Monodromy and Rigidity

Chris PETERS

Aug, 2006

1 Some group theoretic considerations

The references here are [Borel] and [Sat].

Let k be a field of characteristic zero, not necessarily closed, and let K be an algebraic closure. An algebraic k-group T is an m-torus if T(K) is isomorphic to a direct product of m copies of the multiplicative group K^* . There is a finite Galois extension L/k so that T(L) is already isomorphic to m copies of L^* . One says that T is split over L. A torus is anisotropic if it has no non-trivial characters defined over k, i.e. no homomorphisms $T(k) \to k^*$ besides $t \mapsto 1$. Any torus splits as a semi-direct product $T(k) = T_a T_s$ of a maximal split sub-torus T_s and an anisotropic torus T_a .

Let G be a connected linear algebraic k-group, i.e. it has a faithfull representation as a matrix group such that the group is defined by polynomial equations with coefficients in k. By [Borel, §11.3] all maximal tori in G are conjugate. The centralizer of a maximal torus T is called a Cartan subgroup C(T). By [Borel, §12.1] a Cartan subgroup is a maximal connected nilpotent subgroup of G. One can also speak of split Cartan subgroups: by definition these have a decomposition series with successive quotients k^* or k. Equivalently, it is trigonalizable over k.

All Cartan subgroups are conjugate [Borel, §12.1]. The common dimension is called the rank of G. There are always maximal tori T(k) and Cartan subgroups C(k) defined over k, and these are conjugate [Borel, Theorem 12.1]. Hence there is a maximal split torus $T_s(k)$ over k and a maximal split connected nilpotent subgroup $C_s(k)$ of k, the k-Cartan group. By [Borel, Theorem 15.9] these are all k-conjugate. The dimension of $C_s(k)$ is called the k-rank of G. If it is zero G not only has no split k-tori, it does not contain any non-trivial connected nilpotent k-group. The following result is needed later on:

Lemma 1.1. Let G be a connected linear algebraic k-group of k-rank 0. Then G has no non-trivial unipotent elements.

Proof: The Zariski-closure of a non-trivial unipotent element in G(k) is isomorphic to the additive group k (see [Borel, remark in § 7.3]). This is a connected nilpotent split subgroup of G and so the k-rank of G is positive.

- **Examples 1.2.** 1. Let $k = \mathbb{R}$. Then a 1-torus is either \mathbb{R}^* with trivial Galois action, or S^1 , with Galois action $\theta \mapsto -\theta$. In the first case the torus is split and the rank is 1; in the second case the torus is anisotropic and the \mathbb{R} -Cartan group is 1 so that \mathbb{R} -rank is 0.
 - 2. Let k be a finite extension of \mathbb{Q} and G a k-group such that for some embedding $k \hookrightarrow \mathbb{C}$ the resulting group $G(\mathbb{C})$ is compact. Then the k-rank is 0. Indeed, if C is a k-Cartan subgroup of G, the successive quotients from a decomposition series being k^* or k imply that either G contains k^* or k and hence $G(\mathbb{C})$ contains \mathbb{C}^* or \mathbb{C} which is impossible for a compact group.

Next, let me recall the construction of the Weil restriction. Let K/k be a finite Galois extension of a field k of degree d and with Galois group

$$Gal(K/k) = {\sigma_i, i = 1, ..., d}.$$

Viewing K as a k-algebra, we get the regular representation $\rho: K \to M_d(k)$. Then for all positive integers m from the representation ρ one gets a new one, $\rho(m): M_K(m) \to M_k(md)$, defined by $\rho(m)(A_{ij}) = (\rho(A_{ij})$. Suppose now that G is a K-matrix group $G \subset \operatorname{GL}_K(N)$, then the Weil restriction $R_{K/k}G$ is the k-group $\rho(N)(G)$. If $\dim_K G = n$, then $\dim_k R_{K/k}G = nd$. By construction, its group of K-points is a product

$$R_{K/k}G(K) = \prod_{i=1}^{d} G^{(i)}, \quad G^{(i)} := \{g^{\sigma_i} \mid g \in G\}.$$

Example 1.3. Let $k = \mathbb{R}$, $K = \mathbb{C}$, $G = \mathbb{C}^*$. The Galois group of \mathbb{C}/\mathbb{R} consists of the identity and the complex conjugation σ . The map $\rho: \mathbb{C} \to M_2(\mathbb{R})$ is just the map sending z = x + iy to the matrix $\begin{pmatrix} x & -y \\ y & x \end{pmatrix}$ and $\rho(\mathbb{C}^*)$ is just the product of the unit circle S^1 and the half line \mathbb{R}^* . The conjugation preserves both factors. It acts as - id on the first factor and as id on the second. Hence $S := R_{\mathbb{C}/\mathbb{R}}(\mathbb{C}^*)$ is just \mathbb{C}^* with the standard Galois-action and standard real structure. With the standard embedding $\mathbb{R} \hookrightarrow \mathbb{C}$ one can identify $S(\mathbb{C})$ with the pairs (u,v) with $u^2 \neq -v^2$, i.e. with the pairs $(u+iv,u-iv) \in \mathbb{C}^* \times \mathbb{C}^*$. So $S(\mathbb{C}) = \mathbb{C}^* \times \mathbb{C}^*$ with Galois action interchanging the two factors.

From example 1.2 ii) one gets the following obvious but useful result.

Lemma 1.4. Let H be an algebraic group defined over a number field K and let $G = R_{K/\mathbb{Q}}H$ be its Weil-restriction. Suppose that $G(\mathbb{R})$ decomposes as a direct product of real groups $G = \prod_i G_i$. Then the \mathbb{Q} -rank of G is at most $\max_i(\mathbb{R}$ -rank $G_i)$. In particular, if some G_i is compact, the \mathbb{Q} -rank of G is zero.

Let me now discuss some classical examples. Fix a field k and a division algebra D over k with center F. The opposite division algebra is denoted D^0 . Let V be a k-vector space with right D-action, or, equivalenty, a left D^0 -action. The algebra of D-transformations of V is isomorphic to the matrix algebra $M_n(D)$ where n is the rank of V over D. The invertible matrices form the group $\mathrm{GL}_D(V)$. The determinant of an invertible matrix belongs to the units D^{\times} of D and using the norm map $N: D^{\times} \to F$ the special linear group $\mathrm{SL}_D(V)$ consists of invertible elements $A \in M_n(D)$ with $N(\det(A)) = 1$.

Suppose that D admits a (generalized) *involution*, i.e. an anti-automorphism $a \mapsto a^{\sigma}$ of order 1 or two. Denote the resulting involution on D^0 also by σ . Let $\epsilon = \pm 1$. A D-valued k-bilinear form on V is called ϵ -hermitian with respect to D, if

$$\begin{cases}
h(v, v'a) &= h(v, v')a, \\
h(v', v) &= \epsilon h(v, v')^{\sigma}
\end{cases} \qquad v, v' \in V, a \in D. \tag{1}$$

One says that h is non-degenerate, if in some D-basis for V the corresponding matrix for h is invertible. By definition, for such h the associated unitary group and special unitary group are

$$U(V,h) = \{g \in GL_D(V) \mid h(gv, gv') = h(v, v'), \quad \forall v, v' \in V\}$$

$$SU(V,h) = U(V,h) \cap SL_D(V).$$

Example 1.5. Let $k = \mathbb{R}$. Then \mathbb{R} , \mathbb{C} and the quaternions \mathbb{H} are the only non-trivial division algebras over \mathbb{R} with $F = \mathbb{R}$, \mathbb{C} , \mathbb{R} respectively. Take for σ the identity, the complex conjugation, the standard involution $a+bi+cj+dk\mapsto a-bi-cj-dk$. For $\epsilon=1$ one can assume that h is of the form $(\vec{x},\vec{y})\mapsto \operatorname{Tr}\vec{x}^{\sigma}\vec{x}$ and one gets the real compact groups $\operatorname{SO}(n)$, $\operatorname{SU}(n)$, respectively $\operatorname{SU}(n,\mathbb{H})$. These have \mathbb{R} -rank 0.

For $\epsilon = -1$ the situation is more complicated. For $B = \mathbb{R}$ one can take for h the standard symplectic group, and so n = 2m and one gets m. Its \mathbb{R} -rank is m. For $B = \mathbb{C}$ one can take for h the diagonal matrix $(-i\mathbf{1}_p, i\mathbf{1}_q)$, p+q=n. The resulting group is $\mathrm{SU}(p,q)$ whose \mathbb{R} -rank is $r=\min(p,q)$. It is only compact for r=0 since isomorphic to $\mathrm{SU}(n)$. Finally, if $B=\mathbb{H}$, one can take $j\mathbf{1}_n$ and the resulting group is usually denoted $\mathrm{SU}(n,\mathbb{H})^-$. It has \mathbb{R} -rank [n/2]. For n=1 it is the group S^1 which is compact. The \mathbb{R} -rank follows since it is equal to the dimension of a maximal isotropic subspace.

Lemma 1.6. Let G be any of the classical groups m, $\mathrm{SU}(p,q,\mathbb{C})$ or $\mathrm{SU}(n,\mathbb{H})^-$ and let $g \in G$ be unipotent. Then $(g-\mathbf{1})^{\ell} = 0$, where ℓ is the \mathbb{R} -rank of G.

Proof:

2 Two Groups Associated to Monodromy Representations

A local system \underline{H}_S of k-vector spaces on any topological space S can be considered as a left Γ -module H, where Γ is the image of $\pi_1(S, s_0)$ in the group $\operatorname{Aut}(H)$, where H is the fiber of \underline{H}_S at s_0 . If H comes equipped with a non-degenerate k-bilinear form Q, preserved by the monodromy action, one has $\Gamma \subset \operatorname{Aut}(H, Q)$. The form Q is supposed to be ϵ -hermitian with respect to the trivial involution on k. This just means that for $\epsilon = 1$, respectively -1 the form Q is symmetric, respectively skew-symmetric.

We assume now that the representation is completely reducible so that one can group together all the irreducible constituents which are isomorphic. More generally, let Γ be any group with a finite-dimensional representation in $\operatorname{Aut}(H,Q)$, and assume that the representation is isotypical, i.e. there is an irreducible Γ -module V such that H is a direct sum of copies of V. Put

$$D := \operatorname{End}_{\Gamma}(V) \qquad E := \operatorname{End}_{\Gamma}(H),$$

$$F := \operatorname{Center}(D) \qquad U := \operatorname{Hom}_{\Gamma}(V, H).$$
(2)

Then D is a k-division algebra (this is just Schur's Lemma), and so F is a finite extension field over k. By construction we have :

Lemma 2.1. The algebra D is central and simple over F and hence for some integer r we have $\dim_F D = r^2$.

Now D acts on the left on V and on the right on U (by composition) and

$$H = U \otimes_D V, \tag{3}$$

where the tensor product is $U \otimes_F V$ modulo the subspace generated by $(u \circ \alpha \otimes v) - (u \otimes \alpha \circ v)$, $\alpha \in D$, $u \in U$, $v \in V$.

Lemma 2.2 ([Sat, Ch. IV, Lemma 1.1]). Suppose that as a D-module U has rank a and V has rank b. Then

$$\dim_k H = abr^2[F:k] \tag{4}$$

and the number of irreducible constituents isomorphic to V in H is equal to a.

The form Q induces an involution $a \mapsto a^*$ on E by setting

$$Q(x, ay) = Q(a^*x, y), \quad \forall x, y \in H.$$

On the other hand, Q makes H and hence V self-dual and so, by [Sat, IV, Lemma 2.2] there is an involution $b \mapsto b^{\sigma}$ on D preserving the center F such that σ coincides with * on F. Moreover, by [Sat, IV, Theorem 2.3]:

Proposition 2.3. There is a non-degenerate $\tilde{\epsilon}$ -hermitian form h_V on V with respect to the opposite involution σ on D^0 (remember that V has a left D-action, hence a right D^0 -action), and a $(-\epsilon \tilde{\epsilon})$ -hermitian form h_U on U such that

$$Q(u \otimes_D v, u' \otimes_D v') = {}^{\mathsf{T}}_{D/F}(h_U(u, u')[h_V(v, v')]^0).$$

As to signs, one needs to distinguish how * acts on F. If * = id one calls * (and also σ) of the *first kind*, and of the *second kind* otherwise. Introduce:

$$G_U := R_{F/\mathbb{Q}} \operatorname{SU}(U, h_U) \pmod{\text{monodromy deformation group}}$$
 (5)

$$G_V := R_{F/\mathbb{O}} \operatorname{SU}(V, h_V) \quad (algebraic \ monodromy \ group).$$
 (6)

Then we have:

Lemma 2.4. 1. The Lie algebra of the group $G_U(\mathbb{R})$ is equal to $\operatorname{End}(H,Q) \otimes \mathbb{R}$.

2. The monodromy representation factors over the natural representation $G_V \to \operatorname{Aut}(H,Q)$.

3 Variations of Hodge Structure

Suppose next that $k = \mathbb{Q}$ and that \underline{H}_S admits a \mathbb{Z} -structure which underlies a Q-polarized variation of Hodge structures. Let me briefly recall the definition.

Definition 3.1. A variation of Hodge structure on S of weight n is a local system \underline{H}_S of free \mathbb{Z} -modules of finite rank on S such that each fiber over $t \in S$ of the complexification admits a Hodge structure of weight n and such that

- the associated Hodge flag F_t^{\bullet} depends holomorphically on t (this is the holomorphicity of the period map)
- the flat connection ∇ satisfies Griffiths' horizontality condition:

$$\nabla_{\xi} F_t^q \subset F_t^{q-1}$$
, ξ a germ of a holomorphic tangent field at t .

(this last condition is the horizontality of the period map).

The Hodge structure is *polarized* by a flat bilinear integral form Q if Q induces a polarization on the Hodge structures on each fibres of \underline{H}_S .

For any variation of Hodge structures the monodromy representation is complete reducible:

Theorem 3.2 ([Del71, 4.2.6]). A polarized variation of Hodge structures over a quasi-projective manifold is direct sum of irreducible ones.

This implies that we can apply the considerations of 2. As in [S-Zu, Thm. 2.4.1] one shows:

Lemma 3.3. Suppose that $k = \mathbb{Q}$ and that \underline{H}_S underlies a Q-polarized variation of Hodge structures. Assume that the local system is isotypical and let D be the algebra of Q-endomorphisms of \underline{H}_S . One has two possibilities for the center F of D:

- (R) F is either a totally real number field and * is of the first kind,
- (C) F is a quadratic extension of a totally real number field F_0 and * is the complex conjugation on F.

Proposition 3.4 ([,]). Suppose that (H,Q) underlies a variation of Hodge structure. Then $\operatorname{End}(H,Q)$ inherits a weight 0 Hodge structure and (H,Q) is rigid as a variation of Hodge structure if $\operatorname{End}^{-1,1}(H,Q) = 0$. This is in particular the case if G_U is 0-dimensional.

We next consider what happens when we extend to \mathbb{R} . From Lemma 2.1 we know that D is a central simple algebra over F and that $\dim_F D = r^2$. Let $[F_0 : \mathbb{Q}] = t$, let $\sigma_i : F_0 \to \mathbb{R}$, $i = 1, \ldots, t$ be the distinct real embeddings. Our variation of Hodge structure on \underline{H}_S splits over the reals as

$$(H,Q)\otimes \mathbb{R}\simeq \bigoplus_{i}^{t}(H,Q)^{(i)},$$

and this gives the following restriction:

Lemma 3.5. For an absolutely irreducible representation we must have $F = F_0 = \mathbb{Q}$.

In any case, we have:

Lemma 3.6. $D^{(i)} := D \otimes_{\sigma_i} \mathbb{R}$ is a matrix algebra over one of the three simple real division algebras \mathbb{R} , \mathbb{H} or \mathbb{C} :

Case R1
$$F \otimes_{\sigma_i} \mathbb{R} = \mathbb{R}, \ D^{(i)} = M_r(\mathbb{R})$$

Case R2 $F \otimes_{\sigma_i} \mathbb{R} = \mathbb{R}$, r is even and $D^{(i)} = M_{r/2}(\mathbb{H})$,

Case C $F \otimes_{\sigma_i} \mathbb{R} = \mathbb{C}$ and $D^{(i)} = M_r(\mathbb{C})$.

Lemma 3.7. Put

$$(V,Q)^{(i)} := (V,Q) \otimes_{\sigma_i} \mathbb{R}, \quad U^{(i)} := U \otimes_{\sigma_i} \mathbb{R}, \quad H^{(i)} := U^{(i)} \otimes_{D^{(i)}} V^{(i)}.$$

Recall that $\dim_D U = a$ and that $\dim_D V = b$ we have

Case R1
$$U^{(i)} = \mathbb{R}^{ar}, V^{(i)} = \mathbb{R}^{br},$$

Case R2 $U^{(i)} = \mathbb{H}^{ar/2}, V^{(i)} = \mathbb{H}^{br/2},$

Case C $U^{(i)} = \mathbb{C}^{ar}, V^{(i)} = \mathbb{C}^{br}.$

Recall (Prop. 2.3) that if the induced hermitian form on $U^{(i)}$ has sign ϵ_i then the induced form on $V^{(i)}$ has sign $-\epsilon \epsilon_i$. In this way, one thus obtains:

Lemma 3.8. Let $\sigma_i: F_0 \hookrightarrow \mathbb{R}$, $i=1,\ldots,t$ be the real embeddings of F_0 , as before and let $R1^{\pm}$, $R2^{\pm}$, respectively C^{\pm} be the numbers of embeddings σ_i of type $(R1, sign \ \epsilon_i = \pm 1)$, $(R2, sign \ \epsilon_i = \pm 1)$, $(C, sign \ \epsilon_i = \pm 1)$ respectively. For each of $(C, sign \ \epsilon_i = -1)$, let (c_i, d_i) , $i=1,\ldots,C^-$, respectively (c_i', d_i') , $i=1,\ldots,C^-$ be the signatures of the corresponding hermitian forms on $U^{(i)}$, respectively $V^{(i)}$. Then with the notation (5), and (6) one has

$$G_{U}(\mathbb{R}) = \prod_{R2^{-}}^{R1^{+}} SO_{ar} \times \prod_{r=1}^{R1^{-}} Sp_{ar/2} \times \prod_{r=1}^{R2^{+}} SU_{ar/2}(\mathbb{H}) \times \prod_{r=1}^{R2^{-}} SU_{ar/2}(\mathbb{H})^{-} \times \prod_{i=1}^{C^{+}} SU_{ar} \times \prod_{i=1}^{C^{-}} SU(b_{i}, c_{i}),$$

$$(c_{i} + d_{i} = ar),$$

and if $\epsilon = 1$, respectively $\epsilon = -1$, one then has correspondingly

$$G_{V}(\mathbb{R}) = \prod_{i=1}^{R1^{+}} \mathrm{SO}_{br} \times \prod_{i=1}^{R1^{-}} \mathrm{Sp}_{br/2} \times \times \prod^{R2^{+}} \mathrm{SU}_{br/2}(\mathbb{H}) \times \prod^{R2^{-}} \mathrm{SU}_{br/2}(\mathbb{H})^{-} \times \prod^{C^{+}} \mathrm{SU}_{br} \times \prod^{C^{-}} \mathrm{SU}(c'_{i}, d'_{i}),$$

$$G_{V}(\mathbb{R}) = \prod_{i=1}^{R1^{-}} \mathrm{SO}_{br} \times \prod^{R1^{+}} \mathrm{Sp}_{br/2} \times \times \prod^{R2^{-}} \mathrm{SU}_{br/2}(\mathbb{H}) \times \prod^{R2^{+}} \mathrm{SU}_{br/2}(\mathbb{H})^{-} \times \prod^{C^{-}} \mathrm{SU}_{br} \times \prod^{C^{+}} \mathrm{SU}(c'_{i}, d'_{i}),$$

$$(c'_{i} + d'_{i} = br).$$

respectively.

Corollary 3.9. Suppose that a = r = 1. Then $G_U(\mathbb{R})$ is compact abelian, hence its Lie-algebra is of pure type (0,0). The variation is in particular rigid.

There are two (?) important examples:

Examples 3.10. 1. The monodromy representation is irreducible (so that a = 1) and $\dim_{\mathbb{Q}} H$ is square free. Since by (4) we have $\dim_{\mathbb{Q}} H = abtr^2$, we then must have r = 1 also. Hence the variation is rigid.

Corollary 3.11. Let $\gamma \in \Gamma$ be a non-trivial unipotent of order ℓ . Then if $\epsilon = 1$, respectively -1, one has $R1^+ = R2^+ = C^+ = 1$, $R1^- = R2^- = C^- = 1$, respectively, and $\ell \leq br/2$, $\ell \leq \min(c'_i, d'_i)$.

Up to now, very little use has been made of the fact that Suppose now that the weight of the variation of k and that the Hodge numbers $h^{p,q}$ are zero for p < 0. Then all the above modules inherit Hodge structures: E, D get Hodge structures of weight 0 with Hodge numbers $h^{p,-p}$ non-zero if |p| > k, and V and U get weight k Hodge structures. This can be shown to have serious restriction on the possible signs $\epsilon, \epsilon_Q, \epsilon_i$ that occur.

Examples 3.12. 1. Let k = 1 and suppose that the variation is irreducible, i.e. m = 1 and that $\dim_{\mathbb{Q}}(V) = 2g$. Then, by [Sat, IV, § 6] only the following possibilities may occur

- $G_U(\mathbb{R}) = \prod^{N_3} \operatorname{Sp}_q, \quad G_V(\mathbb{R}) = \operatorname{id},$
- g is even, say g=2h, $G_U(\mathbb{R})=\prod^{N_3}\operatorname{Sp}_g\times\prod^{M_1}\operatorname{SU}_h(\mathbb{H})$, $G_V(\mathbb{R})=\prod^{N_3}\operatorname{SO}_2\times\prod^{M_1}S^1$,
- g = 2h is even, and $G_U(\mathbb{R}) = \prod^{N_1} SO_h \times \prod^{N_4} SU_g(\mathbb{H})^-, G_V(\mathbb{R}) = \prod^{M_1} SO_2 \times \prod^{N_3} S^1,$
- For some factor r of 2g and some (c_i, d_i) , (c'_i, d'_i) with $c_i + d_i = 2g$, $c'_i + d'_i = r$, one has $G_U(\mathbb{R}) = \prod^{M_1} \operatorname{SU}_{2g} \times \prod^{M_2}_{i=1} \operatorname{SU}(p_i, q_i)$, $G_V(\mathbb{R}) = \prod^{M_2}_{i=1} \operatorname{SU}(p_i, q_i) \times \prod^{M_1} \operatorname{SU}_r$.

From this, one can deduce [Sa, Theorem 8.1] that the variation is non-isotrivial and non-rigid there must be at least two factors and in both groups there must be compact and non-compact factors. This is only possible in the last case and then one must also have $r \geq 2$. One deduces that the \mathbb{Q} -rank of G_V is zero and hence, there can't be any non-trivial unipotent element in the monodromy group.

2. $k=2, h^{2,0}=1$. In the irreducible situation, one [S-Zu, Theorem 5.2.3] deduces that $G_U(\mathbb{R})=\operatorname{SL}_2\times\prod_i^{M_1}\operatorname{SU}_2,\ G_V(\mathbb{R})=\operatorname{SL}_2\times\prod_i^{M_1}\operatorname{SU}_2$. From this it also follows that the variation is rigid if there is a unipotent element in the monodromy group of order of nilpotency ≥ 3 .

References

- [Borel] Borel, A.: Linear algebraic groups, W.A; Benjamin, Inc. New-York, Amsterdam (1969).
- [Del71] DelIGNE, P.: Théorie de Hodge II, Publ. Math. I.H.E.S, **40**, 5–58 (1971)

- [Sa] Saito, M.-H.: Classification of non-rigid families of abelian varieties, Tohoku Math. J. **45** (1993) 159–189.
- [S-Zu] Saito, M.-H. and S. Zucker: Classification of non-rigid families of K3-surfaces and a finiteness theorem of Arakelov type, Math. Ann. **289** (1991) 1–31.
- [Sat] SATAKE, I.: Algebraic structure of symmetric domains, Publ. of Math. Soc. Japan 14, Iwanami Shoten and Princeton Univ. press (1980).