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Introduction

A partial differential equation is an equation satisfied by the partial deriva-
tives of some unknown function which I assume to be complex valued and
defined on some open subset U of Cn. As an example, we may search for a
complex valued function y = y(u, v) defined on some domain U ⊂ C

2 which
satisfies the k-th order equation

∑

i+j≤k

ai,j
∂i+jy

∂iu∂jv
= 0, (1)

where the functions ai,j : U → C, i + j ≤ k are supposed to be sufficiently
“nice”. In fact, since the theory is only well developed for systems for which
the aij are analytic functions of the coordinates u and v this will always be
assumed in what follows.

Suppose that one tries to find a formal solution at a point (uo, vo) ∈ U :

y(u, v) =
∑ y(s,t)

s!t!
(u− uo)s(v − vo)t, y(s,t) =

∂s+ty

∂su∂tv
(uo, vo).

starting from the k-th order tail, where k is the order of the differential
equation. These tails form a vector space of polynomials up to order k
in the variables u − uo and v − vo and glue together to form a (trivial)
vector bundle Jk over U , the space of k-jets of functions U → C. Any
such polynomial

∑
y(i,j)uivj is determined by their coefficients y(i,j) which

therefore can be considered themselves as giving coordinates on the fiber of
Jk at (uo, vo). Then the equations (1) written as

∑

i+j≤k

ai,jy
(i,j) = 0 (2)

∗These notes form the written and expanded version of talks given by Bernard Mal-
grange and myself in a seminar held at the University of Grenoble Oct–Dec. 2005. The
results are not new but not easy to distill from existing literature, partly because no-
tions from partial differential equations, differential geometry and algebraic geometry are
needed and there is no uniformity when we go from one field to another. I hope that these
notes will add to the comprehension of this intersecting cross-roads.

1



define conditions on k-th order tails to be the tail-end of a formal solution
and the solutions to these equations are therefore called k-th order jet of a

solution. In fact, giving such jets is the same as giving the system! The
equation (2) defines a hypersurface inside the total space of the bundle Jk.

More generally, a subvariety Zk of Jk corresponds to a system of partial
differential equations, and a point z ∈ Zk represents a k-order jet of a
solution of the system. The first step in solving the system consists of
extending such a solution to the next order. This may or may not be possible;
in general one has to restrict to a strictly smaller subvariety of Zk. This
variety is the projection under the natural map Jk+1 → Jk of a subvariety
Zk+1 ⊂ Jk+1 which corresponds to the (k+1)st order system obtained upon
once formally differentiating the orginal set of differential equations. This
system is the called the first prolongation. Iterating this procedure yields
the higher order prolongations. The theory of formal solutions deals with
the question of whether these higher order prolongations eventually gives a
formal solution.

1 Linear Systems

Equation (1) is an example of a linear system. We have seen that we can
equivalently give it by an equation (2). Let me explain how the general form
of a linear system looks like. Let x = (x1, . . . , xn) be coordinates in an open
set U ⊂ C

n and suppose that y : U → C is a holomorphic function. It is
convenient to use multi-index notation

α = (α1, . . . , αn) , |α| =
∑n

i=1 αi , α! = α1! · · ·αn!

xα = xα1
1 · · · xαn

n ∂αx = ∂α1x1 · · · ∂
αnxn , ∂αy(x) =

∂|α|y

∂αx
.

The individual equations in a linear system L = (L1, . . . , LN ) = 0 can be
written as

Lm =
∑

α L
α
m(x)∂αy(x) = 0. (3)

If the functions L
α
m(x) are constant one speaks of a linear system with

constant coefficients. For the moment I don’t assume this.
Fix uo ∈ U , and let (Jk)uo be the vector space of k-jets of functions at

uo. This space can be identified with the space of polynomials of degree ≤ k
in the variables (x1 − uo1, . . . , xn − uon). The collection of k-jets of functions
U → C then becomes identified with the product

Jk ≃ U ×
∏

|α|≤k C

∑
|α|≤k y

α (x− uo)α

α!
7→ (uo, · · · , yα, · · · ).

The linear system (3) defines the subvariety Zk ⊂ Jk given by the equations

Lm =
∑

α

Lα
m(x)yα = 0, m = 1, . . . , N.
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This subvariety represents the k-jets of possible solutions y(x) to the system.
It meets the fibers of the projection Jk → U in a linear subspace whose
dimension may or may not vary with the fiber. 1

There is another way to describe this. Note that the cotangent space
bundle of U is trivialised by the coframe consisting of the differentials of
the functions {x1, . . . , xn}. At the point uo these together with the constant
function 1 gives a basis for the 1-jets at uo of functions U → C. The value of
the dual frame at uo is thus the basis {y1, . . . , yn}. The Fourier transform

replaces the partial derivation
∂

∂xi
by multiplication with a variable ξi in

the ring of functions in (ξ1, . . . , ξn). Making this identification we thus have

ξi = yi =
∂

∂xi

∣∣∣∣
uo

so that
TU,uo ≃ W := Cξ1 ⊕ · · · ⊕ Cξn. (4)

Then under the Fourier transform yα gets identified with the polynomial

ξα = ξα1
1 · · · xαn

n

suggesting to use the corresponding graded ring of polynomials

R =: C[ξ1, . . . , ξn] = SymW,

Rℓ =: SℓW = {space of homogeneous polynomials of deg. ℓ} ⊂ R,

R≤ℓ =:
⊕

j≤ℓ

SjW = {space of polynomials of deg. ≤ ℓ} ⊂ R.

Then at every point uo ∈ U the Fourier transformation produces out of the
system L = 0 a C-vector space

VL,uo = CF1 + · · ·+ CFN , Fm =
∑

α

Lα
m(uo)ξα ∈ R≤k. (5)

The fiber of Jk → U at uo is the vector space of polynomials in (x1 −
uo1, . . . , xn − uon). The coefficient yα of the monomial (x − uo)α has been
identified with the monomial ξα and thus is a function on this vector space
and taken together they give a dual basis for this fiber. Hence:

Lemma 1. 2 Using (4) there is a canonical identification of the fiber of

Jk → U at uo and the dual [R≤k]
∗. of R≤k. The fiber of Zk → U at uo is

the annihilator V ⊥
L,uo of VL,uo inside [R≤k]

∗.

1In the general case Zk → U is locally a product of this sort but only when we leave
out certain exceptional subvarieties from U .

2This anticipates a more general result (Lemma 18) to be proven later.

3



Let us now discuss the notion of prolongation in this simplified setting.
Suppose that y(x) is a solution of (3). Then not only

g(x) = f(x, · · · , ∂αy(x), . . . ) = 0

but also
∂g(x)

∂xj
= 0, for every j = 1, . . . , n. By the Chain Rule these new

equations are obtained by substituting yβ = ∂βy(x) in the following system
consisting of the nM equations

Lj
m =

∑
α(L

α
m)′yα + L

α
myα+1j = 0, m = 1, . . . , N, j = 1, . . . , n. (6)

Here α + 1j = (α1, . . . , αj + 1, . . . , αn). The system obtained after adding
these equations, denoted L(1) = 0, is called the first prolongation of the
system L = 0. It defines a subvariety Zk+1 ⊂ Jk+1. The ℓ-th prolongation

L(ℓ) = 0 is then defined by repeating this process ℓ times, obtaining Zk+ℓ ⊂
Jk+ℓ.

Example 2. Let us assume that the coefficients are constants so that the
first term in the equations (6) do not appear. So, if the Fourier transform
of the system is given by a vector subspace V ⊂ R≤k, the first prolongation
is corresponds to V (1), where

V (ℓ) =
∑

|β|≤ℓ

ξβV. (7)

Prolongations come up naturally when solving a system by a formal

power series y(x) :=
∑

|γ|≥0

yγ
(x− uo)γ

γ!
with given initial condition uo

k =

(uo, · · · ,uα, · · · ) ∈ p−1
k (uo)∩Zk. Points of Zk represent all possible solutions

up to order k. Adding the next term of the solution corresponds to a point
in Zk+1 and if the projection of Zk+1 is strictly contained in Zk there are
obstructions to extending a given solution to the next order. Clearly, we
can iterate the process of prolonging and define the ℓ-th prolongations which
gives a subvariety Zk+ℓ ⊂ Jk+ℓ. If at each stage the projections Zm+1 → Zm,
m = k, . . . , ℓ − 1 are surjective, there are no obstructions and we can use
points in Zk+ℓ to a find solution up to order k + ℓ.

Example 3. In the case of constant coefficients, in terms of the associated
vector spaces, the projection is given by the subspace V

L(1),uo ∩ R≤k. Al-
ready in this situation this space might be different from VL,uo . This does in-
deed happen. For example, consider on C

2 with coordinates u, v the system
yu = yvv = 0 with associated vector space having basis {ξ1, ξ

2
2}. Its first pro-

longation has associated vector space having basis {ξ1, ξ1ξ2, ξ
2
2 , ξ

2
1 , ξ1ξ

2
2 , ξ

3
1}

and in degree 2 two new generators presents itself. In terms of the jet spaces,
the projection of the space Z3 is contained in Z2 and has codimension 2 in
it given by the extra equations y1,1 = y2,0 = 0.
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SkW

V ⊥
L ⊂ [R≤k]

∗

V ⊥
L(1)

V ⊥
L(1) ∩ [R≤k]

∗

Figure 1: Fibers of the projection Zk+1 → Zk

To understand the prolongation from Zm to Zm+1 from a geometric point
of view, fix uo ∈ U and a point uo

m ∈ Zm lying over uo. Compare the fiber
Fm+1 ≃

∏
|α|≤mC over uo of the projection Jm+1 → U with the fiber Fm

of Jm → U over the same point. One sees that Fm ⊂ Fm+1 is the vector
subspace given by the equations yα = 0, |α| = m+ 1. The projection pm+1

restrict to a projection qm+1 : Fm+1 → Fm and the fiber p−1
m+1(u

o,uo
m) can be

identified with the affine space Fuo
m
= ker qm+1+u0

m. The subvarieties Zm ⊂
Fm define (vector) subspaces Ym ⊂ Fm and a point uo

m is the projection of
a point on Zm+1 precisely when the fiber Fuo

m
meets Ym+1.

This can also be formulated in terms of the Fourier transform as fol-
lows. Let me simplify the notation by denoting the Fourier transform
at the point uo of the ℓ-fold prolonged system by V (ℓ) (instead of V

L(ℓ)).
Since Yk+ℓ ⊂ Fk+ℓ is the annihilator of the subspace V (ℓ) ⊂ Rk+ℓ while
Yk+ℓ+1 ⊂ Rk+ℓ+1 is the annihilator of the space V (ℓ+1) ⊂ Rk+ℓ+1, the pro-
jected subspace qk+ℓ+1Yk+ℓ+1 is the annihilator of V (ℓ) ∩ Rk+ℓ ⊂ Rk+ℓ.
Working directly inside Yk+ℓ = [Rk+ℓ/V

ℓ]∗ this can be considered as a col-

lection of “equations”
[
V ℓ+1) ∩Rk+ℓ/V

]⊥
. Evaluating this system in a point

uo
k+ℓ ∈ Yk+ℓ, one gets zero exactly when this point is the projection of a

point of Yk+ℓ+1. Let me summarize what one has proved so far:

Proposition 4. For all m ≥ k, let V (ℓ) be the Fourier transform at the

point uo of the ℓ-fold prolonged system. A point (uo,uo
k+ℓ) ∈ Zk+ℓ is in the
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projection of Zk+ℓ+1 → Zk+ℓ precisely when
[
V (ℓ+1) ∩R≤k+ℓ/V

(ℓ)
]⊥∣∣

uo
k+ℓ

=

0.

This result gives the obstructions to formally extending an m-th order
solution to an (m + 1)-th order solution. If these obstructions are present,
we need to restrict our initial condition further down to the image of Zm+1

inside Zk.

Example 5. After a finite number of steps we might end up with the zero-
section Zℓ which means that there are only polynomial solutions. This
indeed is possible as shown by the system yu = yvv = 0. In this example Z3

projects to a lower dimensional subvariety of Z2 but for k ≥ 3 the variety
Zk+1 just consists of the 0-section of Jk+1 → Jk and hence surjects onto Zk.

One would like to construct some prolongation Zℓ such that all ℓ-th order
solutions extend to a formal solution. This is equivalent to the statement
that the projections Zℓ+1 → Zℓ are all surjective from ℓ = m on. The
smallest such ℓ is the prolongation threshold and the system then will be
called m-regular. The original system of order k has to be replaced with
the prolonged system which is of order m. By its very nature, the solutions
for the prolonged system are the same as those for the original system. To
prove that one has a finite prolongation threshold is not straightforward,
even in the case of constant coefficients:

Example 3 (bis). Continue with Example 3. Let V ⊂ R≤k be the Fourier
transform of a given linear system with constant coefficients and let V (q)

be the Fourier transform of the q-fold prolonged system. The system is
m-regular precisely if

V (k+ℓ+1) ∩R≤(k+ℓ) = V (k+ℓ) for all ℓ ≥ m. (8)

This poses a non-trivial algebraic problem. It will be addressed in § 3. The
central feature here is that one only needs to prove (8) only for some ℓ which
then automatically is an upper bound for the prolongation threshold.

Let me return to the general situation of possibly non-constant coeffi-
cients. The Fourier transform at uo of the system is a finite dimensional
vector subspace V of the polynomial ring R with generators in degrees ≤ k,
the rank of the system. It generates an ideal IV which in general is not ho-
mogeneous. There is a canonical homogeneous ideal associated to IV which
turns out to be easier to handle:

Definition 6. The symbol ideal at uo is the ideal generated by the homoge-
neous top-degree parts of the degree k generators of the Fourier transform
of the system. I.e. the ideal generated by skuo(Lm) :=

∑
|α|=k L

α
m(uo)ξα.

Example 7. Consider on U = C
2 the system 1 + yu + 2yuv = 0, yv + yvv = 0

then its associated vector space V has basis {1 + ξ1 + 2ξ1ξ2, ξ2 + ξ22} while
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its symbol ideal is (ξ1ξ2, ξ
2
2). In multi-index notation the system is given

by y0,0 + y1,0 + 2y1,1 = y0,1 + y0,2 = 0. The standard monomial basis
for W := R≤2 is dual to the basis {1 = y0,0, y1,0, y0,1, y2,0, y1,1, y0,2} for∏

|α|≤2C. In other words, every yα is a function on W and Zk = Yk × U
where Yk is the annihilator of V , i.e. the linear subspace of

∏
|α|≤2C given

by the equations y0,0 + y1,0 + 2y1,1 = y0,1 + y0,2 = 0.

The notion of Castelnuovo-Mumford regularity for this ideal is just the
tool to find a lower bound for the prolongation threshold. It is the subject
of study of the next section.

2 Castelnuovo-Mumford Regularity

Consider the polynomial ring R which is the symmetric tensor algebra on
a vector space W together with a given basis {ξ1, . . . , ξn} for W . Then the
Koszul sequence associated to these data is:

0 → ΛnW ⊗R
dn
−−→ · · ·W ⊗R

d1
−−→ R,

where dj : ΛjW ⊗ R → Λj−1W ⊗ R is given by dj(v1 ∧ · · · ∧ vj ⊗ F ) =∑j
k=1(−1)k(v1 · · · v̂j · · ·∧vj)⊗vkF . Note that this sequence is homogeneous

in that dj(Λ
jW ) ⊗ Rm ⊂ Λj−1W ⊗ Rm+1. It is not hard to show that it

is exact. In fact, the evaluation map R → C combined with the Koszul
sequence gives a free resolution for C by R-modules. Tensoring the above
Koszul sequence with any R-module M produces the Koszul sequence

K•(M) := [0 → ΛnW ⊗R M
dn
−−→ · · ·W ⊗R M

d1
−−→ M ].

The sequence K•(M) need not be exact: its homology gives TorRp (C ,M).
If, in addition, M is a graded R-module, for instance a homogeneous ideal
in R or a quotient thereof, we have in fact

Hp,q(K•(M)) = TorRp (C,M)p+q

:= H
(
Λp+1W ⊗Mq−1 → ΛpW ⊗Mq → Λp−1W ⊗Mq+1)

)
.

The notion of regularity uses these spaces:

Definition 8. The graded R-module M is r-regular if Hp,q(K•(M)) = 0
for all p and all q ≥ r. The minimal such r is called the regularity of M ,
denoted regM . In other words, K•(M) is exact on the submodule of M in
degrees ≥ regM but not in smaller degrees.

Example 9. The module M = R≥k has regularity k + 1 since H0,k(M) 6= 0
but Hp,q(M) = 0 for all p and q ≥ k + 1. If a module M is generated in
degrees k and higher, the regularity of M must be ≥ k + 1 for the same
reason: H0,k(M) 6= 0.
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Suppose that M = Mk ⊕Mk+1 ⊕ · · · , and the regularity of M is k + ℓ.
Fix m ≥ k+ ℓ− 1. Then on the one hand the regularity of M ′ = M≥m−1 is
≥ m and on the other hand since Hp,q(M) = Hp,q(M

′) for q ≥ m− 1, one
has Hp,q(M

′) = 0 for q ≥ m. It follows that the regularity of M ′ equals m.

Using the symmetry of Tor the cohomology groups of Hp,q(K•(M)) can
also be found from a free resolution of the module M . In fact special type
of resolutions can be used. To define them a special notation is needed: for
any graded R-module M the notation M(k) means that the degree ℓ part
of M(k) is the degree k + ℓ-part of M . In other words, the degree has been
shifted k places down. This is useful if one wants degree zero maps between
graded modules. For instance a degree 1-map f : M → M is the same as a
degree zero map f : M(−1) → M . With this convention maps in complexes
can always be assumed to have degree 0. Now, if M = Rk is a free R-
module, these maps are given as matrices of polynomials whose degrees are
coded by writing such a map as

⊕
iR(−si)

ai →
⊕

j R(−tj)
bj . The matrix

then consists of blocs of size ai × bj with only homogeneous polynomials of
degree si − tj.

Definition 10. Let M be a graded R-module. A minimal free resolution

of M is an exact sequence

· · · → F p dp
−−→ · · · → F 1 → F 0 → M → 0,

F p =
⊕

q

R(−q)n(p,q). (9)

Moreover, the matrices for the maps dp do not contain constants.

Remark 11. In this set-up one sees that

dimTorRp (C,M)p+q = n(p, p+ q) in (9).

It follows that M is r-regular if and only if n(p, p+q) = 0 for all q ≥ r. This
implies that in the matrices of a minimal free resolution only polynomials
of degrees 1, . . . , r can occur. However, one cannot read off the regularity
from these degrees as shown by the following example.

Example 12. Consider the ideal I = (ξ3, η3) in the ring C[ξ, η]. Its minimal
free resolution is

0 → F 1 = R(−6)





−η3

ξ3





−−−−−−→ R2(−3) = F 0 → I → 0.

hence the only non-zero n(p, q) are the numbers n(0, 0+3) = 2, n(1, 1+5) = 1
and so the regularity is 5 + 1 = 6 while only polynomials up to degree 3
occur.
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3 Regularity and Linear Systems with Constant

Coefficients

Let me continue with Example 12. The Fourier transform of the system
yuuu = yvvv = 0 is given by Cξ3 + Cη3 with symbol ideal I = (ξ3, η3). The
ideal I(2) = (ξ5, ξ4η, ξ3η2, ξ2η3, ξη4, η5) equals R≥5 and hence has regularity
6. The ideal I(2) is the symbol ideal of the system obtained after twice
prolonging this system and hence its regularity is one more than the rank
of the corresponding system. Indeed, this is generally true, it is just a
translation of what has been observed in Example 9:

Fact 13. If the regularity of the symbol ideal equals k + ℓ, ℓ ≥ 1, after

m ≥ ℓ− 1 prolongations its regularity becomes k + ℓ+m.

I use this remark in conjunction with the following result for which we
first need a definition:

W ⊂ R≤k saturated in lower degrees ⇐⇒ ξj[W∩R≤(k−1)] ⊂ W, ∀ j = 1, . . . , n.

Of course, if the above property holds, we also have

ξα[W ∩R≤(k−ℓ)] ⊂ W, for all ℓ = 1, . . . , k and α with |α| = ℓ. (10)

Since taking one prolongation has the effect of adding all the missing gener-
ators in lower degrees, the Fourier transform of the once prolonged system
is saturated in lower degrees and hence one may always assume from the
start that this is the case. The central result is:

Proposition 14 (Malgrange). Assume that W is saturated in lower degrees.

Let ĪW be the ideal generated by the top degree homogeneous parts F̄ of

elements F ∈ W . Referring to (7) there is a natural surjection

τ : Z1,k(K•(ĪW )) := ker
[
R1 ⊗ [ĪW ]k

d1
−−→ [ĪW ]k+1

]
→

W (1) ∩R≤k

W
, (11)

where d1 is the Koszul map sending F ⊗ G to FG. This map factors over

H1,k(K•(ĪW )). In particular, if ĪW is k-regular, W = W (1) ∩R≤k.

Proof. As in the proposition, let me use overlines to denote the highest
degree homogeneous part of any polynomial. A one-cycle in the Koszul
complex at degree k corresponds to an n-tuple of polynomials F1, . . . , Fn in
W such that

∑
j ξjFj = 0. This means precisely that

∑
j ξjFj ∈ W (1) ∩

R≤k. This element is not uniquely determined by (F1, . . . , Fn), since it is
determined by the homogeneous parts Fj of the Fj of degree k. So any other
n-tuple of polynomials in W with the same leading terms give an element
which differs from

∑
ξjFj by an element in

∑
ξj[W ∩ R(k−1)], which by
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saturation belongs to W . So the map τ defined by (F1, . . . , Fn) 7→
∑

ξiFi

mod W is well defined and clearly surjective.
It remains to show that it is zero on co-boundaries, i.e. if one has Fj =∑

j ξiξjGij where Gij ∈ R≤k−2∩W . We may assume that Gij = −Gji. Now
consider Hj = Fj −

∑
i ξiGij ∈ R≤k−1. Since W is saturated, Hj ∈ W and,

again by saturation, it follows that
∑

j ξjHj =
∑

ξjFj ∈ W ∩ R≤k so that
τ(
∑

ξj ⊗ Fj) = 0 as desired.

Corollary 15. Let V be the Fourier transform of a k-th order linear sys-

tem with constant coefficients. After finitely many prolongations the system

becomes formally solvable.

Proof. The symbol ideal IV has regularity k+ℓ, ℓ ≥ 1 since it is generated in
degrees k. Put W = V (ℓ), a subspace of R≤(k+ℓ) saturated in lower degrees
(since ℓ ≥ 1). The associated ideal ĪW is not the symbol ideal of W , but
strictly larger since it has generators in degrees k. In fact ĪW = IV by
construction and hence has regularity k + ℓ. So the above Lemma can be
applied. It follows that the desired condition (8) for formal solvability is
verified for the ℓ-fold prolonged system.

4 From a General Analytic System of PDE to Jets

The general problem is to solve a system of differential equations of order k
given by

fm(x, · · · , yα, · · · ) = 0, m = 1, . . . , N, |α| ≤ k. (12)

Again y : U → C is an unknown function3 and as before the functions fj
are functions defined on Jk = U ×

∏
|α|≤k C. The system (12) is called an

analytic system if these functions are all holomorphic in both the variables
x and yα. In other words, an analytic system of PDE can be interpreted as
being given by an ideal

Jk = (f1, . . . , fN ), fj holomorphic on Jk.

The locus of zeros is denoted by Zk. As before, a function y : U → C is
a solution y(x) for the system (12) (valid on U) if (12) is identically true
when we substitute for yα the α-th derivative of y(x).

This can be viewed more intrinsically as follows. Consider the projection
p = p0 : J0 = U × C → U = J−1. A function x 7→ y(x) is the same as a
section s(x) = (x, y(x)) for the projection, and one has

Lemma 16. Points of Jk correspond one to one to k-jets of sections of the

bundle p : U × C → U . More precisely, given uo ∈ U , the fiber of Jk → U
over uo consists of k-jets at uo of sections for p.

3We may also consider functions y : U → C
r; the theory changes very little, roughly

we have to take factors C
r instead of C in the definition of the jet-spaces Jk below.
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One word of explanation. The Taylor expansion for the function y(x) at
uo can be written

y(x) =
∑

0≤|α|≤k

yα(uo)
[x− uo]α

α!
+ higher order terms

= jkuo(y) + higher order terms.

(13)

The degree ≤ k-part jkuoy) is called the k-jet of s (or of y) at uo. A jet
at uo gives a point in

∏
|α|≤k C

α. Conversely, a point with coordinates

(uo, · · · , yα, · · · ) then corresponds to the k-jet
∑

0≤|α|≤k

yα
(x− uo)α

α!
. It is

important to observe that any section determines a k-jet at every point, but

a given k-jet need not come from a section.

In this set-up, a solution to (12) valid on U is a section s(x) whose k-jet
jks at any point uo ∈ U satisfies the equations fm = 0, m = 1, . . . , N .

5 Jet Spaces

In this section I briefly review how the formalism of jet-spaces can be set up
invariantly. See [Saun, §4 and §6].

The point of departure is a surjective submersive holomorphic map p :
Y → X. In the previous section X = U , Y = U ×C and p is the projection
and the coordinates (x1, . . . , x,y) respected the projection. In the general
set-up the implicit function theorem shows that locally Y is biholomorphic
to a product U × V where U is open on X and p becomes the projection
U × V → U . For simplicity one may assume that U , respectively U × V is
a coordinate patch on X and Y respectively. Such coordinate patches give
by definition p-adapted coordinates (x1, . . . , xn, y1, . . . , yr) where the xj are
coordinates on U ⊂ X and the yj are the “vertical” coordinates. In the
previous section we had r = 1 and for simplicity of notation we continue to
assume this. Take any section s : X → Y for p. Suppose we take p-adapted
coordinates (x1, . . . , xn, y) at a given point y0 = s(uo) so that we may write
and s(x) = (x, y(x)). Now, and this is the crucial point, the value at this

point of the partial derivative ∂αy(x1, . . . , xn) is independent of the choice

of adapted coordinates. This requires a small calculation involving changes
of adapted coordinate sets. This will be omitted since a similar calculation
will be done below. This remark makes it possible to define:

Definition 17. Two germs of sections at uo are m-jet equivalent if their
partial derivatives up to order m in some adapted (and hence any) set of
coordinates are the same. An m-jet jmuo(s) of a germ of a section s at uo is
the equivalence class of s under m-jet equivalence.

The m-jets at a given point naturally form a finite dimensional vector
space. Indeed, on any fixed adapted coordinate patch with coordinates

11



(x1, . . . , xn, y) for every multi-index α with |α ≤ k new coordinates yα can
be introduced as in the previous section. This proves also that the collection
of all m-jets forms a complex manifold Jm, the total space of a bundle with
fibers vector spaces isomorphic to

∏
|α|≤mC. More precisely:

Lemma 18. Put p = p0 and J0 = Y ; for 0 ≤ ℓ < k set pkℓ = pℓ◦ · · · ◦pk :
Jk → Jℓ. The bundles Jℓ+1 → Jℓ are affine bundles whose associated vector

bundle on Jℓ is

Tℓ := (p0ℓ)
∗SℓT ∗

X ⊗ (p1ℓ )
∗TY/X .

Proof. Rather than giving the proof in general, let me give the crucial calcu-
lation for ℓ = 0. So I have to show how the vector bundle p∗T ∗

X ⊗TY/X acts
fibrewise on J1 → Y . This will be done in adapted coordinates (x1, . . . , xn, y)
on Y and using the associated coordinates (x1, . . . , xn, y, y

11 , . . . , y1n) on J1.
Here 1k is shorthand for the row of length n having zeros everywhere except,
on the k-th place, which shows a 1. Let

∑
ξj

(
dxj ⊗

∂

∂y

)
∈ p∗T ∗

X ⊗ TY/X .

It operates on a point with coordinates (a1, . . . , an, b, b
11 , . . . , b1n) by sending

it to (a1, . . . , an, b, b
11 + ξ1, . . . , b

1n + ξj). This is compatible with changes in
adapted coordinates as one can check. Start with a 1-jet j(s) := j1uo(s) and

let (x̃1, . . . x̃n, ỹ11 , . . . , ỹ1n) be a new set of adapted coordinates. Then

ỹ1j [j(s)] =
∂[y◦s]

∂x̃j

∣∣∣∣
uo

=
∑

k

[
∂ỹ

∂xj

∣∣∣∣
s(uo)

+
∂ỹ

∂y

∣∣∣∣
s(uo)

y1k [(j(s)]

]
∂xk
∂x̃j

∣∣∣∣
uo

.

This shows once again the affine nature of the bundle and that the linear
part changes as a section of the bundle p∗T ∗

X ⊗ TY/X , as claimed.

The associated vector bundle can de described alternatively as follows.
The vector bundle TJm+1/Jm is intrinsically a vector bundle on Jm+1: the
fiber at um+1 consists of vectors tangent to Jm+1 at um+1 which project to
zero under pm+1 : Jm+1 → Jm. However, for all points on the fiber F of
pm+1 through um+1 the vector space Tum+1 is the same space: since F is
an affine space its tangent space at each point is the vector space associated
to the affine space F . The following result then follows by inspecting what
happens under coordinate changes.

Lemma 19. One has TJm+1/Jm = p∗m+1Tm where the vector bundle Tm on

Jm is the vector bundle associated to the affine bundle pm+1 : Jm+1 → Jm.

Hence

TJm+1/Jm = (p0m+1)
∗SmT ∗

X ⊗ (p1m+1)
∗TY/X

12



6 Prolongations and Formal Derivatives

Let me first introduce for any holomorphic function g on Jk a formal deriva-

tive in the xj-direction as follows

Djg :=
∂g

∂xj
+

∑

|α|≤k

∂g

∂yα
yα+1j , (14)

where I recall that α+1j = (α1, . . . , αj +1, . . . , αn) and hence the left hand
side has to be interpreted as a holomorphic function on Jk+1 which requires
that g be considered as a function on Jk+1 via the projection pk+1. These
formal derivatives come up naturally when substituting a k-th order solution
and derivating once the equations of the system:

∂g(x, . . . , yα(x), . . . )

∂xj
=

∂g

∂xj
(x, . . . , yα(x), . . . )+

+
∑

|α|≤k

∂g

∂yα
(x, . . . , yα(x), . . . )yα+1j (x)

= Djg(x, . . . , y
α(x), . . . ).





(15)

From this the following is obvious:

Lemma 20. If y(x) is a solution of the system (12), then it is also a solution

of the system Djfm = 0, m = 1, . . . , N , j = 1, . . . , n.

This motivates to introduce:

Definition 21. The first prolongation of the system (12) is given by the
system with equations

fm◦pkk+1 = 0, m = 1, . . . , N

Djfm = 0, j = 1, . . . , n, m = 1, . . . , N.

Its associated ideal and variety are denoted by Jk+1 and Zk+1 respectively.

Clearly, this procedure can be iterated to obtain prolongations Zk+ℓ for
any ℓ ∈ N defined by the ideals Jk+ℓ. Its equations involve the higher formal
derivatives

Dβ = Dβ1
1

◦ . . . ◦Dβn
n

which by (15) come up in the Taylor expansion of the composite functions
x 7→ g(jkuoy) (see also (13)):

g(jkuoy) =
∑

Dβg(uo, . . . , yα(uo), . . . )
(x− uo)β

β!
. (16)

13



This ties in with the method of formally solving (12). As in the linear case,
one tries a solution

y(x) :=
∑

|γ|≥0

yγ
(x− uo)γ

γ!
(17)

obeying the initial condition

uk = (uo, · · · ,uα, · · · ) ∈ p−1
k (uo) ∩ Zk. (18)

The new conditions areDβg(uo, . . . ,uα, . . . ) = 0 which explicitly read (using
(15) repeatedly):

∂βfj

∣∣∣
uk

+
∑

|α|≤k

∂|β|fj

∂yβ

∣∣∣∣∣
uk

yα+β = 0, j = 1, . . . , N, |β| ≥ 1. (19)

For |β| = 1 these give the extra equations needed to define the first pro-
longation Zk+1. The old constants uα for |α| ≤ k still might be present
in the new equations. Eliminating the new constants yα+1j from the new
equations yields equations for the image of the projection pk+1Zk+1 inside
Zk. These equations are the new integrability conditions for the first prolon-
gation. If these don’t come up, i.e. when pk+1Zk+1 = Zk we say that there
are no (k + 1)-st order obstructions to formal solutions. In that case, writ-

ing uγ instead of yγ for the new indices, y≤k+1 :=
∑

0≤|γ|≤k+1

uγ (x− uo)γ

γ!

is called a formal solution up to order k + 1. By construction the point
uk+1 := (uo, . . . ,uα, . . . ), |α| ≤ k + 1 belongs to Zk+1 and pk+1uk+1 = uk.
Clearly this procedure can be iterated and yields obstructions to m-th order

prolongation. When these are absent for m = 1, . . . , ℓ there exist formal

solutions up to order k + ℓ

y≤k+ℓ :=
∑

0≤|γ|≤k+ℓ

uγ (x− uo)γ

γ!

and points

uk+ℓ := (uo, . . . ,uα, . . . ) ∈ Zk+ℓ, |α| ≤ k + ℓ (20)

mapping to uk under the projections Zk+ℓ → Zk. Clearly, a solution gives
formal solutions up to every order. Conversely, a formal power series

∑

|γ|≥0

yγ
tγ

γ!
∈ C[[t1, . . . , tn]], t = x− uo,

whose truncation to every finite order k+ ℓ gives a formal solution is called
a formal solution. If the above formal series converges, it follows from what
has been said so far that it is an actual solution.

14



7 Geometric Interpretation

In § 5 I showed that the bundle Jm → J0 = U × C is an affine bundle with
fiber

∏
|α|≤mC and that the successive projections pm : Jm → Jm−1 are

affine bundles with fibers
∏

|α|=mC with associated vector bundle Tm−1 for
which TJm/Jm−1

= p∗mTm−1.
The method of step-by-step constructing a solution leads naturally to

the study of relative differentials δg of holomorphic functions g on Jm. The
ordinary differentials dg are sections of the cotangent bundle ΩJm. Relative
differentials are sections of the relative cotangent bundle

ΩJm/Jm−1
:= ΩJm/p

∗ΩJm−1 .

By way of explanation: the relative tangent bundle of pm is the kernel of the
surjection TJm → p∗mTJm−1 and the relative cotangent bundle is the dual,
hence equals the image ΩJm/p

∗ΩJm−1 . The relative differential of g then is
calculated pointwise: at a point b ∈ Jk we should take the image of dgb in
the fiber at b of this quotient bundle.

Observe also that ΩJm/Jm−1
is the trivial bundle over Jm with basis δyα

with |α| = m and one may write4

δg =
∑

|α|=k

gαδy
α, gα ∈ O(Jk).

The process of going from Jm to Jm+1 is described by the operators

ξj : p
∗
m+1ΩJm/Jm−1

→ ΩJm+1/Jm

δyα 7→ δyα+1j .
(21)

Let me formulate this in a more canonical way. Dualizing Lemma 19 gives

ΩJm+1/Jm = (p0m+1)
∗SmTU ⊗ (p1m+1)

∗ΩU×C/U

so that one may write δyα = (p0m+1)
∗∂α ⊗ dy, where

∂α =

(
∂

∂x1

)α1

· · ·

(
∂

∂xn

)αn

∈ SmTU .

The above map (21) becomes multiplication

(p0m+1)
∗Sm−1TU ⊗ (p1m+1)

∗ΩU×C/U

ξj
−−→ (p0m+1)

∗SmTU ⊗ (p1m+1)
∗ΩU×C/U

induced by the bundle homomorphism

Sm−1TU → SmTU

∂α 7→ ∂α+1j .

4On a complex analytic space X the sheaf of germs of holomorphic functions on X is
denoted as usual by OX . Then O(X) denotes the ring of all holomorphic functions on X.
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This comes from multiplication by an element ξj ∈ TU = U × C
n.

Starting with the rank one free module ΩU×C/U = OU [δy] one can iterate
this: for every multi-index α of length ℓ one gets

δyα = ξαδy ∈ OJℓ [δy][ξ1, . . . , ξn]ℓ,

where the right hand side means polynomials of degree ℓ in the variables
ξ1, . . . , ξn. More intrinsically, as noticed before, the right hand side should
be replaced by

(p1ℓ )
∗ΩU×C/U ⊗ (p0ℓ )

∗SℓTU .

For any holomorphic function g on Jm its relative differential can be written
as

δg =
∑ ∂g

∂yα
δyα =

∑ ∂g

∂yα
ξαδy.

The easily verified but crucial formula relating all this with the formal deriva-
tive is

δ(Djg) = ξjδ(g), (22)

which may be rephrased as:

On differentials on Jm, the formal derivative Dj corresponds to

multiplication with ξj in the sheaf of rings OJm[ξ1, . . . , ξn].

Now to symbols! Loosely speaking passing to a symbol means that one
only pays attention to highest degrees of truncated formal solutions. More
precisely:

Definition 22. 1. Let g ∈ OJm . The m-th order symbol of g is the class
of δg in ΩJm/Jm−1

≃ OJm [ξ1, . . . , ξn]m where the right hand side are
the homogeneous expressions in the ξj of degree m. The symbol of g
as viewed in OJm [ξ1, . . . , ξn]m will be denoted by sm(g).

2. For every g ∈ Jm, the ideal defining the (m − k)-th prolongation
of (12) its symbol s̄m(g) is defined to be the class of sm(g) modulo
the ideal Jm, i.e. s̄m(g) ∈ OZm [ξ1, . . . , ξn]m. The submodule Nm ⊂
OZm [ξ1, . . . , ξn]m generated by the symbols s̄m(g), g ∈ Jm is called the
m-th order symbol of Jm; the ideal Im ⊂ OZm [ξ1, . . . , ξn] its symbol

and the quotient Mm = OZm [ξ1, . . . , ξn]/Im its characteristic module.

Remark 23. Another way of obtaining the symbol s̄mg is by first taking the
class dg of g in Jm/J2m. Note that the totality of these classes generate the
conormal sheaf of Zm which is a subsheaf of ΩJm ⊗OZm . In general it is a
coherent OZm-module, but if Zm is a manifold it is locally free (the dual of
the conormal bundle of Zm in Jm). Its quotient is the coherent OZ -module
ΩZm which in the smooth case is the locally free sheaf of holomorphic 1-
forms on Zm. Dividing out the conormal sheaf by p∗m−1ΩJm−1 ⊗OZm gives
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the coherent OZm-module Nm. Finally, the symbol s̄mg of g is the class of
dg in this OZm-module.

As to the characteristic module, note that dividing out ΩZm by p∗m−1ΩJm−1⊗
OZm gives the relative cotangent sheaf ΩZm/Jm−1

, and so

Mm = ΩZm/Jm−1
. (23)

I now relate this to the method of formal integration explained above.
For any solution (17) first consider its (k + ℓ)-th order part

yk+ℓ =
∑

|γ|=k+ℓ

yγ
(x− uo)γ

γ!
.

Since the coefficients yγ in this expression give a point in the fiber at the
point uk+ℓ (20) of the vector bundle TJk+ℓ/Jk+ℓ−1

one has

yk+ℓ ∈ [TJk+ℓ/Jk+ℓ−1
]uk+ℓ

≃ C[x− uo]k+ℓ.

Dually
[ΩJk+ℓ/Jk+ℓ−1

]uk+ℓ
≃ C[ξ1, . . . , ξn]k+ℓ,

where one pairs yk+ℓ and η =
∑

aβξ
β as follows: 〈η, yk+ℓ〉 =

∑
aβy

β which

means precisely that ξβ acts as the partial derivative ∂|β|

∂xβ on the function
yk+ℓ at the point uo. So this duality corresponds precisely to the Fourier

transformation:

Lemma 24. The highest order term yk+ℓ in a formal solution up to order

k + ℓ at a point uk+ℓ ∈ Zk+ℓ corresponds via the Fourier transform to a

(k + ℓ)-th order symbol:

sk+ℓ(y≤(k+ℓ)) ∈ [Ik+ℓ]uk+ℓ
⊂ [OZk+ℓ

]uk+ℓ
[ξ1 . . . , ξn]k+ℓ.

Let me continue the geometric study of the jet bundles. The prolonga-
tions give rise to subvarieties Zk+ℓ ⊂ Jk+ℓ and the successive projections
pk+ℓ+1 by definition map Zk+ℓ+1 to Zk+ℓ.

It is not at all clear a priori that the tower of varieties Zk+ℓ, k ∈ N

eventually stabilizes. One is not only adding new equations but also new
variables. So one needs an analog of the Hilbert basis theorem in this setting
which states that the ascending chain of ideals which is being constructed in
fact stabilizes, and, moreover, if the ideal is not the entire ring (which is the
case here) then the ideal really defines a non-empty variety. In the algebraic
setting this is not too hard. It follows from Ritt’s analog of the Hilbert basis
theorem [Ritt] in the setting of differential ideals. In the analytic case this
is much harder. See for instance [Malg05, Chap. V].

It turns out that the considerations in the next section show that one
does not need the entire strength of Ritt’s result. It will be shown that one
can get by assuming just the following crucial

Fact 25. Restricting U to a Zariski dense open subset, for some sufficiently

large m ∈ N the projection Zm+1 → Zm is surjective.
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8 Enter: Regularity Conditions

The situation and notation is as before. By Fact 25, one may assume that
after possibly replacing U by a Zariski-open dense subset, for some m ≥ k
the projection Zm+1 → Zm is surjective. By Remark 23, at any given point
um+1 ∈ Zm+1 one has [ΩZm+1/Zm

]um+1 = [Mm+1]um+1 . Hence

Lemma 26.

ΩZm+1/Zm
= Mm+1.

If Mm+1 is locally free, pm+1 exhibits Zm+1 as an affine bundle over its

image and so, if Zm is smooth, also p−1
m+1Zm+1 is smooth. In particular,

since pm+1 : Zm+1 → Zm is onto, Zm+1 is smooth.

The previous lemma summarizes the geometric content of the regularity
conditions:

Definition 27. A system of partial differential equations is m-regular if

1. the m-fold prolongation defines a smooth variety Zm ⊂ Jm, the char-
acteristic modulesMm and Mm+1 for the m-th and (m+1)-th prolon-
gations respectively, are locally free; and the projection Zm+1 → Zm

is surjective;

2. for every um ∈ Zm the module [Mm]um is m-regular in the sense of
Castelnuovo-Mumford.5

If m = k the system is called regular.

The crucial result is:

Theorem 28. If a system of partial differential equations is regular, all

prolongations are regular.

Corollary 29. A regular system has formal solutions with any given initial

condition given by a point on the variety the system defines.

Remark 30. 1) If a system is not regular, it is still true that the symbol ideal
Ik+ℓ for the ℓ fold prolonged system will be (k+ℓ)-regular for some ℓ ≥ 0 and
by Example 9, the ideal Ik+ℓ will be (k+ℓ)-regular. The geometric conditions
1 in the definition of regularity are true over a Zariski-open subset of Zk

and similarly over a Zariski-open subset of Zk+ℓ. This can be achieved upon
replacing Zk by the smaller subset Zℓ

k which is the image of the projection
of Zk+ℓ to Zk. This corresponds to replacing the original system by an
equivalent system. Now for general points in Zℓ

k this system is formally
solvable: just prolong ℓ times to obtain a regular system and apply the
preceding Corollary.

5Equivalently: the symbol ideal Im is (m+ 1)-regular.
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2) By a long series of estimates one can show that the formal solutions one
constructs with the above methods are in fact convergent. The result is the
Cartan-Kähler theorem stating that the formal solution for regular systems
are convergent, hence regular systems have analytic solutions. See [Malg05,
Chap III]

Start of the proof theorem 28. By definition of the formal derivatives, Dj

corresponds to multiplication with ξj on the level of differentials. So the
ideal Ik+1 is generated as ideal inside OJk+1

[ξ1, . . . , ξn] by p−1
k+1Ik and the

ξj i.e. Ik+1 = p−1
k+1Ik · OZk+1

[ξ1, . . . , ξn]≥k+1. In other words, at a given
point uk+1 ∈ Zk+1 the corresponding ideal I ′ = [Ik+1]uk+1

⊂ C[ξ1, . . . , ξn]
is obtained from the ideal I = [Ik]uk

⊂ C[ξ1, . . . , ξn] by multiplying the
generators by some ξj , i.e. I

′ = Iξ1 + · · · Iξn. By Example 9 if I is (k− 1)-
regular then I ′ is k-regular. For the characteristic modules this means that
if Mk is k-regular then Mk+1 is (k + 1)-regular.

Note that by Lemma 26 and the other assumptions Zk+1 is smooth. In
fact, one has

Claim. Mk+ℓ is locally free for all ℓ ≥ 2.

I give the proof from [Malg05, Prop. II, 2.4]. Note that by assumption
Mk and Mk+1 are locally free. Let W = Cξ1 ⊕ · · · ⊕ Cξn. Consider the
symbol ideal of the ℓ-fold prolongation Iℓ at a point uk+ℓ ∈ Zk+ℓ lying over
uk ∈ Zk . It is a homogeneous ideal in the polynomial ring C[ξ1, . . . , ξn],
depending on the point uk+ℓ and is equal to the symbol ideal at the point
uk of the original system in degrees ≥ k + ℓ and is zero below this degree.
Now choose a point a ∈ Zk+ℓ+1 over it and b ∈ Zk+ℓ+2 over a. Abusing
notations, consider Iℓ at b as well. This can be compared with the ideals
Iℓ+1 and Iℓ+2 at this point through the Koszul type sequence

Λ2W ⊗ [Iℓ]b
d
−→ W ⊗ [Iℓ+1]b

d
−→ [Iℓ+2]b → 0. (24)

This sequence is indeed the homogeneous strand of the Koszul sequence for
the ideal Ik at the point uk in degree k+ℓ+2. The last map in this sequence
is surjective since the symbol ideal Ik is generated in degree k. Exactness
at the middle is a translation of H1,k+ℓ+1(Ik) = 0 which is a consequence of
(k + 1)-regularity of Ik.

Suppose that F (u) : V → W is a linear map between vector spaces which
depends analytically on some parameter u ∈ U . Since the locus in U where
F has rank ≤ k is closed, the function u 7→ dim Im(F (u)) is lower semi-
continuous and the function u 7→ dimker(F (u) is upper semi-continuous.
Apply these remarks to the first and the last map figuring in (24), making
use of the observation that it suffices to show that dm = dim[Im]b is locally
constant on Zm for all m ≥ k+2. Indeed, by induction this can be assumed
for target and source of the first map and hence the dimension of the image of
the first map is lower semi-continuous. The kernel of the last map is the same
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as the kernel of the multiplication map W ⊗ [Iℓ+1]b → C[ξ1, . . . , ξn] which
is a map between locally constant dimensional spaces. So the dimension
of these kernels behaves in an upper-semi continuous fashion. Hence this
dimension is locally constant and hence also dim[Iℓ+2]b is locally constant.
The Claim follows.

Suppose that one can show that Zk+2 → Zk+1 is surjective, then, by the
previous Claim and Lemma 26 Zk+2 is smooth. This forms the start of an
obvious inductive procedure. So one needs to prove the following

Claim. Zk+2 → Zk+1 is surjective.

The idea is to extend the proof of Corollary 15 to the general case. An
essential ingredient in the proof of Corollary 15 is the saturatedness in lower
degrees. Note that by formula (14) the formal derivatives of elements in
the ideal of the m fold prolongation are linear expressions in the yβ with
|β| = m+1, but if the system is not a linear system with constant coefficient,

it may also contain expressions in the variables yβ with |β| ≤ m. The algebra
works only well if the latter part is absent. To work one’s way around it,
note that if f ∈ OJm is the lift to Jm of a function g on Jm−1 one has
Dif = Dig. In particular, if g ∈ Jm−1 and m ≥ k + 1, by definition Jm

contains such prolongations Dig. This remark will be crucial when proving
the following Lemma.

Lemma 31. Suppose that the derivatives of f ∈ [Jk+1]a with respect to yα,
|α| = k + 1 belong to [Jk+1]a, then Djf belongs to [Jk+1 ⊗OJk+2

]a.

Proof. Since q : Zk+1 → Zk is a submersion, one may choose coordinates
(vi, v

′
j) on

∏
|α|≤k C and (yi, y

′
j) on

∏
|α|=k+1C so that Zk+1 locally at a

given point a has equation vi = yj = 0 and q is given by (u, v′, y′) 7→
(u, v′). The function f can be written f = g + h where g ∈ [Jk]a and
h =

∑
|β|=k+1 fβ(u, v, v

′)yβ+ (terms involving higher powers of the yj). By

the previous remark Djg ∈ [Jk+1]a. By assumption fβ =
∂f

∂β
∈ [Jk+1]a and

so the terms in Djf coming from the terms of order 1 in the yi belong to
Jk+1 ⊗ OJk+2,a. Finally, the higher order terms of f belonging to [J2k+1]a
have their formal derivatives automatically in Jk+1⊗OJk+2,a and hence also
Djf belongs to Jk+1 ⊗OJk+2,a.

As will be demonstrated in a moment, this lemma makes it possible to
define a refined symbolic derivation

D̄j : Ik+1 → OZk+1
⊗OJk+2

.

Suppose that F ∈ [Ik+1]a has a representative
∑

j hjδgj with hj ∈ [OZk+1
]a

and gj ∈ [Jk+1]a. Note that F is also represented by g = δ(
∑

j hjgj) ∈
[Jk+1]a. If g

′ ∈ [Jk+1]a is still another such representative, δ(g−g′) represents
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0 in [Jk+1]a which means that the partial derivatives of g − g′ with respect
to the variables yβ, |β| = k + 1 are in the ideal [Jk+1]a. So Lemma 31 can
be applied and shows that Dj(g− g′) in fact belongs to the ideal of Zk+1 in
Jk+2. So D̄jF := Djg = Djg

′ is well defined as an element of OZk+1
⊗OJk+2

.
Next consider the Koszul sequence (24) for ℓ = 0. For simplicity, write

J for the ideal [Ik]a and write Jm for the degree m-polynomials in J :

Λ2W ⊗ Jk
d
−→ W ⊗ Jk+1

d
−→ Jk+2.

The Koszul map d : W ⊗ Jk
d
−→ Jk+1 is given by F =

∑
ξj ⊗ Fj 7→

∑
ξjFj .

Suppose that Fj = δ(fj). By (22) one has 0 =
∑

ξjδ(fj) = δ(
∑

Djfj),
i.e. the symbol of

∑
Djfj is zero which means that

∑
D̄jFj has no terms

involving yβ for which |β| = k + 2, i.e. the latter belongs to OZk+1
and

defines what is called the torsion :

τ : ker d → OZk+1
, τ(

∑
ξj ⊗ Fj) =

∑
D̄jFj (25)

This is the general form of the map constructed in Prop. 14. In fact, one
has:

Lemma 32. The point a ∈ Zk+1 is the image of a point in Zk+2 if and only

the torsion morphism τ vanishes at the point a.

Proof. Let me give the simple proof from [Malg05, p. 38]. Let a ∈ Zk+1.
For any f ∈ Oa(Jk+1) be in the ideal of Zk+1 write Djg = D′

jg+D′′
j g where

D′′
j g =

∂g

∂yα
yα+1j .

Take any system of generators (f1, . . . , fN ) at a of the ideal defining Zk+1.
To find b ∈ Zk+2 projecting to a one needs to solve the linear system in the
variables yβ given by D′

jfm(a) +D′′
j fm(a) = 0, j = 1, . . . , n, m = 1, . . . , N .

Write this system as AY = B (with B 6= 0) where Y is the column vector of
the yβ, AY represents the linear form D′

jfm(a) and B the length N vector

D′′
j fm. Such a system has a solution if and only if b ∈ Im(A) = [ker TA]⊥.

Dually, this means that ker TA should be contained in the hyperplane B⊥,
i.e. for any row vector z with zA = 0 one should have zB = 0. Translating
this back in the present situation one finds that it suffices to show that any
relation

∑
jm cjmD′′

j fm(a) = 0 should imply
∑

jm cjmD′
jfm(a) = 0.

Put gj =
∑

m cjmfm ∈ Ia and F =
∑

ξj ⊗ δgj mod Ia. Then the
relation

∑
jm cjmD′′

j fm(a) = 0 just means that dF |a = 0 and hence F
belongs to the kernel of the Koszul map d at a and then the second relation∑

jm cjmD′
jfm(a) = 0 means that τ(F )|a = 0. So a solution to the system

exists over a if and only if the torsion morphism at that point vanishes as
desired.
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Finally one invokes a result which in fact generalizes Prop. 14:

Lemma 33. [Malg05, p. 39] The map τ factors over the image of d, i.e. at
every point uk+1 ∈ Zk+1 there is a well defined map

τ |
uk+1

: H1,k+1(J ) = ker d/im d → C.

Proof. Let G =
∑

i<j ξiξj ⊗ δgij ∈ Λ2W ⊗ Jk+1 with gij ∈ [Jk+1]a. Then
dG =

∑
ξi ⊗ δ[Djgij ] − ξj ⊗ δ[Digij ]. Now, by definition (see (25)) one

has τ(dG) =
∑

D̄i(δ[Djgij ] −
∑

D̄jδ[Digij ], but D̄ℓ(δ(g) is represented by
Dℓ(g)) (by the definition of D̄ℓ) and so τ(dG) is represented by

∑
DiDjgij−∑

DjDigij = 0

End of the proof of Theorem 28. Since Mk is k-regular, the ideal J is
(k+1)-regular which means that Hp,q(J ) = 0 for all p and all q ≥ k+1. So
lemma 33 implies that the torsion vanishes everywhere on Zk+1 and hence by
lemma 32 every point is in the image of the projection pk+2. Next continue
the induction procedure with the higher order prolongations.
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