

Contrôle continu n°2

Durée: 2h

Tous moyens de communication sont interdits. Feuille A4 recto-verso manuscrite autorisée.

Exercice 1 : Des fermés de la topologie faible (5 points)

Soit X un espace de Banach sur \mathbb{R} . On rappelle que la topologie faible sur X est la topologie engendrée par les demi-espaces $\{x \in X, f(x) > \alpha\}$ où sont fixés $\alpha \in \mathbb{R}$ et $f \in X'$ une forme linéaire continue.

- 1) Soit $K \subset X$ un convexe fermé pour la topologie forte. Montrer que K est fermé pour la topologie faible.
- 2) Si K est fermé pour la topologie forte mais pas convexe, est-il fermé pour la topologie faible? Ou bien est-il forcément non-fermé?

Exercice 2 : Duaux de $\ell^1(\mathbb{N})$ et $\ell^{\infty}(\mathbb{N})$ (7 points)

On considère les espaces de Banach réels $\ell^1(\mathbb{N})$ et $\ell^{\infty}(\mathbb{N})$ munis de leur normes usuelles.

1) Soit $u = (u_n) \in \ell^{\infty}(\mathbb{N})$. Montrer que l'on peut associer à u une forme linéaire continue f sur $\ell^1(\mathbb{N})$ par

$$v = (v_n) \in \ell^1(\mathbb{N}) \longmapsto f(v) = \langle u|v\rangle_{\infty,1} = \sum_{n \in \mathbb{N}} u_n v_n$$
.

On assimilera f et u dans la suite.

- 2) Montrer que tout élément f du dual de $\ell^1(\mathbb{N})$ peut s'associer à un élément de $\ell^{\infty}(\mathbb{N})$ comme ci-dessus (on pourra raisonner par analyse-synthèse en testant f sur les suites $(0, \ldots, 0, 1, 0, \ldots)$).
- 3) Montrer qu'il existe une forme linéaire continue L sur $\ell^{\infty}(\mathbb{N})$ telle que $L(u) = \lim u_n$ pour toute suite $u = (u_n) \in \ell^{\infty}(\mathbb{N})$ convergente (on pourra utiliser le théorème de Hahn-Banach). Montrer que L ne peut s'écrire sous la forme $L(u) = \sum a_n u_n$ avec $(a_n) \in \ell^1(\mathbb{N})$ (on pourra penser à tester une telle écriture sur les vecteurs $(0, \ldots, 0, 1, 0, \ldots)$). Qu'en déduire concernant $\ell^1(\mathbb{N})$ et le dual de $\ell^{\infty}(\mathbb{N})$?
- 4) Pouvez-vous donner le dual de $\ell^1(\mathbb{N})$ et de quoi $\ell^1(\mathbb{N})$ est le dual ? (on ne demande ici aucune démonstration).

Exercice 3 : Continuité des opérateurs positifs (5 points)

Soit X un espace de Banach réel et X' son dual. On notera $\langle f, x \rangle_{X',X} = f(x)$ le crochet de dualité. On considère une application linéaire $T: X \longrightarrow X'$, pas forcément continue, telle que

$$\forall x \in X, \ , \ \langle Tx, x \rangle_{X',X} \ge 0 \ .$$

Notre but est de montrer que T est continue.

1) Soit $(x_n) \subset X$ une suite convergeant dans X vers un point x et telle que Tx_n converge vers une limite f dans X'. Montrer que, pour tout $y \in X$, on a

$$\langle f - Ty, x - y \rangle_{X', X} > 0$$
.

2) En appliquant cette inégalité à $y=x+\varepsilon h$ avec $h\in X$ et $\varepsilon>0$, montrer que l'on a

$$\forall h \in X , \ \langle f - Tx, h \rangle_{X',X} \ge 0 .$$

3) Appliquer le théorème du graphe fermé pour en déduire que T est bien continue.

Exercice 4 : Le spectre de la primitive (6 points)

On considère $X = \mathcal{C}^0([0,1],\mathbb{R})$ muni de la norme $||f|| = \sup_{x \in [0,1]} |f(x)|$. On considère l'application $T: X \longrightarrow X$ définie par

$$Tf: x \longmapsto \int_0^x f(y) \, \mathrm{d}y$$

c'est-à-dire que Tf est la primitive de f qui s'annule en 0. Cette dernière propriété pourra être utilisée sans justification durant tout l'exercice.

- 1) Montrer que T est bien définie de X dans X, linéaire et continue. Calculer la norme triple de T.
- 2) Montrer que pour tout $\lambda \in \mathbb{C} \setminus \{0\}$, l'opérateur $T \lambda id$ est inversible dans $\mathcal{L}(C)$.

Rappel : $si \ \mu \in \mathbb{C}$ et $h \in X$, l'équation $\phi'(x) = \mu \phi(x) + h$ a une unique solution de classe \mathcal{C}^1 vérifiant $\phi(0) = 0$ et celle-ci est donnée par la formule de variation de la constante

$$\phi(x) = \int_0^x e^{\mu(x-y)} h(y) \, \mathrm{d}y \ .$$

3) Donner exactement le spectre de T et déterminer sa nature (ponctuel, continu ou résiduel).