TD n°3: Théorèmes de séparations

Soit $(X, \|\cdot\|)$ un espace de Banach. On appelle *hyperplan affine* un ensemble H de la forme

$$H = H_{f,\alpha} = \{x \in X , f(x) = \alpha\}$$
 avec f forme linéaire non nulle et $\alpha \in \mathbb{R}$.

On rappelle qu'un hyperplan affine est fermé si et seulement si la forme linéaire f est continue.

On dit que deux sous-ensembles A et B de X sont séparés au sens large par l'hyperplan $H_{f,a}$ si et seulement si

$$\forall a \in A , \forall b \in B , f(a) \le \alpha \le f(b)$$
 (ou inversement).

On dit que deux sous-ensembles A et B de X sont séparés au sens strict par l'hyperplan $H_{f,a}$ si et seulement s'il existe $\varepsilon > 0$ tel que

$$\forall a \in A, \ \forall b \in B, \ f(a) \le \alpha - \varepsilon < \alpha + \varepsilon \le f(b)$$
 (ou inversement).

Exercice 1 : Echauffement dans \mathbb{R}^2

On se place dans $X = \mathbb{R}^2$.

- 1) Donner deux ensembles convexes fermés disjoints qui ne peuvent être séparés au sens strict.
- 2) Montrer qu'un convexe compact et un convexe fermé disjoints peuvent toujours être séparés au sens strict.

Exercice 2: Jauge d'un convexe

Soit $C \subset X$ un convexe ouvert contenant 0 et soit p définie par

$$p : x \in X \longmapsto \inf \left\{ r > 0 , \frac{1}{r} x \in C \right\} \in \mathbb{R}$$
.

- 1) Montrer que p est bien définie et qu'il existe M tel que $0 \le p(x) \le M||x||$.
- 2) Montrer que $C = \{x \in X, p(x) < 1\}.$
- 3) Montrer que $p(\lambda x) = \lambda p(x)$ pour tout $\lambda > 0$ et $x \in X$ et que

$$\forall x, y \in X , p(x+y) \le p(x) + p(y) .$$

Indication : considérer, pour $\varepsilon > 0$, le segment $[x/(p(x)+\varepsilon),y/(p(y)+\varepsilon)]$ et montrer que le point $(x+y)/(p(x)+p(y)+2\varepsilon)$ y appartient.

4) Que faut-il supposer de plus sur C pour que p soit une norme?

Exercice 3 : Séparation d'un convexe ouvert et d'un point

Soit C un convexe ouvert non vide et $x_0 \in X \setminus C$. Quitte à faire une translation, on peut supposer que $0 \in C$ et introduire la jauge p de C.

- 1) Montrer qu'il existe une forme linéaire f telle que $f(x_0) = 1$ et $f(x) \le p(x)$ pour tout $x \in X$.
- 2) En déduire que $\{x_0\}$ et C sont séparés au sens large par un hyperplan fermé.

Exercice 4 : Séparation de deux convexes dont un ouvert

Soient A et B deux convexes disjoints et non vides de X et supposons que A est ouvert. Montrer qu'il existe un hyperplan fermé H qui sépare A et B au sens large (indication : on pourra chercher à séparer $\{0\}$ et C = A - B).

Exercice 5 : Séparation de deux convexes fermés dont un compact

Soient A et B deux convexes disjoints et non vides de X et supposons que A est fermé et B compact. Montrer qu'il existe un hyperplan fermé H qui sépare A et B au sens strict (indication : on pourra chercher à séparer $A + B(0, \varepsilon)$ et $B + B(0, \varepsilon)$).

Exercice 6 : Application à la densité d'un s.e.v.

Soit E un sous-espace vectoriel de X. Montrer que E est dense si et seulement si, pour tout f forme linéaire continue, $f \equiv 0$ sur E implique $f \equiv 0$ sur E (on pourra chercher à séparer E0 et E1 et remarquer qu'une forme linéaire majorée ou minorée sur un sous-espace vectoriel est forcément nulle dessus).

Exercice 7: Un premier contre-exemple de séparation

Supposons X de dimension infinie et soit H un sous-espace vectoriel strict dense dans X. Soit $x_0 \notin H$, montrer que $\{x_0\}$ et H sont des convexes qui ne peuvent être séparés par un hyperplan fermé.

En déduire un contre-exemple concret de deux convexes qui ne peuvent être séparés au sens large.

Exercice 8 : Un contre-exemple de séparation de deux convexes fermés

On se place dans $X = \ell^1(\mathbb{N})$ muni de sa norme usuelle. On considère les convexes fermés

$$A = \left\{ (u_n) \in \ell^1(\mathbb{N}) , u_n \ge \frac{1}{n^2} \right\} \text{ et } B = \mathbb{R}. \left(\frac{1}{n^3} \right) .$$

Soit f une forme linéaire continue telle que $f(A-B) \ge 0$ et soit $(u_n) \in \ell^1(\mathbb{N})$. Montrer que la suite

$$v_n^{\lambda} = \begin{cases} u_n & \text{si } n^3 ||u_n||_{\infty} + n \le \lambda \\ \frac{1}{n^2} & \text{sinon} \end{cases}$$

est dans A-B (car $(v_n^{\lambda}+\lambda/n^3)\in A$) et vérifie que $(v_n^{\lambda})\to (u_n)$ dans $\ell^1(\mathbb{N})$ quand $\lambda\to+\infty$. En déduire que $f\equiv 0$ sur X et donc que A et B ne peuvent être séparés.