TD n°4: Topologies Faibles

Soit X un espace de Banach, soit X' son dual (l'ensemble des formes linéaires continues sur X) et X'' son bidual.

On introduit la topologie faible $\sigma(X, X')$ comme la topologie de X engendrée par les demi-espaces $f^{-1}(]\alpha, +\infty[)$ où $f \in X'$ est une forme linéaire continue et $\alpha \in \mathbb{R}$. Une suite $(x_n) \subset X$ converge faiblement vers $x \in X$ si pour toute forme linéaire $f \in X'$, $f(x_n) \to f(x)$ et on note alors $x_n \rightharpoonup x$.

On introduit la topologie faible-* $\sigma(X',X)$ comme la topologie de X' engendrée par les demi-espaces $\{f \in X', f(x) > \alpha\}$ où $x \in X$ et $\alpha \in \mathbb{R}$. Une suite $(f_n) \subset X'$ converge faiblement-* vers $f \in X'$ si pour tout $x \in X$, $f_n(x) \to f(x)$ et on note alors $f_n \stackrel{*}{\rightharpoonup} f$.

On note donc que X' est muni de trois topologies : la topologie forte de la norme triple, la topologie faible $\sigma(X',X'')$ et la topologie faible-* $\sigma(X',X)$. On note aussi que si X est réflexif, alors les topologies faibles $\sigma(X,X')$ et faible-* $\sigma(X,X') = \sigma(X'',X')$ sont les mêmes.

Pour les exercices suivants, on pourra utiliser :

- Banach-Steinhaus : Si E et F sont deux espaces de Banach et si \mathcal{U} est une famille d'applications continues de E dans F, alors soit l'ensemble des $x \in E$ tels que $\{u(x), u \in \mathcal{U}\}$ est borné est d'intérieur vide, soit c'est E tout entier. Dans ce dernier cas, la famille \mathcal{U} est uniformément bornée pour la norme triple.
- **Tychonoff**: Tout produit d'espaces compacts (muni de la topologie produit) est compact.

Exercice 1 : A propos de la convergence faibles des suites

Vérifier que la convergence faible de $(x_n) \subset X$ est bien la convergence simple comme rappelé ci-dessus. Idem pour la convergence faible-*.

Exercice 2 : Propriétés de base de la topologie faible

- 1) Montrer que la topologie faible est séparée, c'est-à-dire que pour tout $x_1 \neq x_2$, il existe deux ouverts disjoints \mathcal{O}_1 et \mathcal{O}_2 contenant respectivement x_1 et x_2 . En déduire l'unicité de la limite faible.
- 2) Montrer que la convergence forte implique la convergence faible vers la même limite.
- 3) Montrer que si (x_n) converge faiblement vers x alors $||x_n||$ est uniformément bornée et $||x|| \le \liminf ||x_n||$.
- 4) Montrer que si $(x_n) \subset X$ converge faiblement vers x et $(f_n) \subset X'$ converge fortement vers f, alors $f_n(x_n)$ converge vers f(x).

Exercice 3 : Propriétés de base de la topologie faible-*

Refaire l'exercice précédent mutatis mutandis pour la topologie faible-* $\sigma(X', X)$.

Exercice 4: En dimension finie

Montrer que sur \mathbb{R}^n , la topologie faible est identique à la topologie forte.

Exercice 5 : Cas des espaces de Hilbert

On suppose dans cet exercice que X est un espace de Hilbert. Montrer que si (x_n) converge faiblement vers x et si $||x_n||$ tend vers ||x||, alors (x_n) converge fortement vers x. Donner un exemple de suite $(e^n) \subset \ell^2(\mathbb{N})$ qui converge faiblement mais pas fortement.

Exercice 6: Test sur un sous-ensemble dense

- 1) Montrer que si (x_n) est une suite bornée de X telle que $f(x_n)$ converge vers f(x) pour tout f dans un ensemble D dense de X', alors (x_n) converge vers x faiblement.
- 2) Montrer que si (f_n) est une suite bornée de X' telle que $f_n(x)$ converge vers f(x) pour tout x dans un ensemble D dense de X, alors (f_n) converge vers f faiblement-*.
- 3) Donner un exemple de suite $(x_n) \subset X$ telle que $f(x_n)$ converge vers f(x) pour tout f dans un ensemble D dense de X' mais telle que (x_n) ne converge pas faiblement.

Exercice 7: Exemples dans L^p

On considère $X = L^p(\mathbb{R})$ avec $p \in]1, +\infty[$. On introduit une fonction $f \in \mathcal{C}_0^\infty(\mathbb{R})$ telle que $||f||_p = 1$. Montrer que les suites suivantes convergent faiblement vers 0 dans X, bien qu'elles soient de norme 1.

- 1) Oscillations : $e_n : x \longmapsto e^{2i\pi nx} f(x)$.
- 2) Concentration: $u_n: x \mapsto n^{1/p} f(nx)$.
- 3) Fuite à l'infini $v_n: x \longmapsto f(x-n)$.
- 4) Etalement $w_n : x \longmapsto n^{-1/p} f(x/n)$.

En déduire un exemple sur $X = L^2(\mathbb{R})$ de suites (x_n) convergeant faiblement dans X et (f_n) convergeant faiblement-* dans X' telles que $f_n(x_n)$ ne converge pas.

Exercice 8 : Convexes et fermés

Soit K un convexe fermé de X. Montrer que K est l'intersection des demi-espaces fermés le contenant. En déduire que K est fermé pour la topologie faible. Donner un exemple de fermé pour la topologie faible qui n'est pas convexe.

Exercice 9 : Compacité séquentielle de la boule unité faible-*

- 1) Montrer que la boule unité fermée de X' pour la topologie forte est compacte pour la topologie faible-*.
- 2) On suppose que X est séparable. Soit (f_n) une suite bornée de X', montrer qu'il existe une sous-suite convergente pour la topologie faible-* $\sigma(X', X)$.
- 3) Montrer par un exemple que la sphère unité de X' pour la topologie forte n'est pas compacte pour la topologie faible-*.
- 4) En déduire que si X est réflexif et séparable, alors la boule unité fermée de X (pour la topologie forte) est faiblement compacte pour les suites.
- 5) Montrer par un contre-exemple que la compacité de la question précédente est fausse si X n'est pas réfléxif ou n'est pas séparable.