Feuille d'exercices n°3 : Séries

Exercice 1 : Nature de séries

Déterminer la nature des séries de terme général :

1.
$$u_n = \frac{e^n}{n^5 + 1}$$
;

7.
$$u_n = \frac{1 - n \ln(1 + \frac{1}{n})}{\sqrt{n+1}}$$
;

2.
$$u_n = \frac{2^n + n^2}{3^n n^2 + 1}$$
;

$$8. \ u_n = \frac{\ln n}{n};$$

3.
$$u_n = \frac{e^{\frac{1}{n}}}{n+1}$$
;

9.
$$u_n = \left(1 + \frac{1}{\sqrt{n}}\right)^n \quad (n \ge 1);$$

4.
$$u_n = \frac{e^{\frac{1}{n}} - 1}{\sqrt{n+1}};$$

10.
$$u_n = ne^{-n}$$
;

5.
$$u_n = n \ln \left(1 + \frac{1}{n} \right) \quad (n \ge 1);$$

11.
$$u_n = \left(1 - \frac{1}{\sqrt{n}}\right)^n \quad (n \ge 2);$$

6.
$$u_n = \frac{e^{-n}}{4 + \sin n}$$
;

12.
$$u_n = \frac{n!}{n^n}$$
 $(n \ge 1);$
13. $u_n = \tan\left(\frac{1}{n}\right) - \frac{1}{n};$

14.
$$u_n = n^2 \left(\sin \frac{1}{n} + \cos \frac{1}{n} + \left(\ln(1 - \frac{1}{n}) \right)^2 - e^{\frac{1}{n}} \right).$$

Exercice 2 : Séries de Bertrand

En utilisant le théorème de comparaison entre série et intégrale, donner la nature des séries de la forme $\sum_{n \geq 1} \frac{1}{n \ln^{\alpha} n}$ avec $\alpha \in \mathbb{R}$.

Exercice 3 : Calcul de $\sum_{n\geqslant 1} nx^{n-1}$

Soit x un nombre réel, avec |x| < 1.

- 1. Montrer que $\sum_{n} x^{n}$ et $\sum_{n} nx^{n-1}$ convergent.
- 2. Donner des expressions fermées (c'est-à-dire sans signe Σ) de

$$\sum_{n=0}^{N} x^n \qquad \text{et} \qquad \sum_{n=1}^{N} n x^{n-1}.$$

- 3. En déduire la valeur de $\sum_{n\geq 1} nx^{n-1}$
- 4. Montrer que les séries suivantes convergent et calculer leurs sommes :

(a)
$$\sum_{n=1}^{\infty} ((n-2)3^{-n} + (n-3)2^{-n})$$
 (b) $\sum_{n=1}^{\infty} (n^2 - 2n)3^{-n}$

(b)
$$\sum_{n=1}^{\infty} (n^2 - 2n)3^{-n}$$

Exercice 4 : Développement en série entière

1. Soit f une fonction de classe C^{∞} sur un intervalle I contenant 0, montrer que, pour tout $n \in \mathbb{N}$ et $x \in I$, on a

$$f(x) = f(0) + f'(0)x + \frac{f''(0)}{2}x^2 + \ldots + \frac{f^{(n)}(0)}{n!}x^n + \int_0^x \frac{f^{(n+1)}(t)}{n!}(x-t)^n dt.$$

2. En déduire que pour tout $x \in \mathbb{R}$ on a

$$e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!} .$$

3. Pour tout $x \in]-1,1]$, montrer que la série de terme général $\frac{(-1)^{n-1}x^n}{n}$ converge et montrer que sa somme vérifie

$$\sum_{n=1}^{+\infty} \frac{(-1)^{n-1} x^n}{n} = \ln(1+x) .$$

En déduire la somme de $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ et de $\sum_{n=2}^{\infty} \frac{1}{n2^n}$.

Exercice 5 : Séries à terme général positif décroissant

Soit $(u_n)_n$ une suite positive décroissante telle que $\sum u_n$ converge. Montrer que pour tout $\varepsilon > 0$ il existe $N \in \mathbb{N}$ tel que pour tout n > N on ait $(n - N)u_n \leqslant \varepsilon$. En déduire que nu_n tend vers 0 quand n tend vers $+\infty$.

Donner un exemple de suite positive $(v_n)_n$ telle que $\sum v_n$ converge et nv_n ne tend pas vers 0.

Exercice 6 : Où on utilise l'inégalité de Cauchy-Schwarz

Soit $(u_n)_n$ une suite à termes positifs, et notons $v_n = \frac{1}{1 + n^2 u_n}$.

1. Montrer par des exemples que la divergence de $\sum u_n$ ne permet pas de déterminer la nature de $\sum v_n$.

On suppose dans la suite que $\sum u_n$ converge et on va montrer que $\sum v_n$ diverge.

- 2. Traiter le cas où n^2u_n ne tend pas vers $+\infty$.
- 3. Traiter le cas où $n^2u_n \to +\infty$ en appliquant l'inégalité de Cauchy-Schwarz à $\sum_{n=0}^N u_n^{1/2} v_n^{1/2}$.

Exercice 7 : Un critère de rationnalité

Montrer qu'un réel x est rationnel si et seulement si son développement décimal est périodique à partir d'un certain rang. Donner un exemple de nombre irrationnel en utilisant ce critère.