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1 Some group theoretic considerations

The references here are [Borel] and [Sat].

Let k£ be a field of characteristic zero, not necessarily closed, and let K
be an algebraic closure. An algebraic k-group T is an m-torus if T(K) is
isomorphic to a direct product of m copies of the multiplicative group K*.
There is a finite Galois extension L/k so that T'(L) is already isomorphic to
m copies of L*. One says that T is split over L. A torus is anisotropic if it has
no non-trivial characters defined over k, i.e. no homomorphisms 7'(k) — k*
besides ¢ — 1. Any torus splits as a semi-direct product T'(k) = T,Ts of a
maximal split sub-torus T and an anisotropic torus 7Tj,.

Let G be a connected linear algebraic k-group, i.e. it has a faithfull rep-
resentation as a matrix group such that the group is defined by polynomial
equations with coefficients in k. By [Borel, §11.3] all maximal tori in G are
conjugate. The centralizer of a maximal torus 7T is called a Cartan sub-
group C(T'). By [Borel, §12.1] a Cartan subgroup is a maximal connected
nilpotent subgroup of G. One can also speak of split Cartan subgroups: by
definition these have a decomposition series with successive quotients k* or
k. Equivalently, it is trigonalizable over k.

All Cartan subgroups are conjugate [Borel, §12.1]. The common dimen-
sion is called the rank of G. There are always maximal tori T'(k) and Cartan
subgroups C'(k) defined over k, and these are conjugate [Borel, Theorem
12.1]. Hence there is a maximal split torus Ts(k) over k and a maximal split
connected nilpotent subgroup Cs(k) of k, the k-Cartan group. By [Borel,
Theorem 15.9] these are all k-conjugate. The dimension of Cs(k) is called
the k-rank of G. If it is zero G not only has no split k-tori, it does not
contain any non-trivial connected nilpotent k-group. The following result is
needed later on:

Lemma 1.1. Let G be a connected linear algebraic k-group of k-rank 0.
Then G has no non-trivial unipotent elements.

Proof:  The Zariski-closure of a non-trivial unipotent element in G(k) is
isomorphic to the additive group k (see [Borel, remark in § 7.3]). This is a
connected nilpotent split subgroup of G and so the k-rank of G is positive.



Examples 1.2. 1. Let £k = R. Then a 1-torus is either R* with trivial
Galois action, or S!, with Galois action § — —6. In the first case
the torus is split and the rank is 1; in the second case the torus is
anisotropic and the R-Cartan group is 1 so that R-rank is 0.

2. Let k be a finite extension of Q and G a k-group such that for some
embedding k — C the resulting group G(C) is compact. Then the
k-rank is 0. Indeed, if C' is a k-Cartan subgroup of G, the successive
quotients from a decomposition series being k* or k imply that either G
contains k* or k and hence G(C) contains C* or C which is impossible
for a compact group.

Next, let me recall the construction of the Weil restriction. Let K/k be
a finite Galois extension of a field k of degree d and with Galois group

Gal(K/k) = {oi,i=1,...,d}.

Viewing K as a k-algebra, we get the regular representation p : K — My(k).
Then for all positive integers m from the representation p one gets a new
one, p(m) : Mg(m) — My(md), defined by p(m)(Ai;) = (p(Aij). Suppose
now that G is a K-matrix group G C GLk(INV), then the Weil restriction
Rg /G is the k-group p(N)(G). If dimg G = n, then dim; Rg/,G = nd.
By construction, its group of K-points is a product

d
RipG(E) = [[6Y, G ={g" [g€G}.
1

Example 1.3. Let k = R, K = C, G = C*. The Galois group of C/R
consists of the identity and the complex conjugation o. The map p : C —
-y
x
p(C*) is just the product of the unit circle S and the half line R*. The
conjugation preserves both factors. It acts as —id on the first factor and
as id on the second. Hence S := R¢/r(C*) is just C* with the standard
Galois-action and standard real structure. With the standard embedding
R — C one can identify S(C) with the pairs (u,v) with u? # —v?, i.e. with
the pairs (u +iv,u — iv) € C* x C*. So S(C) = C* x C* with Galois action
interchanging the two factors.

M (R) is just the map sending z = z + iy to the matrix and

From example ii) one gets the following obvious but useful result.

Lemma 1.4. Let H be an algebraic group defined over a number field K
and let G = R oH be its Weil-restriction. Suppose that G(R) decomposes
as a direct product of real groups G =[], G;. Then the Q-rank of G is at
most max;(R-rank G;). In particular, if some G; is compact, the Q-rank of
G is zero.



Let me now discuss some classical examples. Fix a field k£ and a division
algebra D over k with center F'. The opposite division algebra is denoted
DY, Let V be a k-vector space with right D-action, or, equivalenty, a left
DY-action. The algebra of D-transformations of V is isomorphic to the
matrix algebra M, (D) where n is the rank of V over D. The invertible
matrices form the group GLp (V). The determinant of an invertible matrix
belongs to the units D* of D and using the norm map N : D* — F the
special linear group SLp (V') consists of invertible elements A € M, (D) with
N(det(A)) = 1.

Suppose that D admits a (generalized) involution, i.e. an anti-automorphism
a — a° of order 1 or two. Denote the resulting involution on D° also by
o. Let e = +£1. A D-valued k-bilinear form on V is called e-hermitian with
respect to D, if

h(v,v'a) = h(v,v)a,

/
h(v',v) = Eh(v,v’)"} v,v€V,aeD. (1)

One says that h is non-degenerate, if in some D-basis for V' the corresponding
matrix for h is invertible. By definition, for such h the associated unitary
group and special unitary group are

U(V,h) = {g€ GLp(V)|h(gv,gv') = h(v,v"), Vv, €V}
SU(V,h) = U(V,h)NSLp(V).

Example 1.5. Let kK = R. Then R, C and the quaternions H are the
only non-trivial division algebras over R with F© = R, C,R respectively.
Take for o the identity, the complex conjugation, the standard involution
a+bi+cj+dk — a—bi—cj—dk. For e =1 one can assume that h is of the
form (Z,7) — TrzZ°% and one gets the real compact groups SO(n), SU(n),
respectively SU(n, H). These have R-rank 0.

For ¢ = —1 the situation is more complicated. For B = R one can take
for h the standard symplectic group, and so n = 2m and one gets ™. Its
R-rank is m. For B = C one can take for h the diagonal matrix (—il,,il,),
p+q = n. The resulting group is SU(p, ¢) whose R-rank is r = min(p, q). It
is only compact for » = 0 since isomorphic to SU(n). Finally, if B = H, one
can take j1, and the resulting group is usually denoted SU(n,H)~. It has
R-rank [n/2]. For n = 1 it is the group S' which is compact. The R-rank
follows since it is equal to the dimension of a maximal isotropic subspace.

Lemma 1.6. Let G be any of the classical groups™, SU(p, q,C) or SU(n, H)~
and let g € G be unipotent. Then (g — 1)¢ =0, where £ is the R-rank of G.

Proof:



2 Two Groups Associated to Monodromy Repre-
sentations

A local system H g of k-vector spaces on any topological space S can be
considered as a left I'-module H, where I' is the image of 71(5, s¢) in the
group Aut(H), where H is the fiber of Hg at sg. If H comes equipped with a
non-degenerate k-bilinear form @), preserved by the monodromy action, one
has I' C Aut(H, Q). The form @ is supposed to be e-hermitian with respect
to the trivial involution on k. This just means that for e = 1, respectively
—1 the form @ is symmetric, respectively skew-symmetric.

We assume now that the representation is completely reducible so that
one can group together all the irreducible constituents which are isomorphic.
More generally, let I' be any group with a finite-dimensional representation
in Aut(H, @), and assume that the representation is isotypical, i.e. there is
an irreducible I'-module V such that H is a direct sum of copies of V. Put

D := Endp(V) E := Endp(H), -
F := Center(D) U :=Homp(V,H).

Then D is a k-division algebra (this is just Schur’s Lemma), and so F' is a
finite extension field over k. By construction we have :

Lemma 2.1. The algebra D is central and simple over F' and hence for

some integer r we have dimp D = r2.

Now D acts on the left on V' and on the right on U (by composition)
and
H=U®pV, (3)

where the tensor product is U @r V modulo the subspace generated by
(e @ v) — (U@ awv), « € D,u e Uv e V.

Lemma 2.2 ([Sat, Ch. IV, Lemma 1.1]). Suppose that as a D-module U
has rank a and V' has rank b. Then

dimy, H = abr?[F : k] (4)

and the number of irreducible constituents isomorphic to 'V in H is equal to
a.

The form @ induces an involution a — a* on E by setting

Q(z,ay) = Q(a*z,y), Vr,y € H.

On the other hand, @ makes H and hence V self-dual and so, by [Satl IV,
Lemma 2.2] there is an involution b — b% on D preserving the center F' such
that o coincides with % on F. Moreover, by [Satl IV, Theorem 2.3]:



Proposition 2.3. There is a non-degenerate é-hermitian form hy on V
with respect to the opposite involution o on D° (remember that V has a left
D-action, hence a right D-action), and a (—e€)-hermitian form hy on U
such that

Qu®pv,u @pv) = TD/F<hU(u7 u')[hv (v, U’)]O)-

As to signs, one needs to distinguish how * acts on F. If * = id one calls
* (and also o) of the first kind, and of the second kind otherwise. Introduce:

Gu = RpiSUU, hy) (monodromy deformation group) (5)
Gy = RpipSU(V,hy) (algebraic monodromy group). (6)

Then we have:

Lemma 2.4. 1. The Lie algebra of the group Gy (R) is equal to End(H, Q)®
R.

2. The monodromy representation factors over the natural representation
Gy — Aut(H, Q).

3 Variations of Hodge Structure

Suppose next that £ = Q and that Hg¢ admits a Z-structure which under-
lies a @-polarized variation of Hodge structures. Let me briefly recall the
definition.

Definition 3.1. A wariation of Hodge structure on S of weight n is a local
system H g of free Z-modules of finite rank on S such that each fiber over
t € S of the complexification admits a Hodge structure of weight n and such
that

— the associated Hodge flag F}? depends holomorphically on ¢ (this is the
holomorphicity of the period map)

— the flat connection V satisfies Griffiths’ horizontality condition:

Vgth - thfl, ¢ a germ of a holomorphic tangent field at ¢ .

(this last condition is the horizontality of the period map).
The Hodge structure is polarized by a flat bilinear integral form @ if @
induces a polarization on the Hodge structures on each fibres of Hg.

For any variation of Hodge structures the monodromy representation is
complete reducible:

Theorem 3.2 ([Del7ll 4.2.6]). A polarized variation of Hodge structures
over a quasi-projective manifold is direct sum of irreducible ones.



This implies that we can apply the considerations of As in [S-Zul
Thm. 2.4.1] one shows:

Lemma 3.3. Suppose that k = Q and that Hg underlies a Q-polarized
variation of Hodge structures. Assume that the local system is isotypical and
let D be the algebra of Q-endomorphisms of Hg. One has two possibilities
for the center F' of D:

(R) F is either a totally real number field and * is of the first kind,

(C) F is a quadratic extension of a totally real number field Fy and * is the
complex conjugation on F.

Proposition 3.4 ([, ]). Suppose that (H, Q) underlies a variation of Hodge
structure. Then End(H,Q inherits a weight 0 Hodge structure and (H,Q)
is rigid as a variation of Hodge structure if End=b(H,Q) = 0. This is in
particular the case if Gy is 0-dimensional.

We next consider what happens when we extend to R. From Lemma [2.1

we know that D is a central simple algebra over F' and that dimp D = r2.

Let [Fy: Q] =t,let o, : Fp — R, i =1,...,tbe the distinct real embeddings.
Our variation of Hodge structure on H g splits over the reals as

t

(H,Q) @R~ PH, QY
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and this gives the following restriction:

Lemma 3.5. For an absolutely irreducible representation we must have F' =
Fry=Q.

In any case, we have:

Lemma 3.6. D := D ®eo; R s a matriz algebra over one of the three
simple real division algebras R,H or C:

Case R1 F ®,, R =R, D = M,(R)
Case R2 F ®,, R=R, r is even and D) = M, jo(H),
Case C F ®,, R =C and D% = M,(C).
Lemma 3.7. Put
V,Q)D = (V,Q) 9, R, UD:=U®,, R, HD:=UDg,, v
Recall that dimp U = a and that dimp V = b we have

Case R1 U() =R V() = Rbr,



Case R2 U =H»/2 () = Hbr/2
Case C U = Cor, vy = Cbr.

Recall (Prop. that if the induced hermitian form on U® has sign ¢;
then the induced form on V() has sign —ee;. In this way, one thus obtains:

Lemma 3.8. Leto; : Fyp — R, i =1,...,t be the real embeddings of Fy, as
before and let R1%, R2% | respectively C* be the numbers of embeddings o; of
type (R1, sign ¢; = £1), (R2, sign ¢; = +1), (C, sign €¢; = £1) respectively.
For each of (C, sign e¢; = —1) , let (¢;,d;), i =1,...,C~, respectively (c},d}),

i=1,...,C be the signatures of the corresponding hermitian forms on U,
respectively V@ . Then with the notation , and @ one has

R1t R1~ R2t
180 = ] spw/2 <[] SUM/2 (H) x
R2™
] U2 (D)~ x HSUW X HSU (bi, i),
(cl- —l— d; = ar),
and if e = 1, respectively e = —1, one then has correspondingly
R1T R1~ R2T
Gy(R) = [] SO x H P2 X X [ [ SUbrya(H) x
R2~
1 SUb ()~ x HSUbT X H SU(c,, db),
R1™ R1t R2™
Gy(R) = [] SO x H SPpry2 X X [ [ SUpry2(H) x
R2t

1 SUs @)~ x HSUbr X H SU(c, db),

(¢ +d; =br).
respectively.

Corollary 3.9. Suppose that a = r = 1. Then Gy (R) is compact abelian,
hence its Lie-algebra is of pure type (0,0). The variation is in particular
rigid.

There are two (7) important examples:

Examples 3.10. 1. The monodromy representation is irreducible (so
that a = 1) and dimg H is square free. Since by (4) we have dimg H =
abtr?, we then must have r = 1 also. Hence the variation is rigid.



Corollary 3.11. Let v € I' be a non-trivial unipotent of order £. Then if
€ = 1, respectively —1, one has R1T = R2T =CT =1, R1- =R2- =C" =
1, respectively, and ¢ < br/2, £ < min(c,, d}).
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Up to now, very little use has been made of the fact that Suppose now
that the weight of the variation of k and that the Hodge numbers AP are
zero for p < 0. Then all the above modules inherit Hodge structures: FE,
D get Hodge structures of weight 0 with Hodge numbers hP>~P non-zero if
Ip| > k, and V and U get weight k¥ Hodge structures. This can be shown to
have serious restriction on the possible signs €, €, €; that occur.

Examples 3.12. 1. Let £ = 1 and suppose that the variation is irre-
ducible, i.e. m = 1 and that dimg(V) = 2¢. Then, by [Satl IV, § 6]
only the following possibilities may occur

o Gu(R)=T]"Sp,, Gv(R)=id,

o giseven, say g = 2h, Guy(R) = [[™* Sp, x [T SU,(H), Gy (R) =
[TV 802 x [T 5",

e g=2hiseven, and Gy (R) = [T SO, x [[V* SU,(H)~, Gy (R) =
[T S0, x JT™e 51,

e For some factor r of 2¢ and some (¢;,d;), (¢}, d}) with ¢; + d; =
2g, ¢ + d; = r, one has Gy(R) = HM1 SUyg x Hi]\fl SU(pi, qi),
Gy (R) = [ SU(pi, ;) x [T"" SU,.

From this, one can deduce [Sal, Theorem 8.1] that the variation is non-
isotrivial and non-rigid there must be at least two factors and in both
groups there must be compact and non-compact factors. This is only
possible in the last case and then one must also have r > 2. One
deduces that the Q-rank of Gy is zero and hence, there can’t be any
non-trivial unipotent element in the monodromy group.

2. k=2, h*? = 1. In the irreducible situation, one [S-Zul, Theorem 5.2.3]
deduces that Gy (R) = SLy x [[M' SUy, Gy (R) = SLy x [[M SU,.
From this it also follows that the variation is rigid if there is a unipotent
element in the monodromy group of order of nilpotency > 3.
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