of Gabriel's theorem in Subsection 2.1, and the "if" part in Subsection 2.4. For a generalization of that theorem to arbitrary fields (possibly not algebraically closed), see [3, Sec. 4.7].

1.2 The quiver algebra

In this subsection, we fix a quiver $Q=\left(Q_{0}, Q_{1}, s, t\right)$. To any representation $M=\left(V_{i}, f_{\alpha}\right)$ of Q, we associate the vector space

$$
\begin{equation*}
V:=\bigoplus_{i \in Q_{0}} V_{i} \tag{1.2.1}
\end{equation*}
$$

equipped with two families of linear self-maps: the projections

$$
f_{i}: V \longrightarrow V \quad\left(i \in Q_{0}\right)
$$

(the compositions $V \rightarrow V_{i} \hookrightarrow V$ of the projections with the inclusions), and the maps

$$
f_{\alpha}: V \longrightarrow V \quad\left(\alpha \in Q_{1}\right)
$$

obtained similary from the defining maps $f_{\alpha}: V_{s(\alpha)} \rightarrow V_{t(\alpha)}$. Clearly, these maps satisfy the relations

$$
f_{i}^{2}=f_{i}, \quad f_{i} f_{j}=0(i \neq j), \quad f_{t(\alpha)} f_{\alpha}=f_{\alpha} f_{s(\alpha)}=f_{\alpha}
$$

and all other products are 0 . This motivates the following:
Definition 1.2.1. The algebra of the quiver Q is the (associative) algebra $k Q$ determined by the generators e_{i}, where $i \in Q_{0}$, and α, where $\alpha \in Q_{1}$, and the relations

$$
\begin{equation*}
e_{i}^{2}=e_{i}, \quad e_{i} e_{j}=0(i \neq j), \quad e_{t(\alpha)} \alpha=\alpha e_{s(\alpha)}=\alpha \tag{1.2.2}
\end{equation*}
$$

In particular, $e_{i} e_{j}=0$ unless $i=j$, so that the e_{i} are orthogonal idempotents of $k Q$. Also, $\sum_{i \in Q_{0}} e_{i}=1$, since this equality holds after multiplication by any generator. Likewise, $e_{i} \alpha=0$ unless $i=t(\alpha)$, and $\alpha e_{j}=0$ unless $j=s(\alpha)$.

Proposition 1.2.2. The category of representations of any quiver Q is equivalent to the category of left $k Q$-modules.

Indeed, we have seen that any representation M of Q defines a representation V of $k Q$. Conversely, any $k Q$-module V yields a family of vector spaces $\left(V_{i}:=e_{i} V\right)_{i \in Q_{0}}$, and the decomposition (1.2.1) holds in view of the relations (1.2.2). Moreover, we have a linear map $f_{\alpha}: V_{i} \rightarrow V_{j}$ for any arrow $\alpha: i \rightarrow j$ (since the image of the multiplication by α in V is contained in V_{j}, by the relation $\alpha=e_{j} \alpha$). One may check that these constructions extend to functors, and yield the desired equivalence of categories; see the proof of [2, Thm. II.1.5] for details.

In what follows, we shall freely identify representations of Q with left modules over $k Q$, and the category $\operatorname{Rep}(Q)$ with the (abelian) category of $k Q$-modules.

For any arrows α, β, the product $\beta \alpha=\beta e_{s(\beta)} \alpha$ is zero unless $s(\beta)=t(\alpha)$. Thus, a product of arrows $\alpha_{\ell} \cdots \alpha_{1}$ is zero unless the sequence $\pi:=\left(\alpha_{1}, \ldots, \alpha_{\ell}\right)$ is a path, i.e., $s\left(\alpha_{j}\right)=t\left(\alpha_{j+1}\right)$ for $j=1, \ldots, \ell-1$. We then put $s(\pi):=s\left(\alpha_{1}\right)$ (the source of the path $\pi), t(\pi):=t\left(\alpha_{\ell}\right)$ (the target of π), and $\ell(\pi):=\ell$ (the length). For any vertex i, we also view e_{i} as the path of length 0 at the vertex i.

Clearly, the paths generate the vector space $k Q$. They also are linearly independent: consider indeed the path algebra with basis the set of all paths, and multiplication given by the concatenation of paths. This algebra is generated by the paths of length 0 (the vertices) and of length 1 (the arrows), and satisfies the relations of $k Q$. Thus, the path algebra is a quotient of $k Q$, which implies the desired linear independence, and shows that the quiver algebra and the path algebra are in fact the same.

Examples 1.2.3. We describe the path algebras of the quivers considered in Examples 1.1.5, and of an additional class of examples.

1) The algebra of the loop L has basis the monomials α^{n}, where $n \in \mathbb{N}$. In other words, the algebra $k L$ is freely generated by α.

More generally, the algebra of the r-loop L_{r} is the free algebra $k\left\langle X_{1}, \ldots, X_{r}\right\rangle$ on the r arrows. The paths are just the words (or non-commutative monomials) in X_{1}, \ldots, X_{r}.
2) The algebra of the r-arrow Kronecker quiver K_{r} has basis $e_{i}, e_{j}, \alpha_{1}, \ldots, \alpha_{r}$. Thus, $k K_{r}$ is the direct sum of $k \alpha_{1} \oplus \cdots \oplus k \alpha_{r}$ (a two-sided ideal of square 0), with $k e_{i} \oplus k e_{j}$ (a subalgebra isomorphic to $k \times k$).
3) Likewise, $k S_{r}$ is the direct sum of the two-sided ideal $k \alpha_{1} \oplus \cdots \oplus k \alpha_{r}$ of square 0 , with the subalgebra $k e_{i_{1}} \oplus \cdots \oplus k e_{i_{r}} \oplus k e_{j} \simeq k \times \cdots \times k$ ($r+1$ copies).
4) Let H_{r} denote the quiver having two vertices i, j, an arrow $\alpha: i \rightarrow j$, and r loops $\beta_{1}, \ldots, \beta_{r}$ at j (so that H_{2} is our very first example). Then $k H_{r}$ is the direct sum of $k\left\langle\beta_{1}, \ldots, \beta_{r}\right\rangle \alpha$ (a two-sided ideal of square 0) with $k e_{i} \oplus k\left\langle\beta_{1}, \ldots, \beta_{r}\right\rangle$ (a subalgebra isomorphic to $\left.k \times k\left\langle X_{1}, \ldots, X_{r}\right\rangle\right)$.

Returning to an arbitrary quiver Q, let $k Q_{\geq 1}$ be the linear span in $k Q$ of all paths of positive length. Then $k Q_{\geq 1}$ is the two-sided ideal of $k Q$ generated by all arrows, and we have the decomposition

$$
\begin{equation*}
k Q=k Q_{\geq 1} \oplus \bigoplus_{i \in Q_{0}} k e_{i} \tag{1.2.3}
\end{equation*}
$$

where $\bigoplus_{i \in Q_{0}} k e_{i}$ is a subalgebra isomorphic to the product algebra $\prod_{i \in Q_{0}} k$. Moreover, for any positive integer n, the ideal $\left(k Q_{\geq 1}\right)^{n}$ is the linear span of all paths of length $\geq n$; we shall also denote that ideal by $k Q_{\geq n}$.

Clearly, the vector space $k Q$ is finite-dimensional if and only if Q does not contain any oriented cycle, that is, a path π of positive length such that $s(\pi)=t(\pi)$ (the oriented
cycles of length 1 are just the loops). Under that assumption, all paths in Q have length at most the number r of vertices. Thus, $\left(k Q_{\geq 1}\right)^{r}=\{0\}$. In particular, the ideal $k Q_{\geq 1}$ is nilpotent.

To obtain a more general class of algebras, it is convenient to introduce quivers with relations:

Definition 1.2.4. A relation of a quiver Q is a subspace of $k Q$ spanned by linear combinations of paths having a common source and a common target, and of length at least 2.

A quiver with relations is a pair (Q, I), where Q is a quiver, and I is a two-sided ideal of $k Q$ generated by relations. The quotient algebra $k Q / I$ is the path algebra of (Q, I).

For instance, if Q is the r-loop, then a relation is a subspace of $k Q=k\left\langle X_{1}, \ldots, X_{r}\right\rangle$ spanned by linear combinations of words of length at least 2. As an example, take the linear span of all the commutators $X_{i} X_{j}-X_{j} X_{i}$, then the path algebra is just the polynomial algebra $k\left[X_{1}, \ldots, X_{r}\right]$.

The representations of arbitrary finite-dimensional algebras may be described in terms of quivers with relations. Namely, to any such algebra A, one can associate a quiver with relations (Q, I) such that I contains a power of the ideal generated by the arrows (hence the path algebra $k Q / I$ is finite-dimensional), and $\operatorname{Rep}(A)$ is equivalent to the category $\operatorname{Rep}(Q, I)$ defined in an obvious way. This follows from the results of [3, Sec. 4.1], especially Prop. 4.1.7.

In contrast, finite-dimensional quiver algebras (without relations) satisfy very special properties among all finite-dimensional algebras, as we shall see in Subsection 1.4.

1.3 Structure of representations

In this subsection, we fix an (associative) algebra A and consider (left) A-modules, assumed to be finitely generated. We begin by discussing the simple A-modules, also called irreducible, i.e., those non-zero modules that have no non-zero proper submodule.

Let M, N be two simple A-modules; then every non-zero A-morphism $f: M \rightarrow N$ is an isomorphism by Schur's lemma. As a consequence, $\operatorname{Hom}_{A}(M, N)=\{0\}$ unless $M \simeq N$; moreover, $\operatorname{End}_{A}(M)$ is a division algebra. If M is finite-dimensional, then so is $\operatorname{End}_{A}(M)$; in particular, each $f \in \operatorname{End}_{A}(M)$ generates a finite-dimensional subfield. Since k is algebraically closed, it follows that $\operatorname{End}_{A}(M)=k \mathrm{id}_{M}$.

Also, recall that an A-module is semi-simple (or completely reducible) if it equals the sum of its simple submodules. Any finite-dimensional semi-simple module admits a
decomposition of algebras

$$
\begin{equation*}
M \simeq \bigoplus_{i=1}^{r} m_{i} M_{i} \tag{1.3.1}
\end{equation*}
$$

where the M_{i} are pairwise non-isomorphic simple modules, and the m_{i} are positive integers. By Schur's lemma, the simple summands M_{i} and their multiplicities m_{i} are uniquely determined up to reordering. Moreover, we have a decomposition

$$
\operatorname{End}_{A}(M) \simeq \prod_{i=1}^{r} \operatorname{End}_{A}\left(m_{i} M_{i}\right) \simeq \prod_{i=1}^{r} \operatorname{Mat}_{m_{i} \times m_{i}}\left(\operatorname{End}_{A}\left(M_{i}\right)\right)
$$

and hence

$$
\begin{equation*}
\operatorname{End}_{A}(M) \simeq \prod_{i=1}^{r} \operatorname{Mat}_{m_{i} \times m_{i}}(k) . \tag{1.3.2}
\end{equation*}
$$

We may apply the decomposition (1.3.2) to an algebra A which is semi-simple, i.e., the (left) A-module A is semi-simple; equivalently, every A-module is semi-simple. Indeed, for an arbitrary algebra A, we have an isomorphism of algebras

$$
\begin{equation*}
\operatorname{End}_{A}(A) \xrightarrow{\sim} A^{\mathrm{op}}, \quad f \longmapsto f(1), \tag{1.3.3}
\end{equation*}
$$

where $A^{\text {op }}$ denotes the opposite algebra, with the order of multiplication being reversed. Moreover, each matrix algebra is isomorphic to its opposite algebra, via the transpose map. It follows that each finite-dimensional semi-simple algebra satisfies

$$
A \simeq \prod_{i=1}^{r} \operatorname{Mat}_{m_{i} \times m_{i}}(k),
$$

where m_{1}, \ldots, m_{r} are unique up to reordering; the simple A-modules are exactly the vector spaces $k^{m_{i}}$, where A acts via the i th factor.

It is easy to construct simple representations of a quiver $Q=\left(Q_{0}, Q_{1}, s, t\right)$: given $i \in Q_{0}$, consider the representation $S(i)$ defined by

$$
S(i)_{i}=k, \quad S(i)_{j}=0 \quad\left(j \in Q_{0}, j \neq i\right), \quad f_{\alpha}=0 \quad\left(\alpha \in Q_{1}\right) .
$$

Clearly, $S(i)$ is simple with dimension vector ε_{i} (the i th basis vector of $\mathbb{Z}^{Q_{0}}$). This yields all the simple representations, if $k Q$ is finite-dimensional:

Proposition 1.3.1. Assume that Q has no oriented cycle. Then any simple representation of Q is isomorphic to $S(i)$ for a unique $i \in Q_{0}$. Moreover, any finite-dimensional semi-simple representation is uniquely determined by its dimension vector, up to isomorphism.

Proof. Consider a simple $k Q$-module M. Then $M \neq k Q_{\geq 1} M$ (otherwise, $M=$ $\left(k Q_{\geq 1}\right)^{n} M=k Q_{\geq n} M$ for any positive integer n, and hence $\left.M=\{0\}\right)$. Thus, $k Q_{\geq 1} M=$ $\{0\}$, so that M may be viewed as a module over the algebra

$$
k Q / k Q_{\geq 1} \simeq \bigoplus_{i \in Q_{0}} k e_{i} \simeq \prod_{i \in Q_{0}} k
$$

As a consequence, each subspace of $e_{i} M$ is a $k Q$-submodule of M. This readily implies the first assertion.

Next, let M be a finite-dimensional semi-simple $k Q$-module. Then, by the decomposition (1.3.1),

$$
M \simeq \bigoplus_{i \in Q_{0}} m_{i} S(i)
$$

for some non-negative integers m_{i}. Thus,

$$
\underline{\operatorname{dim}} M=\sum_{i \in Q_{0}} m_{i} \underline{\operatorname{dim}} S(i)=\sum_{i \in Q_{0}} m_{i} \varepsilon_{i} .
$$

In the preceding statement, the assumption that Q has no oriented cycle cannot be omitted, as shown by the following:

Example 1.3.2. The irreducible representations of the loop L are exactly the spaces $S(\lambda):=k[X] /(X-\lambda) k[X]$, where $\lambda \in k$, viewed as modules over $k L=k[X]$. Each $S(\lambda)$ is just the vector space k, where the arrow α acts via multiplication by λ.

In contrast, the r-loop $L_{r}, r \geq 2$, has irreducible representations of arbitrary dimension n; for example, the vector space k^{n} with standard basis $\left(v_{1}, \ldots, v_{n}\right)$, where α_{1} acts via the 'shift' $v_{1} \mapsto v_{2}, v_{2} \mapsto v_{3}, \ldots, v_{n} \mapsto v_{1} ; \alpha_{2}$ acts via $v_{1} \mapsto v_{2}, v_{j} \mapsto 0$ for all $j \geq 2$, and α_{i} acts trivially for $i \geq 3$.

Next, we consider indecomposable modules over an algebra A, i.e., those non-zero modules that have no decomposition into a direct sum of non-zero submodules.

Clearly, an A-module M is indecomposable if and only if the algebra $\operatorname{End}_{A}(M)$ contains no non-trivial idempotent. Assuming that M is finite-dimensional, we obtain further criteria for indecomposability, analogous to Schur's lemma:

Lemma 1.3.3. For a finite-dimensional module M over an algebra A, the following conditions are equivalent:
(i) M is indecomposable.
(ii) Any A-endomorphism of M is either nilpotent or invertible.
(iii) $\operatorname{End}_{A}(M)=I \oplus k \mathrm{id}_{M}$, where I is a nilpotent ideal.

Proof. Some of the statements, and all the arguments of their proofs, may be found in [3, Sec. 1.4]; we provide details for completeness.
(i) \Rightarrow (ii) follows from the Fitting decomposition

$$
M=\operatorname{Ker}\left(f^{n}\right) \oplus \operatorname{Im}\left(f^{n}\right),
$$

where $f \in \operatorname{End}_{A}(M)$ and $n \gg 0$ (see e.g. [3, Lem. 1.4.4]).
(ii) \Rightarrow (iii) Denote by I the set of all nilpotent elements of $\operatorname{End}_{A}(M)$. We first show that I is a two-sided ideal. Consider $x \in I$ and $y \in \operatorname{End}_{A}(M)$. Then $x y$ is non-invertible in $\operatorname{End}_{A}(M)$, and hence is nilpotent: $x y \in I$ and likewise, $y x \in I$. If, in addition, $y \in I$, then $x+y \in I$: otherwise, $z:=x+y$ is invertible, and hence $x=z-y=z\left(1-z^{-1} y\right)$ is invertible as well, since $z^{-1} y$ is nilpotent.

Next, we show that the ideal I is nilpotent. Since the algebra $\operatorname{End}_{A}(M)$ is finitedimensional, and $I^{n} \supset I^{n+1}$ for all n, there exists a positive integer n such that $I^{n}=I^{n+1}$. But $1+x$ is invertible for all $x \in I$, and hence $I^{n}=\{0\}$ by Nakayama's lemma (see [3, Lem. 1.2.3]).

Finally, $\operatorname{End}_{A}(M) / I$ is a division algebra, since the complement of I in $\operatorname{End}_{A}(M)$ consists of invertible elements. On the other hand, the vector space $\operatorname{End}_{A}(M) / I$ is finitedimensional; thus, $\operatorname{End}_{A}(M) / I=k$.
(iii) \Rightarrow (i) Consider an idempotent $e \in \operatorname{End}_{A}(M)$. Then the image of e in the quotient $\operatorname{End}_{A}(M) / I \simeq k$ is 1 , and hence $e=1+x$ for some $x \in I$. Thus, e is invertible, and $e=1$.

We now obtain an important structure result for finite-dimensional modules and their endomorphism rings:

Theorem 1.3.4. Let M be a finite-dimensional module over an algebra A. Then there is a decomposition of A-modules

$$
\begin{equation*}
M \simeq \bigoplus_{i=1}^{r} m_{i} M_{i} \tag{1.3.4}
\end{equation*}
$$

where M_{1}, \ldots, M_{r} are indecomposable and pairwise non-isomorphic, and m_{1}, \ldots, m_{r} are positive integers. Moreover, the indecomposable summands M_{i} and their multiplicities m_{i} are uniquely determined up to reordering.

Finally, we have a decomposition of vector spaces

$$
\begin{equation*}
\operatorname{End}_{A}(M)=I \oplus B \tag{1.3.5}
\end{equation*}
$$

where I is a nilpotent ideal, and B is a subalgebra isomorphic to $\prod_{i=1}^{r} \operatorname{Mat}_{m_{i} \times m_{i}}(k)$.

Proof. The first assertion is the classical Krull-Schmidt theorem, proved e.g. in [3, Sec. 1.4].

The second assertion follows from Lemma 1.3.3 (iii), in the case where M is indecomposable. In the general case, let $f \in \operatorname{End}_{A}(M)$ and consider the compositions

$$
f_{i j}: m_{j} M_{j} \hookrightarrow M \xrightarrow{f} M \longrightarrow M / \bigoplus_{\ell \neq i} m_{\ell} M_{\ell} \xrightarrow{\sim} m_{i} M_{i} \quad(i, j=1, \ldots, r) .
$$

Then we have the "block decomposition" $f=\sum_{i, j} f_{i, j}$, where

$$
f_{i, j} \in \operatorname{Hom}_{A}\left(m_{j} M_{j}, m_{i} M_{i}\right) \simeq \operatorname{Mat}_{m_{i} \times m_{j}}\left(\operatorname{Hom}_{A}\left(M_{j}, M_{i}\right)\right) .
$$

In particular,

$$
f_{i i} \in \operatorname{End}_{A}\left(m_{i} M_{i}\right) \simeq \operatorname{Mat}_{m_{i} \times m_{i}}\left(\operatorname{End}_{A}\left(M_{i}\right)\right) .
$$

By Lemma 1.3.3, we have a decomposition $\operatorname{End}_{A}\left(M_{i}\right)=I_{i} \oplus k \operatorname{id}_{M_{i}}$, where I_{i} is a nilpotent ideal. This induces a homomorphism $\operatorname{End}_{A}\left(M_{i}\right) \rightarrow k$ and, in turn, a homomorphism

$$
u_{i}: \operatorname{Mat}_{m_{i} \times m_{i}}\left(\operatorname{End}_{A}\left(M_{i}\right)\right) \longrightarrow \operatorname{Mat}_{m_{i} \times m_{i}}(k) .
$$

Consider the linear map

$$
u: \operatorname{End}_{A}(M) \longrightarrow \prod_{i=1}^{r} \operatorname{Mat}_{m_{i} \times m_{i}}(k), \quad f=\sum_{i, j} f_{i, j} \longmapsto\left(u_{1}\left(f_{11}\right), \ldots, u_{r}\left(f_{r r}\right)\right) .
$$

Clearly, u is split surjective via the natural inclusions

$$
\operatorname{Mat}_{m_{i} \times m_{i}}(k) \hookrightarrow \operatorname{Mat}_{m_{i} \times m_{i}}\left(\operatorname{End}_{A}\left(M_{i}\right)\right)=\operatorname{End}_{A}\left(m_{i} M_{i}\right) \hookrightarrow \operatorname{End}_{A}(M)
$$

We claim that u is an algebra homomorphism. Since $(g f)_{i i}=\sum_{j} g_{i j} f_{j i}$ for all $f, g \in$ $\operatorname{End}_{A}(M)$, it suffices to check that $u_{i}\left(g_{i j} f_{j i}\right)=0$ whenever $i \neq j$. For this, we may assume that $m_{i}=m_{j}=1$; we then have to show that $g f \in I_{j}$ for any morphisms $f: M_{j} \rightarrow M_{i}$ and $g: M_{i} \rightarrow M_{j}$. But otherwise, $g f$ is an automorphism of M_{j}, and hence f yields an isomorphism of M_{j} with a summand of M_{i}, a contradiction.

To complete the proof, it remains to show that the two-sided ideal $\operatorname{Ker}(u)$ is nilpotent. By arguing as in the proof of Lemma 1.3.3, it suffices to show that $\operatorname{Ker}(u)$ consists of nilpotent elements. Let $f=\sum_{i, j} f_{i, j} \in \operatorname{Ker}(u)$, so that no $f_{i, j}$ is an isomorphism. Let n be a positive integer and write $f^{n}=\sum_{i, j}\left(f^{n}\right)_{i, j}$, where

$$
\left(f^{n}\right)_{i, j}=\sum_{i_{1}, \ldots, i_{n-1}} f_{i, i_{1}} f_{i_{1}, i_{2}} \cdots f_{i_{n-1}, j} .
$$

Each product $f_{i, i_{1}} f_{i_{1}, i_{2}} \cdots f_{i_{n-1}, j}$ is a sum of compositions of morphisms

$$
g_{i, i_{1}, \ldots, i_{n-1, j}}: M_{j} \longrightarrow M_{i_{n-1}} \longrightarrow \cdots \longrightarrow M_{i_{1}} \longrightarrow M_{i} .
$$

Choose $n=N r$, where N is a positive integer. Then there exists an index ℓ that appears N times in the sequence $\left(i, i_{1}, \ldots, i_{n-1}, j\right)$. Thus, $g_{i, i_{1}, \ldots, i_{n-1}, j}$ factors through the composition $h_{1} \cdots h_{N}$, where h_{1}, \ldots, h_{N} are endomorphisms of M_{ℓ}. Moreover, any h_{p} factors in turn through $M_{\ell} \rightarrow M_{\ell^{\prime}} \rightarrow M_{\ell}$ for some $\ell^{\prime}=\ell^{\prime}(p) \neq \ell$. Thus, h_{p} is not an isomorphism; it follows that $h_{1} \cdots h_{N}=0$ for $N \gg 0$, by Lemma 1.3.3 again.

We say that the algebra A is of finite orbit type, if there are only finitely many isomorphism classes of finite-dimensional modules of any prescribed dimension. By Theorem 1.3.4, this is equivalent to the finiteness of the isomorphism classes of indecomposable modules of any prescribed (finite) dimension.

If there are only finitely many isomorphism classes of finite-dimensional indecomposable modules (of arbitary dimensions), then we say that A is of finite representation type. Clearly, this implies that A is of finite orbit type; we shall see in Subsection 2.4 that the converse holds for quiver algebras.

Next, we apply Theorem 1.3.4 to the structure of a finite-dimensional algebra A, by viewing A as a module over itself via left multiplication, and using the isomorphism (1.3.3). The summands of A are easily described (see [3, Lem. 1.3.3]):

Lemma 1.3.5. Let A be any algebra, viewed as an A-module via left multiplication.
(i) Every decomposition $1=e_{1}+\cdots+e_{r}$, where e_{1}, \ldots, e_{r} are orthogonal idempotents of A, yields a decomposition of (left) A-modules $A=P\left(e_{1}\right) \oplus \cdots \oplus P\left(e_{r}\right)$, where $P\left(e_{i}\right):=A e_{i}$. This sets up a bijection between decompositions of 1 as a sum of orthogonal idempotents, and direct sum decompositions of the A-module A. In particular, the non-zero summands of A are exactly the (left) ideals $P(e):=A e$, where e is an idempotent.
(ii) For any A-module M, we have an isomorphism of vector spaces

$$
\begin{equation*}
\operatorname{Hom}_{A}(P(e), M) \xrightarrow{\sim} e M, \quad f \longmapsto f(e) . \tag{1.3.6}
\end{equation*}
$$

(iii) There is an isomorphism of algebras

$$
\begin{equation*}
\operatorname{End}_{A}(P(e)) \simeq(e A e)^{\mathrm{op}}, \tag{1.3.7}
\end{equation*}
$$

where $e A e$ is viewed as an algebra with unit e.
(iv) The A-module $P(e)$ is indecomposable if and only if e is not the sum of two orthogonal idempotents; equivalently, e is the unique idempotent of $e A e$.

An idempotent satisfying the assertion (iv) is called primitive. Also, recall that an A-module P is projective, if P is a direct factor of a free A-module (see [3, Lem. 1.5.2] for further characterizations of projective modules). Thus, the $P(e)$ are projective ideals of A. If A is finite-dimensional, this yields a complete description of all projective modules:

Proposition 1.3.6. Let A be a finite-dimensional algebra, and choose a decomposition of A-modules

$$
A \simeq m_{1} P_{1} \oplus \cdots \oplus m_{r} P_{r}
$$

where P_{1}, \ldots, P_{r} are indecomposable and pairwise non-isomorphic.
(i) There is a decomposition of vector spaces $A \simeq I \oplus B$, where I is a nilpotent ideal and B is a semi-simple subalgebra, isomorphic to $\prod_{i=1}^{r} \operatorname{Mat}_{m_{i} \times m_{i}}(k)$.
(ii) Every A-module $S_{i}:=P_{i} / I P_{i}$ is simple. Conversely, every simple A-module is isomorphic to a unique S_{i}.
(iii) Every projective indecomposable A-module is isomorphic to a unique P_{i}. In particular, every such module is finite-dimensional.
(iv) Every finite-dimensional projective A-module admits a decomposition

$$
M \simeq n_{1} P_{1} \oplus \cdots \oplus n_{r} P_{r}
$$

where n_{1}, \ldots, n_{r} are uniquely determined non-negative integers.
Proof. (i) follows from Theorem 1.3.4.(ii) applied to the A-module A, taking into account the isomorphism (1.3.3).
(ii) Note that $S_{i} \neq 0$ since the ideal I is nilpotent. Also, we may identify A / I with B, and each S_{i} with a B-module. By Theorem 1.3 .4 and its proof, B acts on S_{i} via its i th factor $\operatorname{Mat}_{m_{i} \times m_{i}}(k)$. As a consequence, $S_{i} \simeq n_{i} k^{m_{i}}$ for some integer $n_{i} \geq 1$. Then $A / I \simeq m_{1} S_{1} \oplus \cdots \oplus m_{r} S_{r}$ has dimension $n_{1} m_{1}^{2}+\cdots+n_{r} m_{r}^{2}$. But $\operatorname{dim}(A / I)=\operatorname{dim}(B)=$ $m_{1}^{2}+\cdots+m_{r}^{2}$, and hence $n_{1}=\ldots=n_{r}=1$.
(iii) Let P be a projective indecomposable A-module. Then, as above, $P \neq I P$. The quotient $P / I P$ is a semi-simple module (since so is $A / I \simeq B$) and non-trivial; thus, there exists a surjective morphism of A-modules $p: P \rightarrow S_{i}$ for some i. Let $p_{i}: P_{i} \rightarrow S_{i}$ denote the natural map. Since P is projective, there exists a morphism $f: P \rightarrow P_{i}$ such that $p_{i} f=p$. Likewise, there exists a morphism $g: P_{i} \rightarrow P$ such that $p g=p_{i}$. Then $p_{i} f g=p_{i}$, so that $f g \in \operatorname{End}_{A}\left(P_{i}\right)$ is not nilpotent: $f g$ is invertible, i.e., P_{i} is isomorphic to a summand of P. Thus, $P_{i} \simeq P$.
(iv) Since M is finite-dimensional, there exists a surjective morphism $f: F \rightarrow M$, where the A-module F is a direct sum of finitely many copies of A. By the projectivity of M, this yields an isomorphism $F \simeq M \oplus N$ for some A-module N. Now the desired statement follows from the Krull-Schmidt theorem.

Returning to the case of the algebra of a quiver Q (possibly with oriented cycles, so that $k Q$ may be infinite-dimensional), recall the decomposition $1=\sum_{i \in Q_{0}} e_{i}$ into orthogonal
idempotents, and consider the corresponding decomposition

$$
\begin{equation*}
k Q \simeq \bigoplus_{i \in Q_{0}} P(i) \tag{1.3.8}
\end{equation*}
$$

where $P(i):=P\left(e_{i}\right)=k Q e_{i}\left(i \in Q_{0}\right)$.
Proposition 1.3.7. Let Q be any quiver, and i a vertex.
(i) The vector space $P(i)$ is the linear span of all paths with source i. Moreover, the algebra $\operatorname{End}_{Q}(P(i))$ is isomorphic to the linear span of all oriented cycles at i.
(ii) We have an isomorphism of $k Q$-modules

$$
P(i) / k Q_{\geq 1} P(i) \simeq S(i)
$$

In particular, $P(i)$ is not isomorphic to $P(j)$, when $i \neq j$.
(iii) The representation $P(i)$ is indecomposable; equivalently, e_{i} is primitive.
(iv) If Q has no oriented cycle, then $\operatorname{End}_{Q}(P(i)) \simeq k$. Moreover, every indecomposable projective $k Q$-module is isomorphic to a unique $P(i)$.

Proof. (i) The first assertion is clear, and the second one is a consequence of (1.3.7).
(ii) By (i), the space $P(i) / k Q_{\geq 1} P(i)$ has basis the image of e_{i}.
(iii) It suffices to show that e_{i} is the unique idempotent of $\operatorname{End}_{Q}(P(i))$. Let $a \in e_{i} k Q e_{i}$, $a \neq e_{i}$, and consider a path π of maximal length occuring in a. Then π is an oriented cycle at i. Thus, π^{2} occurs in a^{2}, and hence $a^{2} \neq a$.
(iv) follows from (iii) combined with Proposition 1.3.6.

Examples 1.3.8. 1) The indecomposable finite-dimensional modules over the loop algebra $k L=k[X]$ are the quotients

$$
M(\lambda, n):=k[X] /(X-\lambda)^{n} k[X],
$$

where $\lambda \in k$, and n is a positive integer. For $0 \leq i \leq n-1$, denote by v_{i} the image of $(X-\lambda)^{i}$ in $M(\lambda, n)$. Then v_{0}, \ldots, v_{n-1} form a basis of $M(\lambda, n)$ such that $\alpha v_{i}=\lambda v_{i}+v_{i+1}$ for all i, where we set $v_{n}=0$. Thus, α acts on $M(\lambda, n)$ via a Jordan block of size n and eigenvalue λ. Note that $M(\lambda, 1)$ is just the simple representation $S(\lambda)$.

Clearly, $\operatorname{Hom}_{L}(M(\lambda, m), M(\mu, n))=\{0\}$ unless $\lambda=\mu$. Moreover,

$$
\operatorname{Hom}_{L}(M(\lambda, m), M(\lambda, n)) \simeq M(\lambda, \min (m, n))
$$

In particular,

$$
\begin{equation*}
\operatorname{End}_{L}(M(\lambda, n)) \simeq M(\lambda, n) \tag{1.3.9}
\end{equation*}
$$

Also, $k[X]$ has a unique finitely generated, indecomposable module of infinite dimension, namely, $k[X]$ itself. It also has many indecomposable modules which are not finitely generated, e.g., all non-trivial localizations of $k[X]$.
2) The indecomposable representations of the quiver

$$
K_{1}: \quad i \xrightarrow{\alpha} j
$$

fall into 3 isomorphism classes:

$$
\begin{array}{ll}
S(i): & k \longrightarrow 0, \\
S(j): & 0 \longrightarrow k, \\
P(i): & k \xrightarrow{1} k .
\end{array}
$$

of respective dimension vectors $(1,0),(0,1),(1,1)$. Note that $P(j)=S(j)$.
In contrast, K_{2} admits infinitely many indecomposable representations; for example,

$$
k \underset{\lambda}{\stackrel{1}{\longrightarrow}} k \quad(\lambda \in k)
$$

of dimension vector $(1,1)$.
3) One may show that the indecomposable representations of the quiver

$$
S_{2}: \quad i_{1} \xrightarrow{\alpha_{1}} j \stackrel{\alpha_{2}}{\longleftrightarrow} i_{2}
$$

fall into 6 isomorphism classes:

$$
\begin{array}{ll}
S\left(i_{1}\right): & k \longrightarrow 0 \longleftarrow 0, \\
S(j): & 0 \longrightarrow k \longleftarrow 0, \\
S\left(i_{2}\right): & 0 \longrightarrow 0 \longleftarrow k, \\
P\left(i_{1}\right): & k \xrightarrow{1} k \longleftarrow 0, \\
P\left(i_{2}\right): & 0 \longrightarrow k \longleftarrow k,
\end{array}
$$

and finally

$$
M(j): \quad k \xrightarrow{1} k \stackrel{1}{\longleftrightarrow} k,
$$

of respective dimension vectors $(1,0,0),(0,1,0),(0,0,1),(1,1,0),(0,1,1),(1,1,1)$. Also, $P(j)=S(j)$.

1.4 The standard resolution

Throughout this subsection, we fix a quiver $Q=\left(Q_{0}, Q_{1}, s, t\right)$.
Proposition 1.4.1. For any left $k Q$-module M, we have an exact sequence of $k Q$ modules

$$
\begin{equation*}
0 \longrightarrow \bigoplus_{\alpha \in Q_{1}} P(t(\alpha)) \otimes_{k} e_{s(\alpha)} M \xrightarrow{u} \bigoplus_{i \in Q_{0}} P(i) \otimes_{k} e_{i} M \xrightarrow{v} M \longrightarrow 0 \tag{1.4.1}
\end{equation*}
$$

where the maps u and v are defined by

$$
u(a \otimes m):=a \alpha \otimes m-a \otimes \alpha m \quad\left(a \in P(t(\alpha)), m \in e_{s(\alpha)} M\right)
$$

and

$$
v(a \otimes m):=a m \quad\left(a \in P(i), m \in e_{i} M\right) .
$$

Here each $P(j) \otimes_{k} e_{i} M$ is a $k Q$-module via $a(b \otimes m)=a b \otimes m$, where $a \in k Q, b \in P(j)$, and $m \in e_{i} M$.

Proof. Note that the map

$$
k Q \otimes_{k Q} M \longrightarrow M, \quad a \otimes m \longmapsto a m
$$

is an isomorphism of (left) $k Q$-modules, where the tensor product is taken for $k Q$ viewed as a right $k Q$-module. Since the algebra $k Q$ is generated by the e_{i} and the α, the vector space $k Q \otimes_{k Q} M$ is the quotient of $k Q \otimes_{k} M$ by the linear span of the elements $a e_{i} \otimes m-a \otimes e_{i} m$ and $a \alpha \otimes m-a \otimes \alpha m$, where $a \in k Q, m \in M, i \in Q_{0}$, and $\alpha \in Q_{1}$. Moreover,

$$
k Q \otimes_{k} M=\bigoplus_{i, j \in Q_{0}} P(i) \otimes_{k} e_{j} M
$$

and the linear span of the $a e_{i} \otimes m-a \otimes e_{i} m\left(a \in k Q, m \in M, i \in Q_{0}\right)$ is the partial sum $\bigoplus_{i \neq j} P(i) \otimes_{k} e_{j} M$. It follows that v is surjective, and its kernel is generated by the image of u.

It remains to show that u is injective. Recall that each space $P(t(\alpha))$ has a basis consisting of all paths π such that $s(\pi)=t(\alpha)$. So u is given by

$$
\sum_{\alpha \in Q_{1}} \sum_{\pi, s(\pi)=t(\alpha)} \pi \otimes m_{\alpha, \pi} \longmapsto \sum_{\alpha, \pi}\left(\pi \alpha \otimes m_{\alpha, \pi}-\pi \otimes \alpha m_{\alpha, \pi}\right) .
$$

If the left-hand side is non-zero, then we may choose a path π of maximal length such that $m_{\alpha, \pi} \neq 0$. Then the right-hand side contains $\pi \alpha \otimes m_{\alpha, \pi}$ but no other component on $\pi \alpha \otimes e_{s(\alpha)} M$. This proves the desired injectivity.

The exact sequence (1.4.1) is called the standard resolution of the $k Q$-module M; it is a projective resolution of length at most 1.

As a consequence, each left ideal I of $k Q$ is projective, as follows by applying Schanuel's lemma [3, Lem. 1.5.3] to the standard resolution of the quotient $k Q / I$ and to the exact sequence

$$
0 \longrightarrow I \longrightarrow k Q \longrightarrow k Q / I \longrightarrow 0
$$

This property defines the class of (left) hereditary algebras; we refer to [3, Sec. 4.2] for more on these algebras and their relations to quivers.

Next, recall the definition of the groups $\operatorname{Ext}_{Q}^{i}(M, N)$, where M and N are arbitrary $k Q$-modules. Choose a projective resolution

$$
\begin{equation*}
\cdots \longrightarrow P_{2} \longrightarrow P_{1} \longrightarrow P_{0} \longrightarrow M \longrightarrow 0 . \tag{1.4.2}
\end{equation*}
$$

Taking morphisms to N yields a complex

$$
\operatorname{Hom}_{Q}\left(P_{0}, N\right) \longrightarrow \operatorname{Hom}_{Q}\left(P_{1}, N\right) \longrightarrow \operatorname{Hom}_{Q}\left(P_{2}, N\right) \longrightarrow \cdots
$$

The homology groups of this complex turn out to be independent of the choice of the resolution (1.4.2); the i th homology group is denoted by $\operatorname{Ext}^{i}{ }_{Q}(M, N)$ (see e.g. [3, Sec. 2.4]).

Clearly, $\operatorname{Ext}_{Q}^{0}(M, N)=\operatorname{Hom}_{Q}(M, N)$. Also, recall that $\operatorname{Ext}_{Q}^{1}(M, N)$ is the set of equivalence classes of extensions of M by N, i.e., of exact sequences of $k Q$-modules

$$
0 \longrightarrow N \longrightarrow E \longrightarrow M \longrightarrow 0
$$

up to isomorphisms that induce the identity maps on N and M (see [3, Sec. 2.6]).
Using the standard resolution and the isomorphism (1.3.6), we readily obtain the following:

Corollary 1.4.2. For any representations $M=\left(V_{i}, f_{\alpha}\right)$ and $N=\left(W_{i}, g_{\alpha}\right)$ of a quiver Q, the map

$$
\begin{aligned}
c_{M, N}: \prod_{i \in Q_{0}} \operatorname{Hom}\left(V_{i}, W_{i}\right) & \longrightarrow \prod_{\alpha \in Q_{1}} \operatorname{Hom}\left(V_{s(\alpha)}, W_{t(\alpha)}\right), \\
\left(u_{i}\right)_{i \in Q_{0}} & \longmapsto\left(u_{t(\alpha)} f_{\alpha}-g_{\alpha} u_{s(\alpha)}\right)_{\alpha \in Q_{1}}
\end{aligned}
$$

has kernel $\operatorname{Hom}_{Q}(M, N)$ and cokernel $\operatorname{Ext}_{Q}^{1}(M, N)$.
Moreover, $\operatorname{Ext}_{Q}^{j}(M, N)=0$ for all $j \geq 2$.
In particular, there is a four-term exact sequence

$$
\begin{equation*}
0 \rightarrow \operatorname{End}_{Q}(M) \rightarrow \prod_{i \in Q_{0}} \operatorname{End}\left(V_{i}\right) \rightarrow \prod_{\alpha \in Q_{1}} \operatorname{Hom}\left(V_{s(\alpha)}, V_{t(\alpha)}\right) \rightarrow \operatorname{Ext}_{Q}^{1}(M, M) \rightarrow 0 \tag{1.4.3}
\end{equation*}
$$

which will acquire a geometric interpretation in Subsection 2.2. The space $\operatorname{Ext}_{Q}^{1}(M, M)$ is called the space of self-extensions of M.

Taking dimensions in Corollary 1.4.2 yields:
Corollary 1.4.3. For any finite-dimensional representations M, N of Q with dimension vectors $\left(m_{i}\right)_{i \in Q_{0}},\left(n_{i}\right)_{i \in Q_{0}}$, we have

$$
\begin{equation*}
\operatorname{dim} \operatorname{Hom}_{Q}(M, N)-\operatorname{dim} \operatorname{Ext}_{Q}^{1}(M, N)=\sum_{i \in Q_{0}} m_{i} n_{i}-\sum_{\alpha \in Q_{1}} m_{s(\alpha)} n_{t(\alpha)} \tag{1.4.4}
\end{equation*}
$$

In particular, $\operatorname{dim}_{\operatorname{Ext}}^{Q}{ }_{Q}^{1}(S(i), S(j))$ is the number of arrows with source i and target j, for all vertices i and j. For example, the dimension of the space of self-extensions $\operatorname{Ext}_{Q}^{1}(S(i), S(i))$ is the number of oriented cycles at i.

Also, note that the left-hand side of (1.4.4) only depends on the dimension vectors of M, N, and is a bi-additive function of these vectors. This motivates the following:

Definition 1.4.4. The Euler form of the quiver Q is the bilinear form \langle,\rangle_{Q} on $\mathbb{R}^{Q_{0}}$ given by

$$
\begin{equation*}
\langle\underline{m}, \underline{n}\rangle_{Q}=\sum_{i \in Q_{0}} m_{i} n_{i}-\sum_{\alpha \in Q_{1}} m_{s(\alpha)} n_{t(\alpha)} \tag{1.4.5}
\end{equation*}
$$

for any $\underline{m}=\left(m_{i}\right)_{i \in Q_{0}}$ and $\underline{n}=\left(n_{i}\right)_{i \in Q_{0}}$.
Note that the assignment $(\underline{m}, \underline{n}) \mapsto\langle\underline{n}, \underline{m}\rangle_{Q}$ is the Euler form of the opposite quiver, obtained from Q by reverting all the arrows. Thus, the Euler form is generally nonsymmetric (e.g., for the quiver K_{r}).

Definition 1.4.5. The quadratic form associated to the Euler form is the Tits form q_{Q}. In other words,

$$
\begin{equation*}
q_{Q}(\underline{n}):=\langle\underline{n}, \underline{n}\rangle_{Q}=\sum_{i \in Q_{0}} n_{i}^{2}-\sum_{\alpha \in Q_{1}} n_{s(\alpha)} n_{t(\alpha)} \tag{1.4.6}
\end{equation*}
$$

for any $\underline{n}=\left(n_{i}\right)_{i \in Q_{0}}$.
By (1.4.4), we have

$$
\begin{equation*}
q_{Q}(\underline{\operatorname{dim}} M)=\operatorname{dim} \operatorname{End}_{Q}(M)-\operatorname{dim} \operatorname{Ext}_{Q}^{1}(M, M) \tag{1.4.7}
\end{equation*}
$$

for any finite-dimensional representation M.
Also, note that the Tits form depends only on the underlying undirected graph of Q, and determines that graph uniquely. For example, if Q has type A_{r}, then

$$
q_{Q}\left(x_{1}, \ldots, x_{r}\right)=\sum_{i=1}^{r} x_{i}^{2}-\sum_{i=1}^{r-1} x_{i} x_{i+1}
$$

The positivity properties of the Tits form are closely related with the shape of Q. For instance, if Q contains a (possibly non-oriented) cycle with vertices i_{1}, \ldots, i_{r}, then $q_{Q}\left(\varepsilon_{i_{1}}+\cdots+\varepsilon_{i_{r}}\right) \leq 0$. Together with [3, Prop. 4.6.3], this implies:

Proposition 1.4.6. For a quiver Q, the following conditions are equivalent:
(i) The Tits form q_{Q} is positive definite.
(ii) $q_{Q}(\underline{n}) \geq 1$ for any non-zero $\underline{n} \in \mathbb{N}^{Q_{0}}$.
(iii) The underlying undirected graph of each connected component of Q is a simply-laced Dynkin diagram.

As a consequence, Theorem 1.1.7 may be rephrased as follows: the quivers of finite orbit type are exactly those having a positive definite Tits form. This version of Gabriel's theorem will be proved in the next section.

2 Quiver representations: the geometric approach

In this section, we study the representations of a prescribed quiver having a prescribed dimension vector from a geometric viewpoint: the isomorphism classes of these representations are in bijection with the orbits of an algebraic group (a product of general linear groups) acting in a representation space (a product of matrix spaces).

Subsection 2.1 presents general results on representation spaces of quivers, and orbits of algebraic groups in algebraic varieties. As an application, we obtain a proof of the "only if" part of Gabriel's theorem (Thm. 1.1.7).

In Subsection 2.2, we describe the isotropy groups of representation spaces and we study the differentials of the corresponding orbit maps. In particular, the normal space to an orbit is identified with the space of self-extensions of the corresponding representation.

The main result of Subsection 2.3 asserts that the orbit closure of every point in a representation space contains the associated graded to any filtration of the corresponding representation. Further, the filtrations for which the associated graded is semi-simple yield the unique closed orbit.

In Subsection 2.4, we prove the "if" part of Gabriel's theorem by combining the results of the previous subsections with a key technical ingredient. An alternative proof via purely representation-theoretic methods is exposed in [3, Sec. 4.7].

The prerequisites of this section are basic notions of affine algebraic geometry (Zariski topology on affine spaces, dimension, morphisms, Zariski tangent spaces, differentials); they may be found e.g. in the book [8].

As in the previous section, we only make the first steps in the geometry of quiver representations. For further results, including Kac's broad generalization of Gabriel's
theorem, a very good source is [11]. The invariant theory of quiver representations is studied in [12] over a field of characteristic zero, and [7] in arbitrary characteristics. Moduli spaces of representations of finite-dimensional algebras are constructed in [10]; the survey [17] reviews this construction in the setting of quivers, and presents many developments and applications. In another direction, degenerations of representations (equivalently, orbit closures in representation spaces) are intensively studied, see e.g. [20].

2.1 Representation spaces

Throughout this section, we fix a quiver $Q=\left(Q_{0}, Q_{1}, s, t\right)$ and a dimension vector $\underline{n}=$ $\left(n_{i}\right)_{i \in Q_{0}}$.

Recall that a representation of Q with dimension vector \underline{n} assigns a vector space V_{i} of dimension n_{i} to every vertex i, and a linear map $f_{\alpha}: V_{i} \rightarrow V_{j}$ to every arrow $\alpha: i \rightarrow j$. Choosing bases, we may identify each V_{i} to $k^{n_{i}}$; then each f_{α} is just a matrix of size $n_{j} \times n_{i}$. This motivates the following:

Definition 2.1.1. The representation space of the quiver Q for the dimension vector \underline{n} is

$$
\begin{equation*}
\operatorname{Rep}(Q, \underline{n}):=\bigoplus_{\alpha: i \rightarrow j} \operatorname{Hom}\left(k^{n_{i}}, k^{n_{j}}\right)=\bigoplus_{\alpha: i \rightarrow j} \operatorname{Mat}_{n_{j} \times n_{i}}(k) \tag{2.1.1}
\end{equation*}
$$

This is a vector space of dimension $\sum_{\alpha: i \rightarrow j} n_{i} n_{j}$.
Here $\sum_{\alpha: i \rightarrow j}$ denotes (abusively) the summation over all $\alpha \in Q_{1}$, to simplify the notation. Likewise, a point of $\operatorname{Rep}(Q, \underline{n})$ will be denoted by $x=\left(x_{\alpha}\right)_{\alpha: i \rightarrow j}$.

For any positive integer n, we denote by $\operatorname{GL}(n)$ the group of invertible $n \times n$ matrices with coefficients in k, and by id_{n} the identity matrix. The group

$$
\mathrm{GL}(\underline{n}):=\prod_{i \in Q_{0}} \mathrm{GL}\left(n_{i}\right)
$$

acts linearly on each space $\operatorname{Mat}_{n_{j} \times n_{i}}(k)$ by

$$
\begin{equation*}
\left(g_{i}\right)_{i \in Q_{0}} \cdot x_{\alpha}:=g_{j} x_{\alpha} g_{i}^{-1} \tag{2.1.2}
\end{equation*}
$$

Hence $\operatorname{GL}(\underline{n})$ acts on $\operatorname{Rep}(Q, \underline{n})$ by preserving the decomposition (2.1.1). The subgroup

$$
k^{*} \operatorname{id}_{\underline{n}}:=\left\{\left(\lambda \operatorname{id}_{n_{i}}\right)_{i \in Q_{0}} \mid \lambda \in k^{*}\right\}
$$

is contained in the center of $\operatorname{GL}(\underline{n})$, and acts trivially on $\operatorname{Rep}(Q, \underline{n})$. Thus, the action of $\mathrm{GL}(\underline{n})$ factors through an action of the quotient group

$$
\operatorname{PGL}(\underline{n}):=\mathrm{GL}(\underline{n}) / k^{*} \mathrm{id}_{\underline{n}} .
$$

Clearly, any point $x \in \operatorname{Rep}(Q, \underline{n})$ defines a representation M_{x} of Q. Moreover, any two such representations M_{x}, M_{y} are isomorphic if and only if x, y are in the same orbit of $\operatorname{GL}(\underline{n})$ or, equivalently, of $\mathrm{PGL}(\underline{n})$. This yields the following fundamental observation.

Lemma 2.1.2. The assignment $x \mapsto M_{x}$ sets up a bijective correspondence from the set of orbits of $\mathrm{GL}(\underline{n})$ in $\operatorname{Rep}(Q, \underline{n})$ to the set of isomorphism classes of representations of Q with dimension vector \underline{n}. The isotropy group

$$
\mathrm{GL}(\underline{n})_{x}:=\{g \in \mathrm{GL}(\underline{n}) \mid g \cdot x=x\}
$$

is isomorphic to the automorphism group $\operatorname{Aut}_{Q}\left(M_{x}\right)$.
Example 2.1.3. Consider the quiver H_{r} of Example 1.2.3.4, and choose the dimension vector $\underline{n}:=(1, n)$. Then $\operatorname{Rep}\left(H_{r}, \underline{n}\right)$ consists of all tuples $\left(v, x_{1}, \ldots, x_{r}\right)$, where $v \in k^{n}$ and $x_{1}, \ldots, x_{r} \in \operatorname{Mat}_{n \times n}(k)$. Further, $\operatorname{GL}(\underline{n})=k^{*} \times \operatorname{GL}(n)$ acts on $\operatorname{Rep}\left(H_{r}, \underline{n}\right)$ via

$$
(t, g) \cdot\left(v, x_{1}, \ldots, x_{r}\right):=\left(t g v, g x_{1} g^{-1}, \ldots, g x_{r} g^{-1}\right)
$$

So the orbits are those of $\operatorname{PGL}(\underline{n}) \simeq \operatorname{GL}(n)$, acting by simultaneous multiplication on v and conjugation on the x_{i} 's.

Each point $\left(v, x_{1}, \ldots, x_{r}\right) \in \operatorname{Rep}(Q, \underline{n})$ defines a representation

$$
\varphi: k\left\langle X_{1}, \ldots, X_{r}\right\rangle \longrightarrow \operatorname{Mat}_{n \times n}(k), \quad X_{i} \longmapsto x_{i}
$$

together with a point $v \in k^{n}$. Moreover, the orbits of $\operatorname{GL}(n)$ parametrize the isomorphism classes of such pairs (φ, v).

We say that a tuple $\left(v, x_{1}, \ldots, x_{r}\right)$ is cyclic, if v generates k^{n} as a module over $k\left\langle X_{1}, \ldots, X_{r}\right\rangle$; we denote by $\operatorname{Rep}\left(H_{r}, \underline{n}\right)^{\text {cyc }}$ the subset of $\operatorname{Rep}\left(H_{r}, \underline{n}\right)$ consisting of cyclic tuples. Clearly, $\operatorname{Rep}\left(H_{r}, \underline{n}\right)^{\text {cyc }}$ is stable under the action of $\operatorname{GL}(n)$, and the isotropy group of each cyclic tuple is trivial. Moreover, the orbit space $\operatorname{Rep}\left(H_{r}, \underline{n}\right)^{\text {cyc }} / \operatorname{GL}(n)$ may be identified with the set of all left ideals of codimension n in $k\left\langle X_{1}, \ldots, X_{r}\right\rangle$. Indeed, to any tuple $\left(v, x_{1}, \ldots, x_{r}\right)$, we assign the ideal

$$
I\left(v, x_{1}, \ldots, x_{r}\right):=\left\{P \in k\left\langle X_{1}, \ldots, X_{r}\right\rangle \mid P\left(x_{1}, \ldots, x_{r}\right) v=0\right\}
$$

which depends only on the orbit of $\left(v, x_{1}, \ldots, x_{r}\right)$. Conversely, to any left ideal $I \subset$ $k\left\langle X_{1}, \ldots, X_{r}\right\rangle$ of codimension n, we assign the isomorphism class of the pair (φ, v), where φ is the representation of $k\left\langle X_{1}, \ldots, X_{r}\right\rangle$ in the quotient $k\left\langle X_{1}, \ldots, X_{r}\right\rangle / I \simeq k^{n}$, and v is the image of the unit 1 in this quotient. One readily checks that these assignments are mutually inverse bijections.

Returning to the case of an arbitrary quiver Q, we denote by \mathcal{O}_{M} the orbit in $\operatorname{Rep}(Q, \underline{n})$ associated with a representation M of Q. Thus, $\mathcal{O}_{M}=\operatorname{GL}(\underline{n}) \cdot x$, where $x \in \operatorname{Rep}(Q, \underline{n})$ is any point such that $M \simeq M_{x}$.

In particular, Q is of finite orbit type if and only if $\operatorname{Rep}(Q, \underline{n})$ contains only finitely many orbits of GL (\underline{n}) for any dimension vector \underline{n}. This observation will yield a quick proof of the "only if" part of Gabriel's theorem. To present that proof, we need some general notions and results on algebraic group actions.

Definition 2.1.4. An (affine) algebraic group is an (affine) algebraic variety G, equipped with a group structure such that the multiplication map

$$
\mu: G \times G \longrightarrow G, \quad(g, h) \longmapsto g h
$$

and the inverse map

$$
\iota: G \longrightarrow G, \quad g \longmapsto g^{-1}
$$

are morphisms of varieties.
Examples 2.1.5. 1) The general linear group, denoted by GL(n), is the open affine subset of $\operatorname{Mat}_{n \times n}(k)$ (an affine space of dimension n^{2}) where the determinant is non-zero. The corresponding algebra of regular functions is generated by the matrix coefficients and the inverse of their determinant. Since the coefficients of the product of matrices (resp. of the inverse of a matrix) are polynomials in the matrix coefficients (and in the inverse of the determinant), $\mathrm{GL}(n)$ is an affine algebraic group; it is an irreducible variety of dimension n^{2}.

As a consequence, any closed subgroup of $\mathrm{GL}(n)$ is an affine algebraic group; such a subgroup is called a linear algebraic group. In fact, all affine algebraic groups are linear (see [19, 2.3.7]).

For example, the group $k^{*} \mathrm{id}_{n}$ of scalar invertible matrices is a closed central subgroup of $\mathrm{GL}(n)$, isomorphic to the multiplicative group

$$
\mathbb{G}_{m}:=\mathrm{GL}(1) .
$$

The quotient group

$$
\operatorname{PGL}(n):=\operatorname{GL}(n) / k^{*} \operatorname{id}_{n}
$$

is isomorphic to the image of $\operatorname{GL}(n)$ in the automorphism group of the vector space $\operatorname{Mat}_{n \times n}(k)$, where GL (n) acts by conjugation. This image is a closed subgroup of GL $\left(n^{2}\right)$ of dimension $n^{2}-1$, as follows from Corollary 2.1.8 below. (Alternatively, $\operatorname{PGL}(n)$ is the automorphism group of the algebra $\operatorname{Mat}_{n \times n}(k)$ by the Skolem-Noether therem; see [3, Prop. 1.3.6]. This realizes $\operatorname{PGL}(n)$ as a subgroup of $\mathrm{GL}\left(n^{2}\right)$ defined by quadratic
equations.) Thus, $\operatorname{PGL}(n)$ is an irreducible linear algebraic group of dimension $n^{2}-1$, the projective linear group.
2) More generally, $\operatorname{GL}(\underline{n})$ is the subset of

$$
\operatorname{End}(\underline{n}):=\prod_{i \in Q_{0}} \operatorname{End}\left(k^{n_{i}}\right)=\prod_{i \in Q_{0}} \operatorname{Mat}_{n_{i} \times n_{i}}(k)
$$

consisting of those families $\left(g_{i}\right)_{i \in Q_{0}}$ such that $\prod_{i \in Q_{0}} \operatorname{det}\left(g_{i}\right)$ is non-zero. This realizes $\mathrm{GL}(\underline{n})$ as a principal open subset of the affine space $\operatorname{End}(\underline{n})$ or, alternatively, as a closed subgroup of $\mathrm{GL}\left(\sum_{i \in Q_{0}} n_{i}\right)$. Thus, $\mathrm{GL}(\underline{n})$ is an irreducible linear algebraic group of dimension $\sum_{i \in Q_{0}} n_{i}^{2}$, and the subgroup $k^{*} \mathrm{id}_{\underline{n}}$ is closed. As in the preceding example, one shows that the quotient

$$
\operatorname{PGL}(\underline{n}):=\mathrm{GL}(\underline{n}) / k^{*} \operatorname{id}_{\underline{n}}
$$

is an irreducible linear algebraic group of dimension $\left(\sum_{i \in Q_{0}} n_{i}^{2}\right)-1$.
Definition 2.1.6. An algebraic action of an algebraic group G on a variety X is a morphism

$$
\varphi: G \times X \longrightarrow X, \quad(g, x) \longmapsto g \cdot x
$$

of varieties, which is also an action of the group G on X.
For instance, the action of $\operatorname{GL}(\underline{n})$ on $\operatorname{Rep}(Q, \underline{n})$ is algebraic by (2.1.2). Since the subgroup $k^{*} \mathrm{id}_{\underline{n}}$ acts trivially, this action factors through a linear action of $\operatorname{PGL}(\underline{n})$, which is also algebraic by Corollary 2.1.8 below.

Proposition 2.1.7. Let X be a variety equipped with an algebraic action of an algebraic group G and let $x \in X$.
(i) The isotropy group

$$
G_{x}:=\{g \in G \mid g \cdot x=x\}
$$

is closed in G.
(ii) The orbit

$$
G \cdot x:=\{g \cdot x, g \in G\}
$$

is a locally closed, non-singular subvariety of X. All connected components of $G \cdot x$ have dimension $\operatorname{dim} G-\operatorname{dim} G_{x}$.
(iii) The orbit closure $\overline{G \cdot x}$ is the union of $G \cdot x$ and of orbits of smaller dimension ; it contains at least one closed orbit.
(iv) The variety G is connected if and only if it is irreducible; then the orbit $G \cdot x$ and its closure are irreducible as well.

Proof. (i) Consider the orbit map

$$
\varphi_{x}: G \longrightarrow X, \quad g \longmapsto g \cdot x
$$

This is a morphism of varieties with fibers being the left cosets $g G_{x}, g \in G$; hence these cosets are closed.
(ii) The orbit $G \cdot x$ is the image of the morphism φ_{x}, and hence is a constructible subset of X; thus, $G \cdot x$ contains a dense open subset of its closure (see [8, p. 311]). Since any two points of $G \cdot x$ are conjugate by an automorphism of X, it follows that $G \cdot x$ is open in its closure. Likewise, $G \cdot x$ is non-singular, and its connected components have all the same dimension. The formula for this dimension follows from a general result on the dimension of fibers of morphisms (see again [8, p. 311]).
(iii) By the results of (ii), the complement $\overline{G \cdot x} \backslash G \cdot x$ has smaller dimension; being stable under G, it is the union of orbits of smaller dimension. Let \mathcal{O} be an orbit of minimal dimension in $\overline{G \cdot x}$, then $\overline{\mathcal{O}} \backslash \mathcal{O}$ must be empty, so that \mathcal{O} is closed.
(iv) Note that G is an orbit for its action on itself by left multiplication. Thus, it is non-singular by (ii), so that connectedness and irreducibility are equivalent. Finally, if G is irreducible, then so is its image $G \cdot x$ under the orbit map. This implies the irreducibility of $\overline{G \cdot x}$.

Corollary 2.1.8. Let $\varphi: G \rightarrow H$ be a homomorphism of algebraic groups. Then the kernel $\operatorname{Ker} \varphi$ and image $\operatorname{Im} \varphi$ are closed in G resp. H, and we have $\operatorname{dim} \operatorname{Ker} \varphi+\operatorname{dim} \operatorname{Im} \varphi=$ $\operatorname{dim} G$.

Proof. Consider the action of G on H by $g \cdot h:=\varphi(g) h$. This action is algebraic and its orbits are the right cosets $(\operatorname{Im} \varphi) h$, where $h \in H$; these orbits are permuted transitively by the action of H on itself via right multiplication. By Proposition 2.1.7, there exists a closed coset. Thus, all cosets are closed; in particular, $\operatorname{Im} \varphi$ is closed. On the other hand, the isotropy group of any point of H is $\operatorname{Ker} \varphi$. So this subgroup is closed by Proposition 2.1.7, which also yields the equality $\operatorname{dim} \operatorname{Im} \varphi=\operatorname{dim} G-\operatorname{dim} \operatorname{Ker} \varphi$.

We may now prove the "only if" part of Gabriel's theorem. For any quiver Q, note the equality

$$
\begin{equation*}
\operatorname{dim} \mathrm{GL}(\underline{n})-\operatorname{dim} \operatorname{Rep}(Q, \underline{n})=\sum_{i \in Q_{0}} n_{i}^{2}-\sum_{\alpha: i \rightarrow j} n_{i} n_{j} . \tag{2.1.3}
\end{equation*}
$$

Equivalently,

$$
\begin{equation*}
\operatorname{dim} \operatorname{PGL}(\underline{n})-\operatorname{dim} \operatorname{Rep}(Q, \underline{n})=q_{Q}(\underline{n})-1, \tag{2.1.4}
\end{equation*}
$$

where q_{Q} denotes the Tits form defined in (1.4.6). Together with Proposition 2.1.7, it follows that $q_{Q}(\underline{n}) \geq 1$ whenever $\operatorname{Rep}(Q, \underline{n})$ contains an open orbit of the group $\operatorname{PGL}(\underline{n})$.

By Proposition 2.1.7 again, this assumption holds if $\operatorname{Rep}(Q, \underline{n})$ contains only finitely many orbits of that group. Thus, if Q is of finite orbit type, then $q_{Q}(\underline{n}) \geq 1$ for all non-zero $\underline{n} \in \mathbb{N}^{Q_{0}}$. By Proposition 1.4.6, it follows that q_{Q} is positive definite.

2.2 Isotropy groups

We begin with a structure result for automorphism groups of representations. To formulate it, we say that an algebraic group is unipotent if it is isomorphic to a closed subgroup of the group of upper triangular $n \times n$ matrices with diagonal coefficients 1 .

Proposition 2.2.1. Let M be a finite-dimensional representation of Q.
(i) The automorphism group $\operatorname{Aut}_{Q}(M)$ is an open affine subset of $\operatorname{End}_{Q}(M)$. As a consequence, $\operatorname{Aut}_{Q}(M)$ is a connected linear algebraic group.
(ii) There exists a decomposition

$$
\begin{equation*}
\operatorname{Aut}_{Q}(M)=U \rtimes \prod_{i=1}^{r} \mathrm{GL}\left(m_{i}\right), \tag{2.2.1}
\end{equation*}
$$

where U is a closed normal unipotent subgroup and m_{1}, \ldots, m_{r} denote the multiplicities of the indecomposable summands of M.

Proof. (i) Just note that $\operatorname{Aut}_{Q}(M)$ is the subset of $\operatorname{End}_{Q}(M)$ where the determinant is non-zero.
(ii) The decomposition (1.3.5) yields a split surjective homomorphism of algebras

$$
\operatorname{End}_{Q}(M) \longrightarrow \operatorname{End}_{Q}(M) / I \simeq \prod_{i=1}^{r} \operatorname{Mat}_{m_{i} \times m_{i}}(k)
$$

and, in turn, a split surjective homomorphism of algebraic groups

$$
\operatorname{Aut}_{Q}(M) \longrightarrow \prod_{i=1}^{r} \mathrm{GL}\left(m_{i}\right)
$$

with kernel

$$
\operatorname{id}_{M}+I:=\left\{\operatorname{id}_{M}+f, \quad f \in I\right\}
$$

(indeed, $\operatorname{id}_{M}+f$ is invertible for any $f \in I$, since f is nilpotent). Thus, $\mathrm{id}_{M}+I$ is a closed connected normal subgroup of $\operatorname{Aut}_{Q}(M)$.

It remains to show that the group $\operatorname{id}_{M}+I$ is unipotent. For this, we consider the linear action of that group on the subspace $k \mathrm{id}_{M} \oplus I$ by left multiplication. Since the orbit of id_{M} is isomorphic to the affine space $\mathrm{id}_{M}+I$, this action yields a closed embedding

$$
\operatorname{id}_{M}+I \hookrightarrow \operatorname{GL}\left(k \operatorname{id}_{M} \oplus I\right) .
$$

Moreover, the powers I^{n} form a decreasing filtration of the vector space $k \mathrm{id}_{M} \oplus I$, and $I^{n}=0$ for $n \gg 0$; any I^{n} is stable under the group $\operatorname{id}_{M}+I$, and the latter group fixes pointwise the quotients I^{n} / I^{n+1} and $\left(k \mathrm{id}_{M} \oplus I\right) / I$. This realizes $\mathrm{id}_{M}+I$ as a unipotent subgroup of $\mathrm{GL}\left(k \mathrm{id}_{M} \oplus I\right)$, by choosing a basis of $k \mathrm{id}_{M} \oplus I$ compatible with the filtration $\left(I^{n}\right)_{n \geq 1}$.

The decomposition (2.2.1) yields a criterion for the indecomposability of a representation, in terms of its automorphism group:

Corollary 2.2.2. Let $x \in \operatorname{Rep}(Q, \underline{n})$, then the representation M_{x} is indecomposable if and only if the isotropy group $\mathrm{GL}(\underline{n})_{x}$ is the semi-direct product of a unipotent subgroup with the group $k^{*} \mathrm{id}_{\underline{n}}$; equivalently, $\mathrm{PGL}(\underline{n})_{x}$ is unipotent.

Next, we obtain the promised geometric interpretation of the four-term exact sequence (1.4.3):

Theorem 2.2.3. Let $x=\left(x_{\alpha}\right)_{\alpha: i \rightarrow j} \in \operatorname{Rep}(Q, \underline{n})$ and denote by M the corresponding representation of Q.
(i) We have an exact sequence

$$
\begin{equation*}
0 \longrightarrow \operatorname{End}_{Q}(M) \longrightarrow \operatorname{End}(\underline{n}) \xrightarrow{c_{x}} \operatorname{Rep}(Q, \underline{n}) \longrightarrow \operatorname{Ext}_{Q}^{1}(M, M) \longrightarrow 0 \tag{2.2.2}
\end{equation*}
$$

where $c_{x}\left(\left(f_{i}\right)_{i \in Q_{0}}\right)=\left(f_{j} x_{\alpha}-x_{\alpha} f_{i}\right)_{\alpha: i \rightarrow j}$.
(ii) c_{x} may be identified with the differential at the identity of the orbit map

$$
\varphi_{x}: \operatorname{GL}(\underline{n}) \longrightarrow \operatorname{Rep}(Q, \underline{n}), \quad g \longmapsto g \cdot x .
$$

(iii) The image of c_{x} is the Zariski tangent space $T_{x}(\mathrm{GL}(\underline{n}) \cdot x)$ viewed as a subspace of $T_{x}(\operatorname{Rep}(Q, \underline{n})) \simeq \operatorname{Rep}(Q, \underline{n})$.

Proof. (i) is a reformulation of (1.4.3).
(ii) Since the algebraic group $\operatorname{GL}(\underline{n})$ is open in the affine space $\operatorname{End}(\underline{n})$, the Zariski tangent space to this group at $\operatorname{id}_{\underline{n}}$ may be identified with the vector space $\operatorname{End}(\underline{n})$. Likewise, by Proposition 2.2.1, the tangent space to $\operatorname{Aut}_{Q}(M)$ at $\mathrm{id}_{\underline{n}}$ may be identified with $\operatorname{End}_{Q}(M)$. Now the assertion follows from the definition (2.1.2) of the action of GL (\underline{n}). Consider indeed an arrow $\alpha: i \rightarrow j$ and a matrix $x_{\alpha} \in \operatorname{Mat}_{n_{j} \times n_{i}}(k)$. Then the differential at $\left(\mathrm{id}_{n_{i}}, \mathrm{id}_{n_{j}}\right)$ of the morphism

$$
\operatorname{GL}\left(n_{i}\right) \times \operatorname{GL}\left(n_{j}\right) \longrightarrow \operatorname{Mat}_{n_{j} \times n_{i}}(k), \quad\left(g_{i}, g_{j}\right) \longmapsto g_{j} x_{\alpha} g_{i}^{-1}
$$

is easily seen to be the map

$$
\operatorname{Mat}_{n_{i} \times n_{i}}(k) \times \operatorname{Mat}_{n_{j} \times n_{j}}(k) \longrightarrow \operatorname{Mat}_{n_{j} \times n_{i}}(k), \quad\left(f_{i}, f_{j}\right) \longmapsto f_{j} x_{\alpha}-x_{\alpha} f_{i} .
$$

(iii) By Proposition 2.1.7, we have

$$
\operatorname{dim} T_{x}(\mathrm{GL}(\underline{n}) \cdot x)=\operatorname{dim} \mathrm{GL}(\underline{n}) \cdot x=\operatorname{dim} \mathrm{GL}(\underline{n})-\operatorname{dim} \mathrm{GL}(\underline{n})_{x} .
$$

Together with Proposition 2.2.1, it follows that

$$
\operatorname{dim} T_{x}(\mathrm{GL}(\underline{n}) \cdot x)=\operatorname{dim} \operatorname{End}(\underline{n})-\operatorname{dim} \operatorname{End}_{Q}(M) .
$$

On the other hand, the differential of the orbit map has kernel $\operatorname{End}_{Q}(M)$ by (2.2.2). Thus, its image is the whole space $T_{x}(\operatorname{GL}(\underline{n}) \cdot x)$.

Remarks 2.2.4. 1) By Theorem 2.2.3, the differential at the identity of the orbit map $\mathrm{GL}(\underline{n}) \rightarrow \mathrm{GL}(\underline{n}) \cdot x$ is surjective for any $x \in \operatorname{Rep}(Q, \underline{n})$. In other words, orbit maps for quiver representations are separable (for this notion, see e.g. [19, 3.2]).

This holds in fact for any algebraic group action in characteristic zero by [loc. cit.], but generally fails in characteristic $p>0$. For example, the additive group of k acts algebraically on the affine line via $t \cdot x=t^{p}+x$, and the differential of each orbit map is 0 .
2) The exact sequence (2.2.2) may also be interpreted in terms of Lie algebras. We briefly review the relevant definitions and results from algebraic groups, refering to [19, 3.3] for details.

Let G be an algebraic group with identity element e. Consider the commutator map

$$
G \times G \longrightarrow G, \quad(x, y) \longmapsto x y x^{-1} y^{-1}
$$

Its differential at (e, e) yields the Lie bracket

$$
T_{e}(G) \times T_{e}(G) \longrightarrow T_{e}(G), \quad(x, y) \longmapsto[x, y]
$$

which endows $T_{e}(G)$ with the structure of a Lie algebra, denoted by Lie G. The assignment $G \mapsto \operatorname{Lie}(G)$ is clearly functorial. For example, if H is a closed subgroup of G, then $\operatorname{Lie}(H)$ is a Lie subalgebra of $\operatorname{Lie}(G)$ via the identification of $T_{e}(H)$ to a subspace of $T_{e}(G)$.

The Lie algebra of the general linear group $\operatorname{GL}(n)$ is the space $\operatorname{Mat}_{n \times n}(k)$ endowed with the standard Lie bracket $(x, y) \mapsto x y-y x$. It follows that $\operatorname{Lie} G L(\underline{n})=\operatorname{End}(\underline{n})$ endowed with the same Lie bracket, where $\operatorname{End}(\underline{n})$ is viewed as a subalgebra of $\operatorname{End}\left(\sum_{i} n_{i}\right)$. Likewise, the Lie algebra of $\operatorname{Aut}_{Q}(M)$ is $\operatorname{End}_{Q}(M)$ viewed as a Lie subalgebra of $\operatorname{End}(M)$. Moreover, the representation of $\operatorname{GL}(\underline{n})$ in $\operatorname{Rep}(Q, \underline{n})$ differentiates to a representation of the Lie algebra $\operatorname{End}(\underline{n})$ given by $f \cdot x:=c_{x}(f)$.

We now obtain a representation-theoretic interpretation of the Zariski tangent spaces to orbits, and also of their normal spaces; these are defined as follows. Let X be a variety,
Y a locally closed subvariety, and x a point of Y. Then the Zariski tangent space $T_{x}(Y)$ is identified to a subspace of $T_{x}(X)$; the quotient

$$
N_{x}(Y / X):=T_{x}(X) / T_{x}(Y)
$$

is the normal space at x to Y in X.
Corollary 2.2.5. With the notation of Theorem 2.2.3, we have isomorphisms

$$
\begin{equation*}
T_{x}\left(\mathcal{O}_{M}\right) \simeq \operatorname{End}(\underline{n}) / \operatorname{End}_{Q}(M), \quad N_{x}\left(\mathcal{O}_{M} / \operatorname{Rep}(Q, \underline{n})\right) \simeq \operatorname{Ext}_{Q}^{1}(M, M) . \tag{2.2.3}
\end{equation*}
$$

Moreover, \mathcal{O}_{M} is open in $\operatorname{Rep}(Q, \underline{n})$ if and only if $\operatorname{Ext}_{Q}^{1}(M, M)=0$; then the orbit \mathcal{O}_{M} is uniquely determined by the dimension vector \underline{n}.

Proof. The isomorphisms (2.2.3) follow readily from Theorem 2.2.3, and the second assertion is a consequence of the lemma below. For the uniqueness assertion, just recall that any two nonempty open subsets of $\operatorname{Rep}(Q, \underline{n})$ meet, whereas any two distinct orbits are disjoint.

Lemma 2.2.6. Let X be a variety, and Y a non-singular locally closed subvariety. Then Y is open in X if and only if $N_{x}(Y / X)=0$ for some $x \in Y$.

Proof. Note that $\operatorname{dim} T_{x}(Y)=\operatorname{dim}(Y)$ for all $x \in Y$, whereas $\operatorname{dim} T_{x}(X) \geq \operatorname{dim}(X)$. Thus, if $N_{x}(Y / X)=0$, then $\operatorname{dim}(X)=\operatorname{dim}(Y)$ and hence Y is open in X. The converse is obvious.

2.3 Orbit closures

The points in the closure of an orbit \mathcal{O}_{M} may be viewed as geometric degenerations of the representation M. The following fundamental result constructs some of these degenerations in algebraic terms.

Theorem 2.3.1. Let

$$
\begin{equation*}
0 \longrightarrow M^{\prime} \longrightarrow M \longrightarrow M^{\prime \prime} \longrightarrow 0 \tag{2.3.1}
\end{equation*}
$$

be an exact sequence of finite-dimensional representations of Q. Then the closure of \mathcal{O}_{M} contains $\mathcal{O}_{M^{\prime} \oplus M^{\prime \prime}}$. Moreover, the exact sequence (2.3.1) splits if and only if $\mathcal{O}_{M}=$ $\mathcal{O}_{M^{\prime} \oplus M^{\prime \prime}}$.

Proof. Let the representation M be given by the spaces V_{i} and the maps f_{α}; then the subrepresentation M^{\prime} yields subspaces $V_{i}^{\prime} \subset V_{i}, i \in Q_{0}$, such that $f_{\alpha}\left(V_{i}^{\prime}\right) \subset V_{j}^{\prime}$ for all $\alpha: i \rightarrow j$. Choosing bases for the V_{i}^{\prime} and completing them to bases of the V_{i}, we obtain a
point $x=\left(x_{\alpha}\right) \in \operatorname{Rep}(Q, \underline{n})$ such that $M_{x} \simeq M$ and $x_{\alpha}\left(k^{n_{i}^{\prime}}\right) \subset k^{n_{j}^{\prime}}$ for all $\alpha: i \rightarrow j$. Here $\underline{n}^{\prime}=\left(n_{i}^{\prime}\right)_{i \in Q_{0}}$ denotes the dimension vector of M^{\prime}, and

$$
\begin{equation*}
k^{n_{i}}=k^{n_{i}^{\prime}} \oplus k^{n_{i}^{\prime \prime}} \tag{2.3.2}
\end{equation*}
$$

is the obvious decomposition (of vector spaces), so that $\underline{n}^{\prime \prime}=\left(n_{i}^{\prime \prime}\right)_{i \in Q_{0}}$ is the dimension vector of $M^{\prime \prime}$. Then the family of restrictions $x^{\prime}:=\left(x_{\alpha}^{\prime}: k^{n_{i}^{\prime}} \rightarrow k^{n_{j}^{\prime}}\right)$ satisfies $M_{x^{\prime}} \simeq M^{\prime}$. Moreover, the family of quotient maps $x^{\prime \prime}:=\left(x_{\alpha}^{\prime \prime}: k^{n_{i}^{\prime}} \rightarrow k^{n_{j}^{\prime}}\right)$ satisfies $M_{x^{\prime \prime}} \simeq M^{\prime \prime}$.

Define a homomorphism of algebraic groups

$$
\lambda: \mathbb{G}_{m} \longrightarrow \mathrm{GL}(\underline{n}), \quad t \longmapsto\left(\lambda_{i}(t)\right)_{i \in Q_{0}},
$$

where

$$
\lambda_{i}(t):=\left(\begin{array}{cc}
t \mathrm{id}_{n_{i}^{\prime}} & 0 \\
0 & \mathrm{id}_{n_{i}^{\prime \prime}}
\end{array}\right)
$$

in the decomposition (2.3.2). We have

$$
x_{\alpha}=\left(\begin{array}{cc}
x_{\alpha}^{\prime} & y_{\alpha} \\
0 & x_{\alpha}^{\prime \prime}
\end{array}\right)
$$

for some y_{α}, so that

$$
\lambda_{j}(t) x_{\alpha} \lambda_{i}(t)^{-1}=\left(\begin{array}{cc}
x_{\alpha}^{\prime} & t y_{\alpha} \\
0 & x_{\alpha}^{\prime \prime}
\end{array}\right)
$$

As a consequence, the morphism

$$
\lambda_{x}: \mathbb{G}_{m} \longrightarrow \mathrm{GL}(\underline{n}) \cdot x, \quad t \longmapsto \lambda(t) \cdot x
$$

extends to a morphism

$$
\bar{\lambda}_{x}: \mathbb{A}^{1} \longrightarrow \overline{\mathrm{GL}(\underline{n}) \cdot x}, \quad 0 \longmapsto\left(\begin{array}{cc}
x_{\alpha}^{\prime} & 0 \\
0 & x_{\alpha}^{\prime \prime}
\end{array}\right)
$$

It follows that $\overline{\mathcal{O}_{M}}$ contains $M^{\prime} \oplus M^{\prime \prime}$.
To complete the proof, it suffices to show that the exact sequence (2.3.1) splits if $M \simeq M^{\prime} \oplus M^{\prime \prime}$ as representations of Q. For this, consider the left exact sequence

$$
\begin{equation*}
0 \longrightarrow \operatorname{Hom}_{Q}\left(M^{\prime \prime}, M^{\prime}\right) \longrightarrow \operatorname{Hom}_{Q}\left(M^{\prime \prime}, M\right) \longrightarrow \operatorname{Hom}_{Q}\left(M^{\prime \prime}, M^{\prime \prime}\right) \longrightarrow 0 \tag{2.3.3}
\end{equation*}
$$

induced by (2.3.1). Since $M \simeq M^{\prime} \oplus M^{\prime \prime}$, we have

$$
\operatorname{dim} \operatorname{Hom}_{Q}\left(M^{\prime \prime}, M\right)=\operatorname{dim} \operatorname{Hom}_{Q}\left(M^{\prime \prime}, M^{\prime}\right)+\operatorname{dim} \operatorname{Hom}_{Q}\left(M^{\prime \prime}, M^{\prime \prime}\right)
$$

It follows that the sequence (2.3.3) is also right exact. Thus, the identity of $M^{\prime \prime}$ extends to a morphism of representations $M^{\prime \prime} \rightarrow M$, which provides a splitting of (2.3.1).

An iterated application of Theorem 2.3.1 yields:
Corollary 2.3.2. Let M be a finite-dimensional representation of Q equipped with a filtration

$$
0=F_{0} M \subset F_{1} M \subset \cdots \subset F_{r} M=M
$$

by subrepresentations. Then the closure of \mathcal{O}_{M} contains $\mathcal{O}_{\operatorname{gr} M}$, where

$$
\operatorname{gr} M:=\bigoplus_{i=1}^{r} F_{i} M / F_{i-1} M
$$

denotes the associated graded representation.
Next, consider a composition series

$$
0=F_{0} M \subset F_{1} M \subset \cdots \subset F_{r} M=M
$$

that is, a filtration such that all subquotients $F_{i} M / F_{i-1} M$ are simple representations. Then, by the Jordan-Hölder theorem (see [3, Thm. 1.1.4]), these subquotients are independent of the series, up to reordering; in other words, the semi-simple representation gr M depends only on M. We put

$$
M^{\mathrm{ss}}:=\operatorname{gr} M
$$

Then $\overline{\mathcal{O}_{M}}$ contains $\mathcal{O}_{M^{\text {ss }}}$ by Corollary 2.3.2.
We shall show that $\mathcal{O}_{M^{\text {ss }}}$ is the unique closed orbit in $\overline{\mathcal{O}_{M}}$; this will yield another proof of the uniqueness of M^{ss}. For this, we need the following auxiliary result.

Lemma 2.3.3. Let N, N^{\prime} be finite-dimensional semi-simple representations of Q. Then $N \simeq N^{\prime}$ (as representations) if and only if $\operatorname{det}\left(a_{N}\right)=\operatorname{det}\left(a_{N^{\prime}}\right)$ for all $a \in k Q$, where a_{N} denotes the map $N \rightarrow N, x \mapsto a x$.

Proof. The implication (\Rightarrow) is clear. For the converse, denote by A the image of $k Q$ in $\operatorname{End}\left(N \oplus N^{\prime}\right)$. Then A is a finite-dimensional semi-simple algebra, since $N \oplus N^{\prime}$ is a finite-dimensional semi-simple A-module. Hence there exist positive integers m_{1}, \ldots, m_{r} such that

$$
A \simeq \prod_{i=1}^{r} \operatorname{Mat}_{m_{i} \times m_{i}}(k)
$$

Moreover, $N \simeq \bigoplus_{i=1}^{r} n_{i} k^{m_{i}}$ and $N^{\prime} \simeq \bigoplus_{i=1}^{r} n_{i}^{\prime} k^{m_{i}}$ where the multiplicities $\left(n_{1}, \ldots, n_{r}\right)$ and $\left(n_{1}^{\prime}, \ldots, n_{r}^{\prime}\right)$ are uniquely determined. By our assumption,

$$
\prod_{i=1}^{r} \operatorname{det}\left(x_{i}\right)^{n_{i}}=\prod_{i=1}^{r} \operatorname{det}\left(x_{i}\right)^{n_{i}^{\prime}}
$$

for all $x_{i} \in \operatorname{Mat}_{m_{i} \times m_{i}}(k)$. Taking $x_{i}=\lambda_{i} \operatorname{id}_{m_{i}}$ where $\lambda_{1}, \ldots, \lambda_{r}$ are arbitrary scalars, it follows that $n_{i}=n_{i}^{\prime}$ for all i. Equivalently, $N \simeq N^{\prime}$.

Theorem 2.3.4. Let M be a finite-dimensional representation of Q. Then $\mathcal{O}_{M^{s s}}$ is the unique closed orbit in the closure of \mathcal{O}_{M}.

Proof. For any representation N such that $\mathcal{O}_{N} \subset \overline{\mathcal{O}_{M}}$, we have

$$
\mathcal{O}_{N^{\text {ss }}} \subset \overline{\mathcal{O}_{N}} \subset \overline{\mathcal{O}_{M}}
$$

Thus, it suffices to show that $N^{\text {ss }}=M^{\text {ss }}$. By Lemma 2.3.3, this is equivalent to checking the equalities

$$
\begin{equation*}
\operatorname{det}\left(a_{N^{\mathrm{ss}}}\right)=\operatorname{det}\left(a_{M^{\mathrm{ss}}}\right) \text { for all } a \in k Q . \tag{2.3.4}
\end{equation*}
$$

Let $x, y \in \operatorname{Rep}(Q, \underline{n})$ such that $M \simeq M_{x}$ and $N \simeq M_{y}$. Then $y \in \overline{\operatorname{GL}(\underline{n}) \cdot x}$. On the other hand, any $a \in k Q$ defines a map

$$
a_{z}:=a_{M_{z}} \in \operatorname{End}\left(M_{z}\right)
$$

for any $z \in \operatorname{Rep}(Q, \underline{n})$; the matrix coefficients of a_{z} depend polynomially on z. Moreover, we have $a_{g \cdot z}=g a_{z} g^{-1}$ for all $g \in \operatorname{GL}(\underline{n})$ and $z \in \operatorname{Rep}(Q, \underline{n})$. Thus, the map

$$
f_{a}: \operatorname{Rep}(Q, \underline{n}) \longrightarrow k, \quad z \longmapsto \operatorname{det}\left(a_{z}\right)
$$

is polynomial and invariant under $\operatorname{GL}(\underline{n})$; hence f_{a} is constant on orbit closures. It follows that $f_{a}(x)=f_{a}(y)$, that is, (2.3.4) holds with $M^{\mathrm{ss}}, N^{\mathrm{ss}}$ being replaced with M, N. Applying this to $\mathcal{O}_{M^{\text {ss }}} \subset \overline{\mathcal{O}_{M}}$ and, likewise, for N completes the proof of (2.3.4).

Corollary 2.3.5. The orbit \mathcal{O}_{M} is closed if and only if the representation M is semi-simple.

Remark 2.3.6. If Q has no oriented cycle, then any semi-simple representation with dimension vector \underline{n} is isomorphic to $\bigoplus_{i \in Q_{0}} n_{i} S(i)$ by Proposition 1.3.1. Therefore, 0 is the unique point $x \in \operatorname{Rep}(Q, \underline{n})$ such that M_{x} is semi-simple, and hence every orbit closure contains the origin. This can be seen directly, as follows. We may choose a function $h: Q_{0} \rightarrow \mathbb{N}$ such that $h(i)<h(j)$ whenever there exists an arrow $\alpha: i \rightarrow j$. Now consider the homomorphism

$$
\lambda: \mathbb{G}_{m} \longrightarrow \mathrm{GL}(\underline{n}), \quad t \longmapsto\left(t^{h(i)} \mathrm{id}_{n_{i}}\right)_{i \in Q_{0}}
$$

Then λ acts on $\operatorname{Rep}(Q, \underline{n})$ via

$$
\lambda(t) \cdot x_{\alpha}:=t^{h(j)-h(i)} x_{\alpha}
$$

for any $\alpha: i \rightarrow j$. Thus, for any $x=\left(x_{\alpha}\right)_{\alpha: i \rightarrow j} \in \operatorname{Rep}(Q, \underline{n})$, the morphism

$$
\lambda_{x}: \mathbb{G}_{m} \longrightarrow \mathrm{GL}(\underline{n}) \cdot x, \quad t \longmapsto \lambda(t) \cdot x
$$

extends to a morphism

$$
\bar{\lambda}_{x}: \mathbb{A}^{1} \longrightarrow \operatorname{Rep}(Q, \underline{n}), \quad 0 \longmapsto 0 .
$$

So the closure of GL $(\underline{n}) \cdot x$ contains 0 .
Examples 2.3.7. 1) Applying Theorem 2.3.4 to the loop, we see that the closure of the conjugacy class of an $n \times n$ matrix with eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ contains a unique closed conjugacy class, that of $\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$. In particular, the closed conjugacy classes are exactly those of diagonalizable matrices.

More generally, the simultaneous conjugacy class of an r-tuple of $n \times n$ matrices $\left(x_{1}, \ldots, x_{r}\right)$ is closed if and only if the $k\left\langle X_{1}, \ldots, X_{r}\right\rangle$-module k^{n} is semi-simple, where each X_{i} acts on k^{n} via x_{i}.
2) Consider the quiver H_{r} and the dimension vector $\underline{n}=(1, n)$ as in Example 2.1.3. Then the closure of the orbit of a tuple $\left(v, x_{1}, \ldots, x_{r}\right)$ contains ($0, x_{1}, \ldots, x_{r}$). Thus, the closed orbits are exactly those of the tuples $\left(0, x_{1}, \ldots, x_{r}\right)$ such that the $k\left\langle X_{1}, \ldots, X_{r}\right\rangle$-module k^{n} is semi-simple.

On the other hand, one may show that the subset $\operatorname{Rep}^{\text {cyc }}\left(H_{r}, \underline{n}\right)$ of cyclic tuples is open in $\operatorname{Rep}\left(H_{r}, \underline{n}\right)$; clearly, each GL (n)-orbit in that subset is closed there. Moreover, the quotient

$$
\operatorname{Rep}^{\operatorname{cyc}}\left(H_{r}, \underline{n}\right) \longrightarrow \operatorname{Rep}^{\mathrm{cyc}}\left(H_{r}, \underline{n}\right) / \operatorname{GL}(n)
$$

is a principal $\mathrm{GL}(n)$-bundle, and $\operatorname{Rep}^{\mathrm{cyc}}\left(H_{r}, \underline{n}\right) / \mathrm{GL}(n)$ is a non-singular quasi-projective variety of dimension $(r-1) n^{2}+n$. By Example 2.1.3, this variety parametrizes the (left) ideals of codimension n in the free algebra $k\left\langle X_{1}, \ldots, X_{r}\right\rangle$; it is the non-commutative Hilbert scheme introduced in [15] and studied further in [16].

2.4 Schur representations and Gabriel's theorem

Definition 2.4.1. A representation M of the quiver Q is called a Schur representation (also known as a brick), if $\operatorname{End}_{Q}(M)=k \operatorname{id}_{M}$.

Clearly, any Schur representation is indecomposable. The converse does not hold for an arbitrary quiver Q, e.g., for the loop, in view of (1.3.9). However, the converse does hold if the Tits form of Q is positive definite. This is in fact the main step for proving the "if" part of Gabriel's theorem, and is a direct consequence of the following result of Ringel (see [18, pp. 148-149]):

Lemma 2.4.2. Let M be an indecomposable representation of Q. If M is not Schur, then it has a Schur subrepresentation N such that $\operatorname{Ext}_{Q}^{1}(N, N) \neq 0$.

Proof. We begin with a construction of non-trivial extensions between quotients and submodules of M. Consider an exact sequence of representations

$$
0 \longrightarrow M^{\prime} \longrightarrow M \longrightarrow M^{\prime \prime} \longrightarrow 0
$$

and write $M^{\prime}=\bigoplus_{i=1}^{r} M_{i}^{\prime}$, where $M_{1}^{\prime}, \ldots, M_{r}^{\prime}$ are indecomposable. Then we claim that

$$
\operatorname{Ext}_{Q}^{1}\left(M^{\prime \prime}, M_{i}^{\prime}\right) \neq 0 \quad(i=1, \ldots, r)
$$

Indeed, we have an exact sequence

$$
0 \longrightarrow M_{i}^{\prime} \longrightarrow M / \bigoplus_{j \neq i} M_{j}^{\prime} \longrightarrow M^{\prime \prime} \longrightarrow 0
$$

which splits if $\operatorname{Ext}_{Q}^{1}\left(M^{\prime \prime}, M_{i}^{\prime}\right)=0$. This yields a complement to M_{i}^{\prime} in $M / \bigoplus_{j \neq i} M_{j}^{\prime}$, and hence a complement to M_{i}^{\prime} in M, contradicting the indecomposability of M.

Next, we construct an indecomposable submodule N of M having non-zero selfextensions. Let $f \in \operatorname{End}_{Q}(M)$ and consider the associated exact sequence

$$
0 \longrightarrow \operatorname{Ker}(f) \longrightarrow M \xrightarrow{f} \operatorname{Im}(f) \longrightarrow 0 .
$$

By our assumption and Lemma 1.3.3, we may choose f to be nilpotent and non-zero; we may further assume that $\operatorname{Im}(f)$ has minimal dimension among all such f. Then $f^{2}=0$, i.e., $\operatorname{Im}(f) \subset \operatorname{Ker}(f)$. Thus, we may choose an indecomposable summand N of $\operatorname{Ker}(f)$ such that the projection

$$
p: \operatorname{Im}(f) \longrightarrow N
$$

is non-zero. Then p is in fact injective, since the composition

$$
M \xrightarrow{f} \operatorname{Im}(f) \xrightarrow{p} N \hookrightarrow M
$$

is a non-zero endomorphism with image $\operatorname{Im}(p)$ of dimension $\leq \operatorname{dim} \operatorname{Im}(f)$. Moreover,

$$
\operatorname{Ext}_{Q}^{1}(\operatorname{Im}(f), N) \neq 0
$$

by the first step of the proof. Next, consider the exact sequence

$$
0 \longrightarrow \operatorname{Im}(f) \xrightarrow{p} N \longrightarrow C:=\operatorname{Coker}(p) \longrightarrow 0 .
$$

By [3, Prop. 2.5.2], it yields a long exact sequence of Ext groups

$$
\cdots \longrightarrow \operatorname{Ext}_{Q}^{1}(N, N) \longrightarrow \operatorname{Ext}_{Q}^{1}(\operatorname{Im}(f), N) \longrightarrow \operatorname{Ext}_{Q}^{2}(C, N) \longrightarrow \cdots
$$

Since $\operatorname{Ext}_{Q}^{2}(C, N)=0$ by Corollary 1.4.2, we see that $\operatorname{Ext}_{Q}^{1}(N, N) \neq 0$.
If N is Schur, then the proof is complete; otherwise, we replace M with N and conclude by induction.

We may now complete the proof of Gabriel's theorem, in a more precise form:
Theorem 2.4.3. Assume that the Tits form q_{Q} is positive definite. Then:
(i) Every indecomposable representation is Schur and has no non-zero self-extensions.
(ii) The dimension vectors of the indecomposable representations are exactly those $\underline{n} \in \mathbb{N}^{Q_{0}}$ such that $q_{Q}(\underline{n})=1$.
(iii) Every indecomposable representation is uniquely determined by its dimension vector, up to isomorphism.
(iv) There are only finitely many isomorphism classes of indecomposable representations of Q. In other words, Q is of finite representation type.

Proof. Consider an indecomposable representation M. If M is not Schur, let N be a subrepresentation satisfying the assertions of Lemma 2.4.2. Then we have by (1.4.7):

$$
q_{Q}(\underline{\operatorname{dim}} N)=1-\operatorname{dim} \operatorname{Ext}_{Q}^{1}(N, N) \leq 0
$$

which contradicts our assumption on q_{Q}. Thus, M is a Schur representation; moreover, $\operatorname{Ext}_{Q}^{1}(M, M)=0$, so that $q_{Q}(\underline{\operatorname{dim}} M)=1$. This proves (i) and one half of (ii).

For the other half, consider $\underline{n} \in \mathbb{N}^{Q_{0}}$ such that $q_{Q}(\underline{n})=1$, and a representation M such that $\underline{\operatorname{dim}}(M)=\underline{n}$ and the orbit \mathcal{O}_{M} has maximal dimension; in particular, \mathcal{O}_{M} is not contained in the closure of another orbit. If $M \simeq M^{\prime} \oplus M^{\prime \prime}$ is a non-trivial decomposition of representations, then every extension of $M^{\prime \prime}$ by M^{\prime} splits by Proposition 2.1.7 and Theorem 2.3.1. Thus, $\operatorname{Ext}_{Q}^{1}\left(M^{\prime \prime}, M^{\prime}\right)=0$ and likewise, $\operatorname{Ext}_{Q}^{1}\left(M^{\prime}, M^{\prime \prime}\right)=0$. Hence, setting $\underline{n}^{\prime}:=\operatorname{dim} M^{\prime}$ and $\underline{n}^{\prime \prime}:=\operatorname{dim} M^{\prime \prime}$, we obtain

$$
q_{Q}(\underline{n})=q_{Q}\left(\underline{n}^{\prime}+\underline{n}^{\prime \prime}\right)=q_{Q}\left(\underline{n}^{\prime}\right)+\left\langle\underline{n}^{\prime}, \underline{n}^{\prime \prime}\right\rangle_{Q}+\left\langle\underline{n}^{\prime \prime}, \underline{n}^{\prime}\right\rangle_{Q}+q_{Q}\left(\underline{n}^{\prime \prime}\right)
$$

where $q_{Q}\left(\underline{n}^{\prime}\right) \geq 1, q_{Q}\left(\underline{n}^{\prime \prime}\right) \geq 1,\left\langle\underline{n}^{\prime}, \underline{n}^{\prime \prime}\right\rangle_{Q}=\operatorname{dim} \operatorname{Hom}_{Q}\left(M^{\prime}, M^{\prime \prime}\right) \geq 0$ and likewise, $\left\langle\underline{n}^{\prime \prime}, \underline{n}^{\prime}\right\rangle_{Q} \geq 0$. So $q_{Q}(\underline{n}) \geq 2$, a contradiction.
(iii) follows from (i) combined with Corollary 2.2.5.

Finally, (iv) is a consequence of (iii) together with the assumption that q_{Q} is positive definite, which implies that there are only finitely many $\underline{n} \in \mathbb{N}^{Q_{0}}$ such that $q_{Q}(\underline{n})=1$.

The tuples $\underline{n} \in \mathbb{N}^{Q_{0}}$ such that $q_{Q}(\underline{n})=1$ are called the positive roots of Q. Thus, Theorem 2.4.3 sets up a bijection between the isomorphism classes of indecomposable representations and the positive roots.

Note that the set of positive roots only depends on the underlying undirected graph of Q. For example, if Q is of type A_{r}, then the positive roots are exactly the partial sums $\sum_{\ell=i}^{j} \varepsilon_{\ell}$, where $1 \leq i \leq j \leq r$. When $r=2$, this gives back the classification of indecomposable representations of S_{2} presented in Example 1.3.8.3.

3 Representations of finitely generated algebras

In this section, we generalize some of the results of Section 2 to the setting of representations of finitely generated algebras. The latter include of course quiver algebras and finite-dimensional algebras, but also group algebras $k[G]$, where G is any finitely generated group.

In this setting, it is natural to consider a more advanced object than the representation space of quiver theory; namely, the representation scheme $\mathcal{R} \operatorname{ep}(A, n)$ parametrizing the homomorphisms from a finitely generated algebra A to the algebra of $n \times n$ matrices. This is an affine scheme of finite type, that we discuss in Subsection 3.1.

The natural action of the general linear group on the representation scheme is considered in Subsection 3.2. In particular, the normal space to the orbit of a representation is again identified with the space of self-extensions.

Subsection 3.3 is devoted to a variant of the representation scheme, in the setting of algebras equipped with orthogonal idempotents. As an application, we describe the representation scheme of any quiver algebra, in terms of the representation spaces of the quiver for fixed dimension vectors. Additional details, and further results concerning finite-dimensional algebras, may be found in Bongartz's article [4] and its references.

As prerequisites, we shall assume some familiarity with affine schemes, refering to the book [9] for an introduction to that topic.

3.1 Representation schemes

Let A be a finitely generated algebra. Choose a presentation

$$
\begin{equation*}
A=k\left\langle X_{1}, \ldots, X_{r}\right\rangle / I \tag{3.1.1}
\end{equation*}
$$

where $k\left\langle X_{1}, \ldots, X_{r}\right\rangle$ denotes the free algebra on X_{1}, \ldots, X_{r}, and I is a two-sided ideal. We denote by a_{1}, \ldots, a_{r} the images of X_{1}, \ldots, X_{r} in A.

Definition 3.1.1. For any positive integer n, let $\operatorname{Rep}(A, n)$ be the set of all representations of A on the vector space k^{n}.

In other words, $\operatorname{Rep}(A, n)$ is the set of all algebra homomorphisms

$$
\varphi: A \longrightarrow \operatorname{Mat}_{n \times n}(k) .
$$

Such a homomorphism is given by the images

$$
x_{i}:=\varphi\left(a_{i}\right) \in \operatorname{Mat}_{n \times n}(k) \quad(i=1, \ldots, r),
$$

satisfying the relations

$$
\begin{equation*}
P\left(x_{1}, \ldots, x_{r}\right)=0 \quad \text { for all } P \in I \tag{3.1.2}
\end{equation*}
$$

Thus, $\operatorname{Rep}(A, n)$ is the closed algebraic subset of $\operatorname{Mat}_{n \times n}(k)^{r}$ (the space of r-tuples of matrices of size $n \times n$, an affine space of dimension $r n^{2}$) defined by the polynomial equations (3.1.2). We denote by $R(A, n)$ the algebra of regular functions on $\operatorname{Rep}(A, n)$, that is, the quotient of the polynomial ring in the coefficients of r matrices of size $n \times n$, by the ideal of polynomials vanishing at all points of $\operatorname{Rep}(A, n)$. For any $x \in \operatorname{Rep}(A, n)$, we denote by M_{x} the corresponding A-module.

Next, we introduce a schematic version of $\operatorname{Rep}(A, n)$. Let R be any commutative algebra. Consider the set of representations of A on the vector space R^{n} which are compatible with the R-module structure, i.e., the set of algebra homomorphisms

$$
\varphi: A \longrightarrow \operatorname{Mat}_{n \times n}(R) .
$$

Such a homomorphism is still given by the images $x_{i}:=\varphi\left(a_{i}\right)(1 \leq i \leq r)$ satisfying the relations (3.1.2). In other words, we have an isomorphism

$$
\begin{equation*}
\operatorname{Hom}\left(A, \operatorname{Mat}_{n \times n}(R)\right) \simeq \operatorname{Hom}(\mathcal{R}(A, n), R), \tag{3.1.3}
\end{equation*}
$$

where $\mathcal{R}(A, n)$ denotes the quotient of the polynomial algebra in the coefficients of r matrices x_{1}, \ldots, x_{r} of size $n \times n$, by the two-sided ideal generated by the coefficients of the matrices $P\left(x_{1}, \ldots, x_{r}\right)$ with $P \in I$. (The algebra $\mathcal{R}(A, n)$ may contain non-zero nilpotent elements, see Example 3.1.3.2 below.)

Definition 3.1.2. The affine scheme

$$
\mathcal{R} e p(A, n):=\operatorname{Spec} \mathcal{R}(A, n)
$$

is the scheme of representations of A on k^{n}.
The set of R-valued points of the scheme $\mathcal{R e p}(A, n)$ is $\operatorname{Hom}(\mathcal{R}(A, n), R)$ (see [9, Thm. I-40]). Together with (3.1.3), it follows that $\mathcal{R} e p(A, n)$ represents the covariant functor $R \rightarrow \operatorname{Hom}\left(A, \operatorname{Mat}_{n \times n}(R)\right)$ from commutative algebras to sets. Thus, $\mathcal{R e p}(A, n)$ is independent of the presentation (3.1.1) of the algebra A.

In particular, the set of k-valued points of $\mathcal{R} e p(A, n)$ is

$$
\mathcal{R e p}(A, n)(k)=\operatorname{Hom}\left(A, \operatorname{Mat}_{n \times n}(k)\right)=\operatorname{Rep}(A, n) .
$$

In other words, $\operatorname{Rep}(A, n)$ is the reduced scheme $\mathcal{R e p}(A, n)_{\text {red }}$ (as defined in [9, p. 25]). Equivalently, $R(A, n)$ is the quotient of $\mathcal{R}(A, n)$ by its ideal consisting of all nilpotent elements. As a consequence, $\operatorname{Rep}(A, n)$ is also independent of the presentation of A; of course, this may be seen directly.

Examples 3.1.3. 1) Let A be the free algebra on r generators X_{1}, \ldots, X_{r}. Then $\mathcal{R} \operatorname{ep}(A, n)$ is the affine space Mat ${ }_{n \times n}^{r}$ of dimension $r n^{2}$, and hence $\mathcal{R e p}(A, n)=\operatorname{Rep}(A, n)$. 2) Let $A=k[X] / X^{m} k[X]$, where $m \geq n \geq 2$. Then $\operatorname{Rep}(A, n)$ consists of $n \times n$ matrices x such that $x^{m}=0$, i.e., of all nilpotent matrices since $m \geq n$. As a consequence, the trace map $\operatorname{Mat}_{n \times n}(k) \rightarrow k, x \mapsto \operatorname{Tr}(x)$ vanishes identically on $\operatorname{Rep}(A, n)$. (In fact, the ideal of $\operatorname{Rep}(A, n)$ is generated by the coefficients of the characteristic polynomial of x.)

On the other hand, the algebra $\mathcal{R}(A, n)$ is the quotient of the polynomial algebra in the coefficients of the $n \times n$ matrix x, by the ideal generated by the coefficients of the matrix x^{m}. Since the latter coefficients are homogeneous polynomials of degree $m \geq 2$, the image of the trace map in $\mathcal{R}(A, n)$ is a non-zero element t. Moreover, since the algebra $R(A, n)$ is the quotient of $\mathcal{R}(A, n)$ by its ideal of nilpotents, we see that t is nilpotent. Thus, the scheme $\mathcal{R} \operatorname{ep}(A, n)$ is not reduced.

3.2 The action of the general linear group

The group $\operatorname{GL}(n)$ acts on $\operatorname{Rep}(A, n)$ by conjugation:

$$
(g \cdot \varphi)(a)=\left(g \varphi g^{-1}\right)(a)
$$

for all $g \in \operatorname{GL}(n), \varphi \in \operatorname{Hom}\left(A\right.$, $\left.\operatorname{Mat}_{n \times n}(k)\right)$, and $a \in A$. Viewing $\operatorname{Rep}(A, n)$ as a closed subset of $\operatorname{Mat}_{n \times n}(k)^{r}$, this action is the restriction of the action by simultaneous conjugation. In particular, $\operatorname{GL}(n)$ acts algebraically via its quotient $\operatorname{PGL}(n)$. The orbits are the isomorphism classes of n-dimensional A-modules; for such a module M, we denote the corresponding orbit by \mathcal{O}_{M}. The description of the isotropy groups (Proposition 2.2.1) extends without change to this setting, as well as all the results of Subsection 2.3.

Likewise, $\mathcal{R e p}(A, n)$ is a closed subscheme of the affine space Mat ${ }_{n \times n}^{r}$, stable under the action of GL (n) by simultaneous conjugation; the induced action of GL (n) on $\mathcal{R} e p(A, n)$ is compatible with that on the reduced subscheme $\operatorname{Rep}(A, n)$.

We now describe the tangent spaces to $\mathcal{R} \operatorname{ep}(A, n)$ and to its orbits in terms of derivations.

Given an A-module M, we say that a map $D: A \rightarrow \operatorname{End}(M)$ is a k-derivation, if D is k-linear and satisfies the Leibnitz rule

$$
D(a b)=D(a) b_{M}+a_{M} D(b)
$$

for all $a, b \in A$, where a_{M} denotes the multiplication by a in M. The set of derivations is a subspace of $\operatorname{Hom}(A, \operatorname{End}(M))$, denoted by $\operatorname{Der}(A, \operatorname{End}(M))$.

Any $f \in \operatorname{End}(M)$ defines a derivation

$$
\operatorname{ad} f: A \longrightarrow \operatorname{End}(M), \quad a \longmapsto f a_{M}-a_{M} f
$$

called an inner derivation. The image of the resulting map

$$
\text { ad }: \operatorname{End}(M) \longrightarrow \operatorname{Der}(A, \operatorname{End}(M))
$$

will be denoted by $\operatorname{Inn}(A, \operatorname{End}(M))$. Clearly, the kernel of ad is $\operatorname{End}_{A}(M)$; in other words, we have an exact sequence

$$
\begin{equation*}
0 \longrightarrow \operatorname{End}_{A}(M) \longrightarrow \operatorname{End}(M) \xrightarrow{\text { ad }} \operatorname{Inn}(A, \operatorname{End}(M)) \longrightarrow 0 \tag{3.2.1}
\end{equation*}
$$

Theorem 3.2.1. Let $x \in \operatorname{Rep}(A, n)$ with corresponding A-module $M=M_{x}$. Then there is a natural isomorphism

$$
T_{x}(\mathcal{R e p}(A, n)) \simeq \operatorname{Der}(A, \operatorname{End}(M))
$$

which restricts to an isomorphism

$$
\left.T_{x}(\mathrm{GL}(n) \cdot x) \simeq \operatorname{Inn}(A, \operatorname{End} M)\right)
$$

Proof. Denote by

$$
k[\varepsilon]=k[X] / X^{2} k[X]
$$

the algebra of dual numbers. Then $T_{x}(\mathcal{R} e p(A, n))$ is the set of those $k[\varepsilon]$-points of the scheme $\mathcal{R} \operatorname{ep}(A, n)$ that lift the k-point x, i.e., the set of those algebra homomorphisms

$$
\varphi: \mathcal{R}(A, n) \longrightarrow k[\varepsilon]
$$

that lift the homomorphism

$$
x: \mathcal{R}(A, n) \longrightarrow k=k[\varepsilon] / k \varepsilon
$$

(see [9, VI.1.3]). By (3.1.3), this identifies $T_{x}(\mathcal{R}(A, n))$ with the set of all linear maps $D: A \rightarrow \operatorname{Mat}_{n \times n}(k)$ such that $x+\varepsilon D: A \rightarrow \operatorname{Mat}_{n \times n}(k[\varepsilon])$ is an algebra homomorphism; equivalently, D is a k-derivation. This proves the first isomorphism; the second one follows from the fact that the differential at id_{n} of the orbit map $g \mapsto g \varphi g^{-1}$ is the map $f \mapsto f \varphi-\varphi f$.

Next, using these descriptions, we generalize Theorem 2.2.3 and Corollary 2.2.5 to the setting of representations of algebras.

Corollary 3.2.2. For any $x \in \operatorname{Rep}(A, n)$ with corresponding A-module $M=M_{x}$, we have an exact sequence

$$
0 \longrightarrow \operatorname{End}_{A}(M) \longrightarrow \operatorname{End}(M) \longrightarrow T_{x}(\mathcal{R} e p(A, n)) \longrightarrow \operatorname{Ext}_{A}^{1}(M, M) \longrightarrow 0
$$

Proof. In view of the exact sequence (3.2.1) and of Theorem 3.2.1, it suffices to show that the quotient $\operatorname{Der}(A, \operatorname{End}(M)) / \operatorname{Inn}(A, \operatorname{End}(M))$ is isomorphic to $\operatorname{Ext}_{A}^{1}(M, M)$.

For this, recall that $\operatorname{Ext}_{A}^{1}(M, M)$ parameterizes the self-extensions of the A-module M. Given $D \in \operatorname{Der}(A, \operatorname{End}(M))$, we let A act on the vector space $M \oplus M$ by setting

$$
\begin{equation*}
a \cdot\left(m_{1}, m_{2}\right):=\left(a m_{1}+D(a) m_{2}, a m_{2}\right) . \tag{3.2.2}
\end{equation*}
$$

For that action, $M \oplus M$ is an A-module that we denote E_{D}. Further, $M \oplus 0$ is a submodule, isomorphic to M, and the quotient module is also isomorphic to M. In other words, we obtain a self-extension

$$
0 \longrightarrow M \longrightarrow E_{D} \longrightarrow M \longrightarrow 0
$$

Conversely, any self-extension $0 \longrightarrow M \longrightarrow E \longrightarrow M \longrightarrow 0$ is isomorphic to some E_{D} : to see this, choose a splitting $E \simeq M \oplus M$ as vector spaces, and check that the resulting action of A on $M \oplus M$ satisfies (3.2.2) for a unique derivation D. One also checks that the induced map $\operatorname{Der}(A, \operatorname{End}(M)) \rightarrow \operatorname{Ext}_{A}^{1}(M, M)$ is linear with kernel $\operatorname{Inn}(A, \operatorname{End}(M))$.

Corollary 3.2.3. The normal space at x to the orbit $\operatorname{GL}(n) \cdot x$ in $\mathcal{R e p}(A, n)$ is isomorphic to $\operatorname{Ext}_{A}^{1}(M, M)$.

As a consequence, the orbit $\mathrm{GL}(n) \cdot x$ is open in $\mathcal{R} e p(A, n)$ if and only if $\operatorname{Ext}_{A}^{1}(M, M)=$ 0 . In that case, $\mathcal{R} \operatorname{ep}(A, n)$ is non-singular, and hence equal to $\operatorname{Rep}(A, n)$, in a neighborhood of that orbit.

As an application of these results, we describe the representation schemes of finitedimensional semi-simple algebras:

Proposition 3.2.4. Consider the algebra $A:=\prod_{i=1}^{r} \operatorname{Mat}_{m_{i} \times m_{i}}(k)$. Then each connected component of the scheme $\mathcal{R} \operatorname{ep}(A, n)$ is an orbit of $\mathrm{GL}(n)$; in particular, $\mathcal{R e p}(A, n)$ is non-singular. Its components are indexed by the tuples $\underline{n}=\left(n_{1}, \ldots, n_{r}\right) \in \mathbb{N}^{r}$ such that $m_{1} n_{1}+\cdots+m_{r} n_{r}=n$. The isotropy group of the orbit associated with \underline{n} is isomorphic to $\mathrm{GL}(\underline{n})=\prod_{i=1}^{r} \mathrm{GL}\left(n_{i}\right)$ embedded into $\mathrm{GL}(n)$ via its natural representation in

$$
\left(k^{m_{1}} \otimes k^{n_{1}}\right) \oplus \cdots \oplus\left(k^{m_{r}} \otimes k^{n_{r}}\right)=k^{n} .
$$

Proof. Since A is semi-simple and finite-dimensional, all A-modules are projective. Thus, $\operatorname{Ext}_{A}^{1}(M, M)=0$ for any A-module M. By Corollary 3.2.3, each orbit of $\mathrm{GL}(n)$ in $\mathcal{R} \operatorname{ep}(A, n)$ is open. Since the complement of an orbit is a union of orbits, it follows that each orbit is closed. And since orbits under GL(n) are connected (Proposition 2.1.7), they form the connected components of $\mathcal{R} e p(A, n)$. As a consequence, $\mathcal{R e p}(A, n)$ is nonsingular; in particular, it coincides with $\operatorname{Rep}(A, n)$.

Next, recall that every A-module of dimension n is isomorphic to a direct sum $n_{1} k^{m_{1}} \oplus$ $\cdots \oplus n_{r} k^{m_{r}}$, where n_{1}, \ldots, n_{r} are uniquely determined and satisfy $m_{1} n_{1}+\cdots+m_{r} n_{r}=n$. Moreover, we have an isomorphism of algebras

$$
\operatorname{End}_{A}\left(n_{1} k^{m_{1}} \oplus \cdots \oplus n_{r} k^{m_{r}}\right) \simeq \prod_{i=1}^{r} \operatorname{Mat}_{n_{i} \times n_{i}}(k)
$$

and hence an isomorphism of algebraic groups

$$
\operatorname{Aut}_{A}\left(n_{1} k^{m_{1}} \oplus \cdots \oplus n_{r} k^{m_{r}}\right) \simeq \prod_{i=1}^{r} \mathrm{GL}\left(n_{i}\right)
$$

embedded in $\operatorname{Mat}_{n \times n}(k)$ resp. $\mathrm{GL}(n)$ as claimed.

3.3 Representations with a prescribed dimension vector

Consider a finitely generated algebra A equipped with a sequence

$$
\underline{e}:=\left(e_{1}, \ldots, e_{r}\right)
$$

of orthogonal idempotents (i.e., $e_{i}^{2}=e_{i} \neq 0$, and $e_{i} e_{j}=0$ whenever $i \neq j$) such that $e_{1}+\cdots+e_{r}=1$. To any finite-dimensional A-module M, we associate its \underline{e}-dimension vector

$$
\underline{e}-\underline{\operatorname{dim}} M:=\left(\operatorname{dim} e_{i} M\right)_{i=1, \ldots, r}=\left(n_{1}, \ldots, n_{r}\right)=: \underline{n}
$$

and we set

$$
|\underline{n}|:=n_{1}+\cdots+n_{r}
$$

Note that $M \simeq \bigoplus_{i=1}^{r} e_{i} M$, so that $|\underline{n}|=\operatorname{dim} M$.
Given $\underline{n} \in \mathbb{N}^{r}$, we define the set $\operatorname{Rep}(A, \underline{e}, \underline{n})$ of those algebra homomorphisms $\varphi: A \rightarrow$ $\operatorname{Mat}_{n \times n}(k)$ such that $n=|\underline{n}|$ and each $\varphi\left(e_{i}\right)$ equals the projection $p_{i}: k^{n} \rightarrow k^{n_{i}}$ to the i th summand of the corresponding decomposition of vector spaces

$$
k^{n}=k^{n_{1}} \oplus \cdots \oplus k^{n_{r}} .
$$

Then $\operatorname{Rep}(A, \underline{e}, \underline{n})$ is the representation space of A for the \underline{e}-dimension vector \underline{n}; this is a closed subset of $\operatorname{Rep}(A, n)$, which depends on the choice of \underline{e}. (When A is finitedimensional, an intrinsic notion of representation space is defined in [4]).

Next, we introduce the representation scheme $\mathcal{R e p}(A, \underline{e}, \underline{n})$. Given a presentation (3.1.1) of A, choose also representatives $P_{i}\left(X_{1}, \ldots, X_{r}\right)$ of the e_{i} 's in $k\left\langle X_{1}, \ldots, X_{r}\right\rangle$. Let $\mathcal{R}(A, \underline{e}, \underline{n})$ be the quotient of the polynomial algebra in the coefficients of r matrices x_{1}, \ldots, x_{r} of size $n \times n$, by the ideal generated by the coefficients of the matrices $P\left(x_{1}, \ldots, x_{r}\right)$ for all $P \in I$, and by the images of the coefficients of the matrices $P_{i}\left(x_{1}, \ldots, x_{r}\right)-p_{i}$ for $i=1, \ldots, r$. Finally, put

$$
\mathcal{R e p}(A, \underline{e}, \underline{n}):=\operatorname{Spec} \mathcal{R}(A, \underline{e}, \underline{n})
$$

Then, like in Subsection 3.1, the affine scheme $\mathcal{R} e p(A, \underline{e}, \underline{n})$ represents the functor assigning to each commutative algebra R the set of those algebra homomorphisms

$$
\varphi: A \longrightarrow \operatorname{Mat}_{n \times n}(R)
$$

such that each $\varphi\left(e_{i}\right)$ is the matrix of the i th projection $R^{n} \rightarrow R^{n_{i}}$. Moreover, $\operatorname{Rep}(A, \underline{e}, \underline{n})$ may be identified to the reduced scheme $\mathcal{R} \operatorname{ep}(A, \underline{e}, \underline{n})_{\text {red }}$, equivariantly for the natural action of the closed subgroup $\mathrm{GL}(\underline{n}):=\prod_{i=1}^{r} \mathrm{GL}\left(n_{i}\right)$ of $\mathrm{GL}(n)$. (Again, $\mathcal{R} \operatorname{ep}(A, \underline{e}, \underline{n})$ depends on the choice of \underline{e}, and we refer to [4] for an intrinsic notion in the setting of finite-dimensional algebras).

We now show how to build the representation scheme $\mathcal{R} e p(A, n)$ from the schemes $\mathcal{R} e p(A, \underline{e}, \underline{n})$, where $\underline{n} \in \mathbb{N}^{r}$ satisfies $|\underline{n}|=n$. To formulate the result, we introduce the following:

Definition 3.3.1. The space of decompositions is the set $\operatorname{Dec}(n)$ of all vector space decompositions

$$
k^{n}=E_{1} \oplus \cdots \oplus E_{r} .
$$

The type of such a decomposition is the sequence

$$
\underline{n}=\left(\operatorname{dim} E_{1}, \ldots, \operatorname{dim} E_{r}\right) \in \mathbb{N}^{r} .
$$

A decomposition $E_{1} \oplus \cdots \oplus E_{r}=k^{n}$ is standard if each E_{i} is spanned by a subset of the standard basis vectors v_{1}, \ldots, v_{n} of k^{n}.

The group $\operatorname{GL}(n)$ acts on $\operatorname{Dec}(n)$ via its linear action on k^{n}. The orbits are the subsets $\operatorname{Dec}(\underline{n})$ of decompositions of a fixed type, with representatives being the standard decompositions; the isotropy group of such a decomposition $k^{n}=k^{n_{1}} \oplus \cdots \oplus k^{n_{r}}$ is GL (\underline{n}).

By Proposition 3.2.4 (and its proof), $\operatorname{Dec}(n)$ is the set of k-points of the representation scheme $\mathcal{R} e p\left(k^{r}, n\right)$, where k^{r} denotes the semi-simple algebra $\prod_{i=1}^{r} k$. Moreover, $\mathcal{R} e p\left(k^{r}, n\right)$ is non-singular, and its connected components are the orbits of $\mathrm{GL}(n)$.

The injective homomorphism of algebras

$$
k^{r} \longrightarrow A, \quad\left(t_{1}, \ldots, t_{r}\right) \longmapsto t_{1} e_{1}+\cdots+t_{r} e_{r}
$$

yields a $\mathrm{GL}(n)$-equivariant morphism $\Phi: \mathcal{R} e p(A, n) \rightarrow \mathcal{R} e p\left(k^{r}, n\right)$, by composition. Denoting (abusively) $\mathcal{R e p}\left(k^{r}, n\right)$ by $\operatorname{Dec}(n)$, we thus obtain:

Proposition 3.3.2. There is a natural GL(n)-equivariant morphism

$$
\Phi: \mathcal{R} e p(A, n) \longrightarrow \operatorname{Dec}(n) .
$$

The fiber of Φ at each standard decomposition is isomorphic to $\mathcal{R} e p(A, \underline{e}, \underline{n})$, equivariantly for the action of GL(\underline{n}).

Next, consider the case where $A=k Q$ for a quiver Q, and the idempotents e_{i} are those associated to the vertices. Then the representation scheme $\mathcal{R} \operatorname{ep}(k Q, \underline{e}, \underline{n})$ is easily seen to be the affine space $\operatorname{Rep}(Q, \underline{n})$. Since the action of $\operatorname{GL}(\underline{n})$ on this space is linear, the preimage in $\operatorname{Rep}(A, n)$ of the orbit $\operatorname{Dec}(\underline{n}) \simeq \operatorname{GL}(n) / \operatorname{GL}(\underline{n})$ has the structure of a homogeneous vector bundle over that orbit. This shows the following:

Corollary 3.3.3. For any quiver Q and for any positive integer n, the representation scheme $\mathcal{R} \operatorname{ep}(k Q, n)$ is non-singular. Its components are the homogeneous vector bundles over the homogeneous spaces $\operatorname{GL}(n) / \operatorname{GL}(\underline{n})$ associated with the representations $\operatorname{Rep}(Q, \underline{n})$ of $\mathrm{GL}(\underline{n})$, where $\underline{n} \in \mathbb{N}^{Q_{0}}$ and $|\underline{n}|=n$.

References

[1] I. Assem, A. Skowroński and D. Simson, Elements of the Representation Theory of Associative Algebras I: Techniques of Representation Theory, London Math. Soc. Student Texts 65, Cambridge University Press, 2006.
[2] M. Auslander, I. Reiten and S. O. Smalo, Representation Theory of Artin Algebras, Cambridge Studies in Advanced Math. 36, Cambridge University Press, 1995.
[3] D. J. Benson, Representations and cohomology I: Basic representation theory of finite groups and associative algebras, Cambridge Studies in Advanced Math. 30, Cambridge University Press, 1991.
[4] K. Bongartz, A geometric version of the Morita equivalence, J. Algebra 139, 159171.
[5] W. Crawley-Boevey, Lectures on Representations of Quivers, notes available at www.maths.leeds.ac.uk/~ $\mathrm{pmtwc} / q u i v l e c s . p d f$.
[6] H. Derksen and J. Weyman, Quiver representations, Notices Amer. Math. Soc. 52 (2005), 200-206.
[7] S. Donkin, Polynomial invariants of representations of quivers, Comment. Math. Helv. 69 (1994), 137-141.
[8] D. Eisenbud, Commutative Algebra with a View Towards Algebraic Geometry, Graduate Texts in Math. 150, Springer-Verlag, New York, 1995.
[9] D. Eisenbud, J. Harris, The Geometry of Schemes, Graduate Texts in Math. 197, Springer-Verlag, New York, 2000.
[10] A. King, Moduli of representations of finite-dimensional algebras, Quart. J. Math. Oxford Seri. (2) 45 (1994), 515-530.
[11] H. Kraft and C. Riedtmann, Geometry of representations of quivers, in: Representations of algebras (Durham, 1985), 109-145, London Math. Soc. Lecture Note Ser. 116, Cambridge Univ. Press, Cambridge, 1986.
[12] L. Le Bruyn and C. Procesi, Semisimple representations of quivers, Trans. Amer. Math. Soc. 317 (1990), no. 2, 585-598.
[13] S. Mukai, An Introduction to Invariants and Moduli, Cambridge Studies in Advanced Math. 81, Cambridge University Press, 2003.
[14] P. E. Newstead, Introduction to moduli problems and orbit spaces, TIFR Lectures on Mathematics and Physics 51, Narosa, New Delhi, 1978.
[15] M. V. Nori, Appendix to the paper by C. S. Seshadri: Desingularization of the moduli space of vector bundles over curves, in: Proceedings of the International Symposium on Algebraic Geometry, 155-184, Kinokuniya, Tokyo, 1978.
[16] M. Reineke, Cohomology of non-commutative Hilbert schemes, Algebr. Represent. Theory 8 (2005), 541-561.
[17] M. Reineke, Moduli of Representations of Quivers, in : Trends in Representation Theory of Algebras and Related Topics, 589-638, EMS Series of Congress Reports, Zürich, 2008.
[18] C. Ringel, Four papers on problems in linear algebra, in: Representation theory, 141156, London Math. Soc. Lecture Note Ser. 69, Cambridge Univ. Press, Cambridge, 1982.
[19] T. A. Springer, Linear Algebraic Groups, Second edition, Progress in Math. 9, Birkhäuser, Basel, 1998.
[20] G. Zwara, Degenerations of finite-dimensional modules are given by extensions, Compositio Math. 121 (2000), 205-218.

Institut Fourier, B.P. 74
F-38402 Saint-Martin d’Hères Cedex
E-mail address: Michel.Brion@ujf-grenoble.fr

[^0]: 2000 Mathematics Subject Classification. Primary 16G20; Secondary 14L30, 16G60.

