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Abstract
We study the time evolution of the quantum field inside a cavity coupled to a
beam of two-level atoms of temperature T , given that each atom, after
having crossed the cavity, interacts with a classical field E and finally with a
detector measuring its state. It is found that, if the coupling between the
atoms and the quantum field is weak and E is not too small, for any given
realization of the measurements, an arbitrary initial state of the field
localizes after some time into squeezed states. The centre α of the squeezed
state moves randomly in time in the complex plane, but the squeezing
amplitude r and phase φ show very small fluctuations. Their mean values r
and φ are independent of the random results of the measurements, of the
initial state and of the atom–field coupling constant λ. The time evolution of
r and φ is determined analytically by deriving and solving the quantum state
diffusion equation describing the field dynamics in the limit of small λ,
keeping E finite. It is shown that r increases with T , i.e., the squeezing is
enhanced by increasing the temperature of the atomic beam.
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1. Introduction

Dissipation has played a central role in quantum optics. A
typical example of this is spontaneous emission, where an
individual atom is coupled to an ensemble of modes of the
electromagnetic field, giving, as a final result, a finite lifetime
to every atomic excited state. Traditionally, the dynamics of
a dissipative quantum system is described through a master
equation for the reduced density matrix, obtained by tracing
out the degrees of freedom of the reservoir (the electromagnetic
field in the above example) and making the Markov
approximation. Also, a great deal of work has been done
in quantum optics on continuously monitored systems with
dissipation, referred to as ‘quantum jumps’ or ‘Monte Carlo
wavefunction’ schemes, which are examples of a wider class
of techniques concerned with ‘quantum trajectories’. In these
approaches, the master equation is replaced by a stochastic
differential equation for a pure state. If one averages over
the realizations of the dynamical noise, the master equation
is reproduced. Such a stochastic equation is referred to as
the ‘unraveling’ of the master equation. This is not a unique
process and there can be several stochastic equations that will

average to the same master equation [1–12]. This technique
has become important, because the trend in modern optics has
been towards isolating and manipulating individual quantum
systems. Examples include cavity QED with single atoms
and photons [13], micromasers [14, 15], microlasers [16],
trapped ions cooled to the motional zero point [17],
Coulomb blockade [18] and Bose–Einstein condensates in
electromagnetic traps [19]. Wide interest in such systems has
been stimulated by possible applications to quantum computers
(manipulation and storage of quantum states).

The aim of this paper is to investigate the localization
properties of quantum trajectories for the electromagnetic field
inside a high-Q cavity interacting with a beam of two-level
atoms, which form the reservoir of temperature T . The states
of the atoms leaving the cavity are measured by a detector. A
laser field E with frequency close to the resonance with the
atomic transition is placed between the cavity and the detector.
The same system has been considered in [20] in the reverse
situation where one knows exactly the state of each atom before
it crosses the cavity and no measurement is performed on it
at its exit (its final state being thus unknown). It has been
shown in this reference that the cavity field evolves at large
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times to a state which is completely controlled by the initial
states of the atoms, and that any field state can be obtained
asymptotically by an appropriate choice of the sequence of
atomic states. We find in our case a somewhat related result:
for sufficiently large E and small atom–field coupling, the
cavity field evolves at large times to squeezed states |α, ξ 〉,
whose squeezing parameters r = |ξ | and φ = arg(ξ )/2
are controlled by the temperature T of the beam and by
E , respectively. An important difference is, however, that
randomness is left in the problem: the centre α fluctuates
randomly in the complex plane, in such a way that the
photon number distribution reproduces after time averaging
the equilibrium (Bose–Einstein) distribution at temperature
T . The present work extends some previous results presented
in [21].

2. The experimental scheme

Let us consider one mode of the quantized electromagnetic
field of a lossless cavity coupled to its environment. The
environment is a beam of atoms prepared in one of two Rydberg
states |g〉 (‘ground state’) and |e〉 (‘excited state’) in resonance
with the frequency ω of the mode. The fluxes rg and re of
atoms crossing the cavity, prepared respectively in states |g〉
and |e〉, are assumed to be such that at most one atom is in
the cavity at any time. The time interval between the crossing
of consecutive atoms is δt = (rg + re)

−1. To simplify, all the
atoms of the beam are supposed to have the same speed. They
thus spend the same time τ < δt in the cavity, interacting with
the photon mode. The atom–mode interaction Hamiltonian is
in the interaction picture (rotating-wave approximation) [22]

Hint = −i(λ∗|g〉〈e|a† − λ|e〉〈g|a), (1)

where a† and a are the creation and annihilation operators of
a photon in the cavity mode. The coupling constant λ is equal
to

√
q2ω/2ε0V �dge · �σ , where �dge is the matrix element of the

atomic dipole, �σ the polarization vector of the mode, q the
charge of the electron and V the volume of the cavity.

At the exit of the cavity, the atoms enter into a second
cavity, identical to the first but containing a classical field E
(figure 1). We again assume that each atom spends the same
time τL < δt there, and denote by U = e−iτL HL the time
evolution operator of the atom driven by the classical field. In
the special case of a classical laser field �E , the atom–classical
field interaction Hamiltonian reads

HL = − i

2
(
∗|g〉〈e| −
|e〉〈g|)− δ|e〉〈e|, (2)

where 
 = i �dge · �E is the Rabi frequency and δ = ωL − ω is
the detuning between the laser and the atomic frequencies.

Finally, the state of each atom is measured at the exit of the
second cavity by a perfect detector, telling us whether it is in
its ground or its excited state. The corresponding experimental
set-up is presented in figure 1. It has been considered in [23]
without the second cavity. A similar set-up has been studied
in [24], but the atoms were assumed to be pumped in their
‘excited’ state before entering the first cavity (rg = 0). In
contrast, we shall assume in what follows rg > re. The times
of flight of the atoms between the two cavities and between
the second cavity and the detector are supposed to be much
smaller than the lifetime of |e〉, so spontaneous emission of
photons can be neglected.

a, a* E

τ τL

Figure 1. The two-level atoms of the beam cross one by one a
cavity containing the quantum field studied, a, a second cavity
containing a laser field E and a detector measuring their states.

3. Stochastic dynamics of the quantum field

Let us determine the evolution of the state of the field in
the first cavity when one atom, initially in state |i〉, i = g
or e, crosses the two cavities and the detector. At the time
t just prior the entrance of the atom in the first cavity, the
wavefunction |�(t)〉 of the total system ‘atom + quantum field’
is a tensor product state |�(t)〉 = |i〉|ψ(t)〉. Since the two
fields are in separated cavities, the atom interacts with the
quantum field before interacting with the classical field E . The
total wavefunction at the exit of the second cavity (before the
measurement) is thus in the interaction picture

|�ent〉 = e−iτL HL e−iτHint |�(t)〉. (3)

The interaction leads to an entanglement between the quantum
field and the atom, i.e., |�ent〉 is no longer a tensor product
state. After the measurement on the atom has been performed,
the field and the atom become again disentangled and the
wavefunction of the total system is

|�(t + δt)〉 = | j 〉|ψ(t + δt)〉,

|ψ(t + δt)〉 = 〈 j |�ent〉
‖〈 j |�ent〉‖ ,

(4)

with j = g if the atom is detected in state |g〉 and j = e if it is
detected in state |e〉. It is convenient to introduce the complex
numbers

η = λτ, ε = ueg

λτuee
= − u∗

ge

λτu∗
gg

(5)

and the operator
ã = a sinc(|η|n 1

2 ), (6)

where ui j = 〈i |e−iτL HL | j 〉, n1/2 = (a†a)1/2 is the square root
of the photon number operator and sinc(x) = sin(x)/x . If the
atom–laser coupling is given by (2) with δτL � 1, one finds
ηε � 
 tan(|
|τL/2)/|
|. An easy computation using (1)
leads to [25]

e−iτHint = |g〉〈g| cos(|η|n 1
2 ) + |e〉〈e| cos(|η|(n + 1)

1
2 )

+ η|e〉〈g|ã − η∗|g〉〈e|ã†. (7)

Let |ϕ(t + δt)〉 = 〈 j |�ent〉 be the unnormalized wavefunction
of the quantum field after the measurement. Since the initial
and final atomic states i and j can take two values g or e, we
must distinguish four cases.

(1) i = j = g. Then, by (3) and (7),

|ϕ(t + δt)〉 = uggWg→g|ψ(t)〉,
Wg→g = cos(|η|n 1

2 )− |η|2ε∗ã.
(8)
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(2) i = g, j = e. Then,

|ϕ(t + δt)〉 = ηueeWg→e|ψ(t)〉,
Wg→e = W− ≡ ã + ε cos(|η|n 1

2 ).
(9)

(3) i = e, j = g. Then,

|ϕ(t + δt)〉 = −η∗uggWe→g|ψ(t)〉,
We→g = W+ ≡ ã† + ε∗ cos(|η|(n + 1)

1
2 ).

(10)

(4) i = j = e. Then,

|ϕ(t + δt)〉 = ueeWe→e|ψ(t)〉,
We→e = cos(|η|(n + 1)

1
2 )− |η|2εã†.

(11)

Thus, the crossing by the atom of the two cavities and the
detector modifies the normalized wavefunction |ψ(t)〉 of the
field in the interaction picture as follows:

|ψ(t + δt)〉 = Wi→ j |ψ(t)〉
‖Wi→ j |ψ(t)〉‖ . (12)

The cases (2) and (3) correspond, respectively, to the
absorption and the emission of a photon of the quantum field
or of the laser field by the atom. We then say that the quantum
field suffers a ‘quantum jump’ − or + (this denomination
comes from the limit |η| → 0, ε fixed, in which these
jumps are separated by Hamiltonian-like evolutions [21]). The
probability that the atom is detected in state | j 〉, given that it
enters the first cavity in state |i〉, is pi→ j = ‖〈 j |�ent〉‖2 =
‖ϕ(t + δt)‖2. The probability δp−(t) of a jump − is equal to
pg→e times the probability rgδt that the atom is initially in state
|g〉. Similarly, δp+(t) = pe→greδt . Introducing the damping
rates

γ− = rg|η|2, γ+ = re|η|2, γ = γ− + γ+ = |η|2
δt
(13)

and using the unitarity of the matrix (ui j), one arrives at

δp±(t) = γ±δt
1 + |ηε|2 ‖W±|ψ(t)〉‖2. (14)

The probabilities of cases (1) and (4) are respectively rgδt −
δp−(t) and reδt − δp+(t). The stochastic dynamics of the field
depends only on the dimensionless parameters η, ε and on the
damping rates γ±. The ratio γ+/γ− defines the temperature T
of the atomic beam:

γ+

γ−
= re

rg
= exp

(
− ω

kB T

)
, (15)

where ω is the atomic transition frequency and kB the
Boltzmann constant.

4. Localization into squeezed states

Let us follow the evolution of the state |ψ(t)〉 of the
quantum field when many atoms cross the cavities, for a
given result (realization) of the measurements. Such a time
evolution defines a quantum trajectory [3]. We computed
|ψ(t)〉 numerically, taking a particular initial state |ψ(0)〉 and
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Figure 2. �x2(t) (full, broken and dotted curves) and
�x2(t)�y2(t) (♦, ◦and +) versus γ t for three different quantum
trajectories. The values of the parameters are ε = 20, γ+/γ− = 3/4
and γ = 3.5. The initial state is a coherent state |ψ(0)〉 = |α〉 with
α = √

3/2(1 + i) in the trajectory (a) (full curve, �) and in the
trajectory (b) (broken curve, ◦). It is a Fock state |n〉 with n = 20
photons in the trajectory (c) (dotted curve, +). In (a) and (c), the
number of atoms crossing the cavity in the whole time interval is
NA = 5 × 104 and η � 0.059. In (b), NA = 5 × 105 and η � 0.019.
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Figure 3. As figure 2, but with ε = 100 and with an initial state for
the trajectory (c) (dotted curve, +) chosen randomly (〈n|ψ(0)〉 is a
random number for 0 � n � 20 and vanishes otherwise). For the
trajectories (a) and (c) (full and dotted curves, � and +), NA = 106

atoms and η � 0.013. For the trajectory (b) (broken curve, ◦),
NA = 5 × 106 and η � 0.006.

modifying |ψ(t)〉 according to (12) at each time step δt , with
the above probabilities.

For big |ε| and small |η|, we find that, for any choice
of |ψ(0)〉, |ψ(t)〉 evolves to a squeezed state |α(t), ξ(t)〉, up
to small fluctuating errors. In order to illustrate this result,
let us study the mean square deviations (MSD) �x2

φ(t) and
�y2

φ(t) of the field quadratures Xφ = (ae−iφ + a†eiφ)/2 and
Yφ = (ae−iφ − a†eiφ)/2i. Denote by φmin(t) the angle for
which �x2

φ(t) = 〈ψ(t)|X2
φ+ωt |ψ(t)〉 − 〈ψ(t)|Xφ+ωt |ψ(t)〉2

is minimum (the phase ωt must be added to φ since we are
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working in the interaction picture). Let �x2(t) = �x2
φmin(t)

(t)
and �y2(t) = �y2

φmin(t)
(t) be the minimal and maximal

MSD. The time evolutions of �x2(t) and of the product
�x2(t)�y2(t) are shown in figures 2 and 3 for different
quantum trajectories. Figure 2 corresponds to ε = 20 and
figure 3 to ε = 100. One sees in both figures that �x2(t)
begins to fluctuate around a mean value �x2 after some
transient time �τ . The fluctuations are considerably reduced
in the case ε = 100 (figure 3) with respect to the case
ε = 20 (figure 2). Moreover, the product �x2(t)�y2(t) is
much closer in figure 3 to the minimum value 1/16 allowed
by Heisenberg’s uncertainty principle. The trajectories (a)
and (b) start from the same initial coherent state but correspond
to different values of η and δt , with fixed damping rate
γ = |η|2/δt = 7/2; the trajectory (c) starts from a different
initial state (the Fock state in figure 2 and a state chosen by
picking the 20 first components 〈n|ψ(0)〉 randomly in figure 3).
The comparison of the different curves, together with other
numerical results presented elsewhere [21], indicates that the
mean values �x2 and �x2 �y2 � 1/16 are independent of:

(1) the specific realization of the measurements;
(2) the initial state |ψ(0)〉;
(3) the values of ε and η, when |ε| is larger than some value

ε0 and |η| smaller than η0.

The fact that �x2(t)�y2(t) fluctuates closer and closer
to 1/16 as |ε| becomes bigger supports the idea that the
localization into squeezed states |α(t), ξ(t)〉 holds in the limit
|ε| → ∞. As is well known [22], the minimal MSD
of a squeezed state is �x2 = e−2|ξ |/4. Strikingly, the
squeezing amplitude r(t) = |ξ(t)| = − ln(2�x(t)) is nearly
deterministic for t � �τ , |ε| � ε0 and |η| � η0, and it
depends neither on the initial state nor on η, ε. It is important,
however, that |η| be small enough: for values between 0.06 and
0.09 or greater, we observed completely different behaviours
of �x2(t) and �x2(t)�y2(t) in figure 2 (ε = 20). The
same breakdown occurs for |η| between 0.02 and 0.04 in
figure 3 (ε = 100). One can thus expect the localization
into squeezed states to be exact in the joint limit |ε| → ∞,
|η| → 0. The squeezing phase φ(t) = arg(ξ(t))/2 is also
nearly deterministic and is given by φ(t) = arg(ε) − ωt for
t � �τ [21]. Unlike ξ(t), the centre α(t) of the squeezed state
moves randomly, as seen in figure 4.

Our main result is shown in figure 5. �x2(t) is plotted
versus γ t for five quantum trajectories, corresponding to
different temperatures T of the atomic beam. It is seen that�x2

decreases for increasing T , i.e., the final squeezing increases
with the temperature. The purpose of the remaining sections
is to explain this phenomenon quantitatively.

5. Photon number statistics

In the absence of measurements, i.e., in the same experimental
set-up as in figure 1 but without the detector, the quantum
field thermalizes with the atomic beam at temperature T >

0. The state of the field is described by a density matrix
ρ(t) = trA σ(t), obtained by tracing out the atomic degrees
of freedom in the density matrix σ(t) of the total system
‘atoms + field’. The probability 〈n|ρ(t)|n〉 of finding n

Figure 4. Re〈a〉t (full curve) and Im〈a〉t (broken curve) versus γ t
for a quantum trajectory starting from a coherent state |ψ(0)〉 = |α〉,
with γ+/γ− = 0.892, γ = 3.5, η = 0.0118, ε = 84.5 � η−1,
NA = 1.25 × 106 atoms and α = √

3/2(1 + i).
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Figure 5. �x2(t) versus γ t for trajectories with different
temperatures: (a) γ+ = 0, •; (b) γ+/γ− = 1/4, �; (c) γ+/γ− = 3/4,
♦; (d) γ+/γ− = 0.892, ◦; (e) γ+/γ− = 0.987, +. In (a), (b) and (c),
η = 0.0132, NA = 106 atoms; in (d), η = 0.0118, NA = 1.25 × 106

atoms; in (e), η = 0.0013, NA = 108 atoms. For all trajectories,
ε = η−1, γ = 3.5 and the initial coherent state is as in figure 4. The
full curves are the theoretical result (39).

photons in the first cavity converges at large times to the Bose–
Einstein distribution ρeq

nn = (1 − e−ω/kB T )e−ωn/kB T . Such
a thermalization does not occur if the measurements on the
atoms are performed: then the field is constantly maintained
out of equilibrium. One should thus keep in mind when
confronted with the above-mentioned numerical results that
T is the temperature of the atomic beam, not that of the field!

Let us denote by M the mean over all results of the
measurements. Since averaging the projector |ψ(t)〉〈ψ(t)|
over all results of a measurement is the same as not performing
the measurement,

ρ(t) = trA(σ (t)) = M|ψ(t)〉〈ψ(t)|. (16)

One may verify this formula explicitly by comparing the
evolution of the second and third members when one atom
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crosses the cavities [21]. It is expected from ergodicity that the
time average of the quantum probability Pn(t) = |〈n|ψ(t)〉|2
of finding n photons coincides with the equilibrium value ρeq

nn:

lim
t→∞

∫ t

0

ds

t
Pn(t) = lim

t→∞ MPn(t) = lim
t→∞〈n|ρ(t)|n〉 = ρeq

nn.

(17)
In order to check the ergodic hypothesis, we computed
numerically the first and fourth members. The corresponding
values, represented in figure 6 by the circles and the full curve,
agree reasonably well. Pn(t) is shown in the same figure for a
fixed time t . One sees the well known oscillations exhibited by
squeezed states, with an overall exponential decay [26]. For
squeezed states |α, ξ 〉 with real α and ξ , Pn has the following
asymptotic behaviour as n → ∞:

Pn ∼ 2√
π

(
(2n + 1) cosh2 r − e2rα2

4 tanh r

)− 1
2

× exp

(
α2

2 sinh(2r)

)
(tanh r)n cos2(�n), (18)

with �n = ∫ √
2n+1

α(1−e−4r)−1/2 dx
√

2n + 1 − x2 − π/4 and r = |ξ |
(see [26]). It has been seen in section 4 that the squeezing
amplitude r(t) � − ln(4�x2)/2 is almost time and realization
independent for sufficiently large t . This must also be the case
for the rate | ln(tanh r)|−1 of the exponential decay of Pn(t)
as n → ∞. By (17), this rate must coincide with the decay
rate kB T/ω of the Bose–Einstein distribution ρeq

nn . This gives
tanh r = e−ω/kB T = γ+/γ−. As a result,

�x2 � γ− − γ+

4γ
= 1 − e−ω/kB T

4(1 + e−ω/kB T )
. (19)

The values (19) are the large-time limits of the exponentially
decaying functions shown in full curves in figure 5. A
good agreement is found with the numerical data. Another
consequence of (17) is worth noting. In order to reproduce
the Bose–Einstein distribution, the oscillations of Pn(t) as
a function of n must disappear after a time (or realization)
averaging. Since |ξ(t)| is constant for t � �τ , this implies that
the centre α(t) of the squeezed state varies randomly in time.
The factor eα

2/2 sinh(2r) in (18) shifts the whole distribution to
the right or to the left as α varies, and the amplitude and phase
of the oscillations are also changed. These large random time
fluctuations are observed for Reα in figure 4.

Formula (19) shows that �x2 decreases on increasing T .
A perfect squeezing (�x2 = 0) is predicted at T = ∞.
However, one finds numerically that the localization into
squeezed states only holds for |η| smaller than some value
η0 and for |ε| bigger than ε0, where η0 decreases to zero and ε0

increases to infinity as kB T/ω → ∞. Thus perfect squeezing
cannot be reached in a practical numerical or real experiment
with finite η and ε. We shall come back below to this limit of
validity of (19).

6. Quantum state diffusion

The argument of section 5 does not explain why the squeezed
states form an invariant family under the stochastic dynamics
and why the squeezing amplitudes evolve exponentially to
a temperature-dependent limiting value at large times, as

0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

Figure 6. The probability Pn(t) = |〈n|ψ(t)〉|2 of finding n photons
versus n for a given trajectory: (1) at a fixed time t = 35/γ
(impulses); (2) the time average over 20 000 times in the interval
[10/γ,100/γ ] (circles, ◦). The Bose–Einstein distribution ρeq

nn is
shown as a full curve. The parameters are γ+/γ− � 0.892, ε = 100,
η � 0.006; γ = 3.5; the initial state is as in figure 4; NA = 107

atoms cross the cavity between t = 0 and 100/γ .

observed in the numerical simulations. In order to understand
these points, we determine in this section the coarse-grained
evolution of the field state |ψ(t)〉 for timescales on which many
atoms cross the cavities.

The numerical data suggest considering the limit

|ε| → ∞, |η| → 0, |ηε| = const. (20)

Let us assume moreover that the moments 〈nq〉t are much
smaller than |η|−2q; more precisely,

|η|2q〈nq〉t = O(ηq), q = 1, 2, . . . , t � 0, (21)

where 〈O〉t = 〈ψ(t)|O|ψ(t)〉 is the quantum expectation in
state |ψ(t)〉. Under this condition, the crossing of the cavities
and the detector by one atom weakly perturbs the quantum field
in all cases (1)–(4) (perturbative regime). In fact, since |ψ(t)〉
is renormalized at each time step δt , |ϕ(t + δt)〉 is defined up
to an arbitrary multiplicative constant in equations (8)–(11).
Hence one may divide the right-hand sides of these equations
by ugg, ηueeε, −η∗uggε

∗ and uee, respectively. This yields

|ϕ(t + δt)〉 = (1 + δWi→ j )|ψ(t)〉 + O(η3/2) (22)

with

δWg→g = −|η|2
2
(a†a + 2ε∗a)

δWg→e = δW− = a

ε
− |η|2

2
a†a

δWe→g = δW+ = a†

ε∗ − |η|2
2

aa†

δWe→e = −|η|2
2
(aa† + 2εa†).

(23)

In all cases (1)–(4), the wavefunction |ψ(t)〉 is modified by a
small amount, of order η1/2. The equality ã = a + O(η1/2),
which follows from (6) and (21), has been used.
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Let us consider a time interval [t, t +�t] such that many
atoms cross the cavities between t and t +�t but |ψ(t +�t)〉
does not differ much from |ψ(t)〉. This is the case if

1 � �t

δt
� |η|− 1

2 . (24)

Let us denote by �N±(t) the number of jumps ± (cases (3)
or (2)) and by �Ni (t) the number of atoms entering the first
cavity in state i (i = g or e) between t and t +�t . Then,

|ϕ(t +�t)〉 = [1 +�N+(t)(δW+ − δWe→e)

+ �N−(t)(δW− − δWg→g)

+ �Ne(t) δWe→e +�Ng(t) δWg→g]|ψ(t)〉

+ O
(
�t

δt
η

1
2

)2

. (25)

Since the variation of |ψ(t)〉 between t and t +�t is small, the
jump probability δp±(tm) can be approximated by δp±(t) for
any tm = t + mδt , m = 0, . . . ,�t/δt . From (9), (10) and (14),

M�N±(t) =
�t/δt∑
m=0

δp±(tm)

� |ε|2γ±�t

1 + |ηε|2
(

1 +
2

|ε| Re〈e−iθa〉t

)
,

with ε = |ε|eiθ . Replacing this formula into (25), one
obtains the mean value over the measurements of |�ϕ(t)〉 =
|ϕ(t +�t)〉 − |ϕ(t)〉:
M|�ϕ(t)〉 � [2 Re〈e−iθa〉t (γ+eiθa† + γ−e−iθa)�t

− 1
2 (γ+a†a + γ−a†a)�t]|ψ(t)〉. (26)

The identity M�Ni (t) = ri �t has been used.
It remains to evaluate the fluctuation of |�ϕ(t)〉. Consider

the random variable δNi (tm) equal to 1 if the mth atom enters
in the first cavity at time tm = t + m δt in state |i〉, and equal to
0 otherwise. The random variable δ Ñ+(tm) (δ Ñ−(tm)) is equal
to 1 if a jump + (−) occurs when the mth atom is sent into the
cavity in state |e〉 (|g〉). The probability that δ Ñ+(tm) = 1 is
equal to the conditional probability pe→g of occurrence of a
jump +, given that the mth atom is initially in its upper state
|e〉. Similarly, δ Ñ−(tm) = 1 has probability pg→e. Let i+ = e
and i− = g. With these definitions, δNi± (tm) and δ Ñ±(tm)
are independent random variables. Variables corresponding
to different times tm are also independent. The fluctuation of
�N±(t) = ∑�t/δt

m=0 δNi± (tm) δ Ñ±(tm) can be written as a sum
of two terms:

�N±(t) − M�N±(t) =
�t/δt∑
m=0

δNi± (tm) δM̃±(tm)

+
�t/δt∑
m=0

δMi±(tm)M δ Ñ±(tm),

where δMi (tm) and δM̃±(tm) are the fluctuations of δNi (tm) and
δ Ñ±(tm), respectively. The square variance of the first term is
found to be approximately (γ±�t/γ δt)|ηε|2(1 + |ηε|2)−2. By
the central limit theorem,

�w±(t) =
√
γ δt

γ±
1 + |ηε|2

|ηε|
�t/δt∑
m=0

δNi± (tm) δM̃±(tm) (27)

tends in the limit �t � δt to a Gaussian random variable
of zero mean and variance �t . Shifting t by �t leads to an
independent Gaussian variable �w±(t +�t). Hence �w±(t)
are the increments of two independent Wiener processes
(w±(t))t�0. With the help of (25), we find

|�ϕ(t)〉 − M|�ϕ(t)〉 �
[√
γ+eiθa† �w+(t)

+
√
γ−e−iθa�w−(t) + 2|η|2 Re〈e−iθa〉t

× (eiθa†�Me(t) + e−iθa�Mg(t))

− |η|2
2
(aa† �Me(t) + a†a�Mg(t))

]
|ψ(t)〉. (28)

The third and fourth terms, proportional to the fluctuations
�Mi (t) of the numbers�Ni (t) of atoms entering the cavity in
state i between t and t + �t , are of order (�t/δt)1/2η. They
can be neglected with respect to the first and second terms,
proportional to�w±(t), which are larger by an amount η−1/2.

Since we are interested in the coarse-grained dynamics of
the field with a ‘time resolution’ �t , the Gaussian increments
�w±(t) will be treated as infinitesimal Itô differentials,
denoted by dw±(t), and �t will be denoted by a time
differential dt .

The last step consists in normalizing |ϕ(t + dt)〉. Its
inverse norm, assumed to be one at time t , can be computed
by using the Itô formalism of stochastic differentials [27]:

‖ϕ(t + dt)‖−1 = 1 + d

(
1√‖ϕ(t)‖2

)

= 1 − 1
2 d‖ϕ(t)‖2 + 3

8 d‖ϕ(t)‖2 d‖ϕ(t)‖2. (29)

The first differential in the right-hand side is d‖ϕ(t)‖2 =
2 Re〈ϕ(t)|dϕ(t)〉 + 〈dϕ(t)|dϕ(t)〉. The last term is non-zero
since dw±(t) dw±(t) = dt . Collecting (26), (28) and (29) and
using the other Itô rules dw± dw∓ = dw± dt = 0, we arrive
at our final result:

|dψ〉 =
[√
γ+(e

iθa† − Re〈eiθa†〉t) dw+(t)

+
√
γ−(e−iθa − Re〈e−iθa〉t ) dw−(t)

+ Re〈eiθa†〉t(γ+eiθa† + γ−e−iθa − γ

2
Re〈eiθa†〉t) dt

− 1
2 (γ+aa† + γ−a†a) dt

]
|ψ(t)〉. (30)

Note that |dψ〉 is independent of |ηε|, i.e., the coarse-grained
dynamics depends only on θ = arg ε and on the damping
constants γ+ and γ−.

Equation (30) pertains to a known class of stochastic
Schrödinger equations with real Wiener processes, which
has been studied in [8, 10]; related equations with complex
Wiener processes have been discussed in [9]. Both kinds of
equation unravel the same Lindblad master equation for the
density matrix (16). In our case, the master equation is easy
to determine directly. The change of ρ(t) when one atom,
initially in state |i〉, crosses the cavity is

ρ(t + δt) = trA(e
−iτHint |i〉〈i |ρ(t)eiτHint). (31)

ρ(t) describes the evolution of the quantum field without
the measurements on the atoms. Hence it does not depend
upon the classical field E in the second cavity (this is seen
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mathematically by using the cyclicity of the trace to get rid
in (31) of the two exponentials e±iτL HL multiplying e±iτHint ).
The coarse-grained average dynamics on the timescale �t �
δt is obtained by replacing (7) into (31), using similar
approximations to those above. Not surprisingly, one finds
the equation of the damped harmonic oscillator:

dρ

dt
= γ−

(
aρ(t)a† − 1

2 {a†a, ρ(t)})
+ γ+

(
a†ρ(t)a − 1

2 {aa†, ρ(t)}). (32)

The curly brackets denote the anticommutators. Although
the quantum trajectories depend on arg(ε), the corresponding
master equation is the same for all εs. The equilibrium is the
Bose–Einstein matrix ρeq with temperature T (T � 0).

Let us end this section by making two remarks. Firstly,
the above analysis can be carried out under the following
hypothesis, which is more general than (21):

〈(|η|n 1
2 −kπ)2q〉t = O(ηq), q = 1, 2, . . . , t � 0, (33)

with k a non-negative integer. For k � 1, this means that
the typical number of photons is close to (kπ/|η|)2 � 1,
with relative fluctuations at most of order |η|. Then, most
atoms crossing the first cavity make approximately k/2 Rabi
oscillations and leave it almost in the same state as when
they entered it. The coarse-grained stochastic and average
dynamics are then given by (30) and (32) with a replaced
by ã and θ replaced by θ + kπ . If (kπ/|η|)2 is an integer
nk , ã†|nk − 1〉 = 0 and the atoms cannot bring more than
nk −1 photons into the cavity (trapping states) [15]. Secondly,
let us mention that the stochastic dynamics of section 3
has been studied in [21] in the limit |η| → 0, keeping ε

finite and assuming that (21) holds. This yields a quantum
jump (or Monte Carlo wavefunction) model similar to the
model introduced in [2, 3]. This is because for small
|ηε| and |η|, the jump probabilities δp±(t) are very small
(see (14)) and the (coarse-grained) evolution between these
jumps is Hamiltonian-like, with an effective non-self-adjoint
Hamiltonian K = γ−(a†a + 2ε∗a + |ε|2)/2i + γ+(aa† + 2εa† +
|ε|2)/2i. The jump operators are W− = a+ε and W+ = a†+ε∗.
Both K and W± depend on ε. The limit |ε| → ∞ of
the quantum jump dynamics of course gives the stochastic
Schrödinger equation (30) again [6, 21].

7. Evolution of the squeezing parameters

As shown by Rigo and Gisin [28], the stochastic Schrödinger
equation (30) preserves squeezed states. More precisely,
|ψ(t)〉 = |α(t), ξ(t)〉 is a solution of (30) if α(t) and ξ(t) =
r(t)e2iφ(t) satisfy the Itô stochastic differential equations:

d� = −e2iθ (1 + e−2iθ�(t))(γ+ + γ−e−2iθ�(t)) dt

dβ = −
(
γ

2
+ γ−e−2iθ�(t)

)
β(t) dt

+ 2(γ+eiθ + γ−e−iθ�(t))Re(e−iθ α(t)) dt

+
√
γ+eiθ dw+(t) +

√
γ−e−iθ�(t) dw−(t), (34)

with �(t) = −e2iφ(t) tanh(r(t)) and β(t) = α(t)− �(t)α∗(t).
These equations are derived in [21, 28], so we only quote
here the result (note that dw± are Itô stochastic differentials,
whereas Stratanovich differentials are used in [28]).

The squeezing parameters r(t) and φ(t) are given by the
solution of the first equation, which is deterministic:

−�(t) = e2iφ(t) tanh(r(t)) = e2iθ γ+e(γ−−γ+)t + c

γ−e(γ−−γ+)t + c
, (35)

where c is an arbitrary complex constant. Replacing (35)
into the second equation in (34), xθ (t) = Re(e−iθα(t)) and
yθ (t) = Im(e−iθ α(t)) are found to satisfy

dxθ = −γ− − γ+

2
xθ (t) dt +

γ−e(γ−−γ+)t + c

γ e(γ−−γ+)t + 2c

√
γ+ dw+(t)

− γ+e(γ−−γ+)t + c

γ e(γ−−γ+)t + 2c

√
γ− dw−(t) (36)

dyθ = −γ− − γ+

2
yθ (t) dt.

The second equation is again deterministic and gives

yθ (t) = Im(e−iθ α(t)) = e−(γ−−γ+)t/2 yθ (0). (37)

In figure 4, we indeed observe an exponential decay of y0(t) =
Im〈a〉t with the rate (γ− − γ+)/2.

In the large-time limit t � (γ− − γ+)
−1, the centre α(t)

moves randomly on the line arg(α) = θ , and

tanh(r(t)) → γ+

γ−
= exp

(
− ω

kB T

)

φ(t) → θ.

(38)

Since for squeezed states �x2 = e−2r/4, one recovers the
expression (19) for the time average (or, equivalently, the
infinite-time limit) of �x2(t). In the Schrödinger picture, the
field wavefunction is |ψS(t)〉 = |α(t)e−iωt , ξ(t)e−2iωt 〉. The
centre of this squeezed state now also rotates in the complex
plane. The squeezing phase is φS(t) � θ − ωt at large times.

In the special case of an initial coherent state |ψ(0)〉 = |α〉,
the constant c is equal to −γ+, so φ(t) = θ at all times and

�x2(t) = γ− − γ+

4γ− + 4γ+(1 − 2e−(γ−−γ+)t)
. (39)

In particular, �x2(t) = 1/4 at zero temperature (γ+ = 0).
This means that coherent states |ψ(t)〉 = |α(t)〉 are preserved
by the stochastic dynamics if all atoms are initially in their
lower state. The result (39) is compared in figure 5 with the
numerical data. One sees a very good agreement. Note that the
rate (γ− − γ+) of the exponential decay of �x2(t) decreases
to zero at high temperatures: one needs to wait longer and
longer to reach the value �x2 given by (19) as T becomes
larger. In any real or numerical experiment, the quantum field
is observed up to a finite time t , so this limits the maximal
squeezing that can be reached: �x2(t) > �x2.

By ergodicity, the time average of 〈n〉t is the Bose–
Einstein average 1/(eω/kB T − 1). For squeezed states, 〈n〉 =
sinh2 r + |α|2 (see [22]). Using (38) gives the time average of
|α(t)|2:

|α|2 = x2
θ = γ+γ−

γ (γ− − γ+)
. (40)
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8. Limitations on the squeezing

Let us discuss the limit of validity of (19) and (39). The
first restriction comes from the fact that real cavities are not
perfect. In experiments with micromasers [15], the time
δt separating consecutive atoms is smaller than the photon
lifetime tcav and the interaction time τ is small compared with
δt , in order to avoid events involving more than one atom in
the cavity. It is legitimate under these conditions to neglect
photon losses during the interaction. The dynamics thus splits
into squeezing and damping cycles, with time durations τ and
δt − τ , respectively. In order to ensure that damping cycles do
not destroy the squeezing effect, γ tcav must be large enough.
The interesting problem of the determination of the large-
time limit of the field state in the presence of photon losses
is left to a future work. Note also that the presence of thermal
photons in the cavity has not been taken into account in our
analysis. These can be neglected if the cavity is cooled at very
low temperature (much smaller than the temperature T of the
beam), as is generally the case in the experiments [15].

A second limitation is brought about by the fact that the
computation of section 6 and the preservation of squeezed
states by the dynamics is only valid in the limits (20) and (21).
A closer look at (23) shows that the condition of validity is

|η|2|ε|√〈n〉t � 1 and |ε|−1
√〈n〉t � 1 (41)

at all times. Given η and T , the best choice of |ε| minimizing
both quantities in (41) is clearly |ε| = |η|−1. Then the
condition reduces to |η|〈n〉1/2

t � 1. At low or intermediate
temperatures, the mean number of photons in the cavity is not
very large and this condition is met in the weak-coupling limit
|η| = |λ|τ � 1.

However, since 〈n〉 = 1/(eω/kB T −1) increases to infinity
at large T , the condition (41) is violated, for any value of η,
above a certain temperature T0 depending on η and ε. For
T � T0, the localization of the quantum field into squeezed
states no longer occurs. This reasoning explains qualitatively
why we had to go to smaller values of η and higher values of
ε when increasing T in the simulations of figure 5. Taking
|ε| = |η|−1, kB T0/ω � γ+(γ− − γ+)

−1 must be small with
respect to |η|−2. This gives, however, an overestimation of T0,
since the fluctuations of 〈n〉t = sinh2 r + |α(t)|2, which appear
to be important in figure 4, have not been taken into account.

One may be concerned that, even if (41) is fulfilled, the
error made after NA � 1 atoms have crossed the cavity might
be large, despite the smallness of the error made for each atom
taken separately. We argue below that such an accumulation
of errors at large times, if it exists, leads to much smaller
errors than one might expect. It seems reasonable to assume
that only the average part of the variation of the state |ψ(t)〉
when one atom crosses the cavities, denoted by Mt |δψ(t)〉,
can lead to accumulating errors. For fixed |ψ(t)〉 = |α, ξ 〉 and
|ε| = |η|−1,

|ψ(t)〉 + Mt |δψ(t)〉 = |α + δα, ξ + δξ 〉 + O(η4〈n〉2
t ). (42)

The proof of this formula is based on the following result:
if b, c± and d are complex numbers with b = 1 + O(η),
c± = O(η2√〈n〉t) and d = O(η2), then there are complex
numbers α′ and ξ ′ and a normalization constant A such that

(b + c+a† + c−a + dn)|α, ξ 〉 = A|α′, ξ ′〉 + O(η4〈n〉2
t ). (43)

Indeed, using the known properties of squeezed states, this is
equivalent to the existence of an operator (a − �′a† − β ′),
with �′ and β ′ ∈ C, which, when applied to the left-hand
member of (43), gives zero plus some terms of order η4〈n〉2

t .
A simple computation shows that such �′ and β ′ exist. This
proves (43). The mean variation Mt |δϕ(t)〉 of the unnormalized
wavefunction |ϕ(t)〉 is given, to lowest order, by (26) with
�t = δt . It can be further checked that it has the same
form as the left-hand member of (43), with b, c± and d
satisfying the above hypothesis, up to corrections of order
η4〈n〉2

t . Moreover, as is clear from (22) and (23), the fluctuation
|δϕ f (t)〉 = (1−Mt )|δϕ(t)〉 is also of the form (43), up to terms
of order η3〈n〉3/2

t , but with b, d = O(η2) and c± = O(η). We
now write

|ψ(t)〉 + Mt |δψ(t)〉 = C(|ψ(t)〉 + Mt |δϕ(t)〉)
+ Mt(‖ϕ(t + δt)‖−1 − 1)|δϕ f (t)〉,

with C = Mt‖ϕ(t + δt)‖−1. Since |δϕ f (t)〉 = O(η√〈n〉t ), this
makes it clear that |ψ(t)〉 + Mt |δψ(t)〉 is also of the form (43)
with b, c± and d satisfying the above hypothesis. It follows
that (42) holds true.

Let us assume that the above errors accumulate. The total
error after the crossing of a large number NA of atoms is then

NA∑
m=0

|η|4〈n〉2
m δt � NA |η|4〈n〉2

t � NA |η|4〈n2〉t = γ+γ NA|η|4
(γ− − γ+)2

,

(44)
where the last expression is the average of n2 at thermal
equilibrium. If NA is bigger than (NA)0 = |η|−4(γ− −
γ+)

2/γ+γ , or, equivalently, if γ t is bigger than

γ t0 = (γ− − γ+)
2

γ+γ |η|2 , (45)

then the field state should differ significantly from a squeezed
state. Replacing the values of γ+ and γ− in the trajectories
(d) and (e) in figure 5, one finds γ t0 � 50. Nevertheless,
a good agreement with (39) is observed at much bigger
times! Numerically, we find that �x2(t)�y2(t) cannot be
distinguished from 1/16 over the whole time interval, using
the scale of figure 5. The values of γ t0 for the trajectories
(a), (b) and (c) are higher; other simulations not presented
here also show no deviation of �x2(t)�y2(t) from 1/16 for
e.g. γ−/γ+ = 3/4 and η = ε−1 = 0.03, corresponding to
γ t0 � 50 (but the fluctuations of�x2(t) around (γ− −γ+)/4γ
have a larger amplitude). Moreover, longer-time simulations,
running up to t = 1750/γ , show no further deviations of
the quantum field from a squeezed state, and the squeezing
amplitudes continue to fluctuate around the value (39). Hence
one can conclude that there are no accumulations of errors of
the kind studied above.

9. Conclusions

We have presented a quantum trajectory model applied to a
particularly simple optical system, that of a damped harmonic
oscillator at temperature T . The model that we have considered
is a beam of two-level atoms crossing one by one a lossless
cavity containing the quantum field studied, coupled to a
classical field and finally to a detector at the exit of the cavity.
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The idealized case of two-level atoms interacting with a single
mode of the electromagnetic field in a lossless cavity is nearly
realized in micromasers [15]. In the recent experiment [29], a
cavity with a quality factor as high as Q = 4 × 1010 has been
employed, corresponding to a photon lifetime tcav = 0.3 s.
The main difference between the physics of the micromaser
and our model is that, in the experiments known to us, the two-
level atoms are pumped in their upper level before interacting
with the quantum field, whereas we assumed in this work that
the atomic beam has a positive temperature T . We have given
numerical evidence that, for a non-zero classical field intensity
and a small enough coupling strength η = λτ (λ is the atom–
field coupling constant and τ the time spent by each atom in
the cavity), the cavity field localizes into squeezed states. The
corresponding squeezing amplitude r(t) and phase φ(t) have
been shown to be nearly deterministic and given by (38) in
the large-time limit. The centre α(t) of the squeezed state
moves randomly in the complex plane, in such a way that the
quantum probabilities for the photon numbers reproduce the
thermal (Bose–Einstein) distribution after a time averaging.
The main result is that the final degree of squeezing increases
with the temperature of the atomic beam. A perfect squeezing
can be obtained a priori in the limit of infinite tempeature and
of zero coupling strengthη, keeping a finite laser field intensity.
However, the time needed to obtain this perfect squeezing goes
to infinity in this high-temperature limit, and corrections for
finite η and ε become important at high temperatures. This,
together with the finite lifetime of photons in a real cavity,
limits in practice the squeezing that can be achieved.

The squeezing effect found in the present work should be
in principle observable in micromasers. Since the probability
of field-induced transitions between adjacent atomic levels
with principal quantum number n scales as n4, experiments
with values of η ranging from 10−3 to more than 1 can be found
in the literature. According to our numerical simulations, the
best value for observing a rapid localization of the cavity field
into squeezed states is η � 0.03, and the localization time
is typically t � 10/γ with γ = η2 δt−1. The experiments
described in [15] have higher values of η, due to the high
degree of excitation of the rubidium atoms (λ = 104 s−1

for the 63p3/2 → 61d3/2 transition and the shorter τ is
25 × 10−6 s, giving η = 0.25). The intensity of the beam
must be small enough in order to ensure that the cavity field
is coupled to at most one atom at any time. Using a flux of
atoms r = δt−1 = 0.1τ−1, one finds, assuming a Poissonian
statistics for the number of atoms in the cavity, that 95% of
the events involve only one atom. This flux is in the range of
the experimental data for τ = 25 × 10−6 s. The condition of
observation of the predicted localization into squeezed states
is met for γ tcav = η2tcav(0.1τ−1) � 10 and η � 0.03. One
concludes that τ must be smaller than 3 × 10−6 s. Again,
this value is a bit too small compared with typical micromaser
experimental data (relatively large cavities are used in order
to ensure that the low mode is in resonance with the nearby
Rydberg level transition). In order to observe the temperature-
enhanced squeezing described in this work, atomic transitions
corresponding to lower coupling constants could be more
suitable, or faster atoms spending less time in the cavity could
be used. According to [15], the squeezing of the cavity field
could be measured by using probe atoms.
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