

Contrôle continu nº 2

Mardi 10 novembre 2020 14h-17h

Exercice 1 : Question de cours

Soit D un sous-ensemble non vide de \mathbb{R} et soit $f:D\to\mathbb{R}$ une fonction K-lipschitzienne.

- 1. Montrer que f est uniformément continue sur D.
- 2. Montrer qu'il existe $a, b \in \mathbb{R}$ tels que, pour tout $x \in D$, $|f(x)| \le a|x| + b$. En déduire que si D est borné, alors f est bornée sur D.

Exercice 2 : Adhérence et union

- 1. Soit A et B deux sous-ensembles de \mathbb{R} tels que $A \subset B$. Montrer que $\overline{A} \subset \overline{B}$.
- 2. Soit A et B deux sous-ensembles de \mathbb{R} . Montrer que $\overline{A \cup B} = \overline{A} \cup \overline{B}$.
- 3. Soit $(A_n)_{n=1,\dots,N}$ une famille finie de N ensembles de \mathbb{R} . Déduire de la question précédente que $\overline{\bigcup_{n=1,\dots,N} A_n} = \bigcup_{n=1,\dots,N} \overline{A_n}$.
- 4. Montrer par un contre-exemple que si on considère une famille infinie $(A_n)_{n\geq 1}$, alors $\overline{\bigcup_{n\geq 1} A_n}$ et $\bigcup_{n\geq 1} \overline{A}_n$ peuvent être différents.

Exercice 3 : Image réciproque

On considère l'ensemble $A = \{x \in \mathbb{R}, e^x > \cos x\}.$

- 1. En écrivant A comme image réciproque d'un ensemble par une fonction, montrer que A est un ouvert de \mathbb{R} .
- 2. En considérant la suite $x_n = 1/n$, montrer que A n'est pas un fermé.

Exercice 4 : Ensemble des valeurs d'une suite

Soit $(u_n)_{n\in\mathbb{N}}$ une suite à valeurs réelles. On considère l'ensemble de ses valeurs

$$U = \{ u_n, n \in \mathbb{N} \} \subset \mathbb{R}.$$

- 1. Montrer que U n'est jamais un ouvert de \mathbb{R} .
- 2. On suppose que (u_n) converge vers $0 \in \mathbb{R}$. Montrer que $\overline{U} = U \cup \{0\}$.
- 3. Donner un exemple de suite telle que U est un fermé de \mathbb{R} et un exemple où U n'est pas un fermé.
- 4. Montrer que $\sup_n u_n$ appartient toujours à \overline{U} .
- 5. Montrer que si U n'est pas fermé, alors (u_n) a au moins une valeur d'adhérence. Que peut-on dire sur U si u_n tend vers $+\infty$?

Exercice 5 : Fonctions périodiques

Une fonction $f: \mathbb{R} \longrightarrow \mathbb{R}$ est dite T-périodique pour un certain T > 0 si

$$\forall x \in \mathbb{R} , \quad f(x+T) = f(x) .$$

- 1. Montrer que si f est T-périodique, elle est aussi kT-périodique pour tout $k \in \mathbb{N}^*$ et que f(x+kT) = f(x) pour tout $x \in \mathbb{R}$ et $k \in \mathbb{Z}$.
- 2. Soit T > 0 et f une fonction T-périodique qui admet en $+\infty$ une limite finie $\ell = \lim_{x \to +\infty} f(x)$. Montrer que f est constante égale à ℓ .
- 3. Soit T > 0 et soit f une fonction continue qui est T-périodique. Montrer que f est bornée sur \mathbb{R} et atteint ses bornes.
- 4. Montrer qu'une fonction continue T-périodique est uniformément continue sur \mathbb{R} .
- 5. Montrer que si f est continue et 1/q-périodique pour tout $q \in \mathbb{N}^*$, alors f est constante sur \mathbb{R} .
- 6. Montrer que la fonction $f: \mathbb{R} \to \mathbb{R}$ définie par f(x) = 1 si $x \in \mathbb{Q}$ et f(x) = 0 si $x \notin \mathbb{Q}$ est 1/q-périodique pour tout $q \in \mathbb{N}^*$ mais n'est pas constante sur \mathbb{R} .