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1 Some group theoretic considerations

The references here are [Borel] and [Sat].
Let k be a field of characteristic zero, not necessarily closed, and let K

be an algebraic closure. An algebraic k-group T is an m-torus if T (K) is
isomorphic to a direct product of m copies of the multiplicative group K∗.
There is a finite Galois extension L/k so that T (L) is already isomorphic to
m copies of L∗. One says that T is split over L. A torus is anisotropic if it has
no non-trivial characters defined over k, i.e. no homomorphisms T (k)→ k∗

besides t 7→ 1. Any torus splits as a semi-direct product T (k) = TaTs of a
maximal split sub-torus Ts and an anisotropic torus Ta.

Let G be a connected linear algebraic k-group, i.e. it has a faithfull rep-
resentation as a matrix group such that the group is defined by polynomial
equations with coefficients in k. By [Borel, §11.3] all maximal tori in G are
conjugate. The centralizer of a maximal torus T is called a Cartan sub-
group C(T ). By [Borel, §12.1] a Cartan subgroup is a maximal connected
nilpotent subgroup of G. One can also speak of split Cartan subgroups: by
definition these have a decomposition series with successive quotients k∗ or
k. Equivalently, it is trigonalizable over k.

All Cartan subgroups are conjugate [Borel, §12.1]. The common dimen-
sion is called the rank of G. There are always maximal tori T (k) and Cartan
subgroups C(k) defined over k, and these are conjugate [Borel, Theorem
12.1]. Hence there is a maximal split torus Ts(k) over k and a maximal split
connected nilpotent subgroup Cs(k) of k, the k-Cartan group. By [Borel,
Theorem 15.9] these are all k-conjugate. The dimension of Cs(k) is called
the k-rank of G. If it is zero G not only has no split k-tori, it does not
contain any non-trivial connected nilpotent k-group. The following result is
needed later on:

Lemma 1.1. Let G be a connected linear algebraic k-group of k-rank 0.
Then G has no non-trivial unipotent elements.

Proof : The Zariski-closure of a non-trivial unipotent element in G(k) is
isomorphic to the additive group k (see [Borel, remark in § 7.3]). This is a
connected nilpotent split subgroup of G and so the k-rank of G is positive.
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Examples 1.2. 1. Let k = R. Then a 1-torus is either R∗ with trivial
Galois action, or S1, with Galois action θ 7→ −θ. In the first case
the torus is split and the rank is 1; in the second case the torus is
anisotropic and the R-Cartan group is 1 so that R-rank is 0.

2. Let k be a finite extension of Q and G a k-group such that for some
embedding k ↪→ C the resulting group G(C) is compact. Then the
k-rank is 0. Indeed, if C is a k-Cartan subgroup of G, the successive
quotients from a decomposition series being k∗ or k imply that either G
contains k∗ or k and hence G(C) contains C∗ or C which is impossible
for a compact group.

Next, let me recall the construction of the Weil restriction. Let K/k be
a finite Galois extension of a field k of degree d and with Galois group

Gal(K/k) = {σi, i = 1, . . . , d}.

Viewing K as a k-algebra, we get the regular representation ρ : K →Md(k).
Then for all positive integers m from the representation ρ one gets a new
one, ρ(m) : MK(m) → Mk(md), defined by ρ(m)(Aij) = (ρ(Aij). Suppose
now that G is a K-matrix group G ⊂ GLK(N), then the Weil restriction
RK/kG is the k-group ρ(N)(G). If dimK G = n, then dimk RK/kG = nd.
By construction, its group of K-points is a product

RK/kG(K) =
d∏
1

G(i), G(i) := {gσi | g ∈ G}.

Example 1.3. Let k = R, K = C, G = C∗. The Galois group of C/R
consists of the identity and the complex conjugation σ. The map ρ : C →

M2(R) is just the map sending z = x + iy to the matrix
(
x −y
y x

)
and

ρ(C∗) is just the product of the unit circle S1 and the half line R∗. The
conjugation preserves both factors. It acts as − id on the first factor and
as id on the second. Hence S := RC/R(C∗) is just C∗ with the standard
Galois-action and standard real structure. With the standard embedding
R ↪→ C one can identify S(C) with the pairs (u, v) with u2 6= −v2, i.e. with
the pairs (u+ iv, u− iv) ∈ C∗ ×C∗. So S(C) = C∗ ×C∗ with Galois action
interchanging the two factors.

From example 1.2 ii) one gets the following obvious but useful result.

Lemma 1.4. Let H be an algebraic group defined over a number field K
and let G = RK/QH be its Weil-restriction. Suppose that G(R) decomposes
as a direct product of real groups G =

∏
iGi. Then the Q-rank of G is at

most maxi(R-rank Gi). In particular, if some Gi is compact, the Q-rank of
G is zero.

2



Let me now discuss some classical examples. Fix a field k and a division
algebra D over k with center F . The opposite division algebra is denoted
D0. Let V be a k-vector space with right D-action, or, equivalenty, a left
D0-action. The algebra of D-transformations of V is isomorphic to the
matrix algebra Mn(D) where n is the rank of V over D. The invertible
matrices form the group GLD(V ). The determinant of an invertible matrix
belongs to the units D× of D and using the norm map N : D× → F the
special linear group SLD(V ) consists of invertible elements A ∈Mn(D) with
N(det(A)) = 1.

Suppose thatD admits a (generalized) involution, i.e. an anti-automorphism
a 7→ aσ of order 1 or two. Denote the resulting involution on D0 also by
σ. Let ε = ±1. A D-valued k-bilinear form on V is called ε-hermitian with
respect to D, if

h(v, v′a) = h(v, v′)a,
h(v′, v) = εh(v, v′)σ

}
v, v′ ∈ V, a ∈ D. (1)

One says that h is non-degenerate, if in someD-basis for V the corresponding
matrix for h is invertible. By definition, for such h the associated unitary
group and special unitary group are

U(V, h) = {g ∈ GLD(V ) | h(gv, gv′) = h(v, v′), ∀v, v′ ∈ V }
SU(V, h) = U(V, h) ∩ SLD(V ).

Example 1.5. Let k = R. Then R, C and the quaternions H are the
only non-trivial division algebras over R with F = R,C,R respectively.
Take for σ the identity, the complex conjugation, the standard involution
a+ bi+ cj+dk 7→ a− bi− cj−dk. For ε = 1 one can assume that h is of the
form (~x, ~y) 7→ Tr ~xσ~x and one gets the real compact groups SO(n), SU(n),
respectively SU(n,H). These have R-rank 0.

For ε = −1 the situation is more complicated. For B = R one can take
for h the standard symplectic group, and so n = 2m and one gets m. Its
R-rank is m. For B = C one can take for h the diagonal matrix (−i1p, i1q),
p+ q = n. The resulting group is SU(p, q) whose R-rank is r = min(p, q). It
is only compact for r = 0 since isomorphic to SU(n). Finally, if B = H, one
can take j1n and the resulting group is usually denoted SU(n,H)−. It has
R-rank [n/2]. For n = 1 it is the group S1 which is compact. The R-rank
follows since it is equal to the dimension of a maximal isotropic subspace.

Lemma 1.6. Let G be any of the classical groups m, SU(p, q,C) or SU(n,H)−

and let g ∈ G be unipotent. Then (g − 1)` = 0, where ` is the R-rank of G.

Proof :
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2 Two Groups Associated to Monodromy Repre-
sentations

A local system HS of k-vector spaces on any topological space S can be
considered as a left Γ-module H, where Γ is the image of π1(S, s0) in the
group Aut(H), where H is the fiber of HS at s0. If H comes equipped with a
non-degenerate k-bilinear form Q, preserved by the monodromy action, one
has Γ ⊂ Aut(H,Q). The form Q is supposed to be ε-hermitian with respect
to the trivial involution on k. This just means that for ε = 1, respectively
−1 the form Q is symmetric, respectively skew-symmetric.

We assume now that the representation is completely reducible so that
one can group together all the irreducible constituents which are isomorphic.
More generally, let Γ be any group with a finite-dimensional representation
in Aut(H,Q), and assume that the representation is isotypical, i.e. there is
an irreducible Γ-module V such that H is a direct sum of copies of V . Put

D := EndΓ(V ) E := EndΓ(H),
F := Center(D) U := HomΓ(V,H).

(2)

Then D is a k-division algebra (this is just Schur’s Lemma), and so F is a
finite extension field over k. By construction we have :

Lemma 2.1. The algebra D is central and simple over F and hence for
some integer r we have dimF D = r2.

Now D acts on the left on V and on the right on U (by composition)
and

H = U ⊗D V, (3)

where the tensor product is U ⊗F V modulo the subspace generated by
(u◦α⊗ v)− (u⊗ α◦v), α ∈ D, u ∈ U, v ∈ V .

Lemma 2.2 ([Sat, Ch. IV, Lemma 1.1]). Suppose that as a D-module U
has rank a and V has rank b. Then

dimkH = abr2[F : k] (4)

and the number of irreducible constituents isomorphic to V in H is equal to
a.

The form Q induces an involution a 7→ a∗ on E by setting

Q(x, ay) = Q(a∗x, y), ∀x, y ∈ H.

On the other hand, Q makes H and hence V self-dual and so, by [Sat, IV,
Lemma 2.2] there is an involution b 7→ bσ on D preserving the center F such
that σ coincides with ∗ on F . Moreover, by [Sat, IV, Theorem 2.3]:
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Proposition 2.3. There is a non-degenerate ε̃-hermitian form hV on V
with respect to the opposite involution σ on D0 (remember that V has a left
D-action, hence a right D0-action), and a (−εε̃)-hermitian form hU on U
such that

Q(u⊗D v, u′ ⊗D v′) = T
D/F (hU (u, u′)[hV (v, v′)]0).

As to signs, one needs to distinguish how ∗ acts on F . If ∗ = id one calls
∗ (and also σ) of the first kind, and of the second kind otherwise. Introduce:

GU := RF/Q SU(U, hU ) (monodromy deformation group) (5)
GV := RF/Q SU(V, hV ) (algebraic monodromy group). (6)

Then we have:

Lemma 2.4. 1. The Lie algebra of the group GU (R) is equal to End(H,Q)⊗
R.

2. The monodromy representation factors over the natural representation
GV → Aut(H,Q).

3 Variations of Hodge Structure

Suppose next that k = Q and that HS admits a Z-structure which under-
lies a Q-polarized variation of Hodge structures. Let me briefly recall the
definition.

Definition 3.1. A variation of Hodge structure on S of weight n is a local
system HS of free Z-modules of finite rank on S such that each fiber over
t ∈ S of the complexification admits a Hodge structure of weight n and such
that
— the associated Hodge flag F •t depends holomorphically on t (this is the
holomorphicity of the period map)
— the flat connection ∇ satisfies Griffiths’ horizontality condition:

∇ξF qt ⊂ F
q−1
t , ξ a germ of a holomorphic tangent field at t .

(this last condition is the horizontality of the period map).
The Hodge structure is polarized by a flat bilinear integral form Q if Q

induces a polarization on the Hodge structures on each fibres of HS .

For any variation of Hodge structures the monodromy representation is
complete reducible:

Theorem 3.2 ([Del71, 4.2.6]). A polarized variation of Hodge structures
over a quasi-projective manifold is direct sum of irreducible ones.
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This implies that we can apply the considerations of 2. As in [S-Zu,
Thm. 2.4.1] one shows:

Lemma 3.3. Suppose that k = Q and that HS underlies a Q-polarized
variation of Hodge structures. Assume that the local system is isotypical and
let D be the algebra of Q-endomorphisms of HS. One has two possibilities
for the center F of D:

(R) F is either a totally real number field and ∗ is of the first kind,

(C) F is a quadratic extension of a totally real number field F0 and ∗ is the
complex conjugation on F .

Proposition 3.4 ([, ]). Suppose that (H,Q) underlies a variation of Hodge
structure. Then End(H,Q inherits a weight 0 Hodge structure and (H,Q)
is rigid as a variation of Hodge structure if End−1,1(H,Q) = 0. This is in
particular the case if GU is 0-dimensional.

We next consider what happens when we extend to R. From Lemma 2.1
we know that D is a central simple algebra over F and that dimF D = r2.
Let [F0 : Q] = t, let σi : F0 → R, i = 1, . . . , t be the distinct real embeddings.
Our variation of Hodge structure on HS splits over the reals as

(H,Q)⊗ R '
t⊕
i

(H,Q)(i),

and this gives the following restriction:

Lemma 3.5. For an absolutely irreducible representation we must have F =
F0 = Q.

In any case, we have:

Lemma 3.6. D(i) := D ⊗σi R is a matrix algebra over one of the three
simple real division algebras R,H or C:

Case R1 F ⊗σi R = R, D(i) = Mr(R)

Case R2 F ⊗σi R = R, r is even and D(i) = Mr/2(H),

Case C F ⊗σi R = C and D(i) = Mr(C).

Lemma 3.7. Put

(V,Q)(i) := (V,Q)⊗σi R, U (i) := U ⊗σi R, H(i) := U (i) ⊗D(i) V (i).

Recall that dimD U = a and that dimD V = b we have

Case R1 U (i) = Rar, V (i) = Rbr,
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Case R2 U (i) = Har/2, V (i) = Hbr/2,

Case C U (i) = Car, V (i) = Cbr.

Recall (Prop. 2.3) that if the induced hermitian form on U (i) has sign εi
then the induced form on V (i) has sign −εεi. In this way, one thus obtains:

Lemma 3.8. Let σi : F0 ↪→ R, i = 1, . . . , t be the real embeddings of F0, as
before and let R1±, R2±, respectively C± be the numbers of embeddings σi of
type (R1, sign εi = ±1), (R2, sign εi = ±1), (C, sign εi = ±1) respectively.
For each of (C, sign εi = −1) , let (ci, di), i = 1, . . . , C−, respectively (c′i, d

′
i),

i = 1, . . . , C− be the signatures of the corresponding hermitian forms on U (i),
respectively V (i). Then with the notation (5), and (6) one has

GU (R) =
R1+∏

SOar ×
R1−∏

Spar/2×
R2+∏

SUar/2(H)×
R2−∏

SUar/2(H)− ×
C+∏

SUar ×
C−∏
i=1

SU(bi, ci),

(ci + di = ar),

and if ε = 1, respectively ε = −1, one then has correspondingly

GV (R) =
R1+∏
i=1

SObr ×
R1−∏
i=1

Spbr/2××
R2+∏

SUbr/2(H)×

R2−∏
SUbr/2(H)− ×

C+∏
SUbr ×

C−∏
SU(c′i, d

′
i),

GV (R) =
R1−∏
i=1

SObr ×
R1+∏
i=1

Spbr/2××
R2−∏

SUbr/2(H)×

R2+∏
SUbr/2(H)− ×

C−∏
SUbr ×

C+∏
SU(c′i, d

′
i),

(c′i + d′i = br).

respectively.

Corollary 3.9. Suppose that a = r = 1. Then GU (R) is compact abelian,
hence its Lie-algebra is of pure type (0, 0). The variation is in particular
rigid.

There are two (?) important examples:

Examples 3.10. 1. The monodromy representation is irreducible (so
that a = 1) and dimQH is square free. Since by (4) we have dimQH =
abtr2, we then must have r = 1 also. Hence the variation is rigid.
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Corollary 3.11. Let γ ∈ Γ be a non-trivial unipotent of order `. Then if
ε = 1, respectively −1, one has R1+ = R2+ = C+ = 1, R1− = R2− = C− =
1, respectively, and ` ≤ br/2, ` ≤ min(c′i, d

′
i).

Up to now, very little use has been made of the fact that Suppose now
that the weight of the variation of k and that the Hodge numbers hp,q are
zero for p < 0. Then all the above modules inherit Hodge structures: E,
D get Hodge structures of weight 0 with Hodge numbers hp,−p non-zero if
|p| > k, and V and U get weight k Hodge structures. This can be shown to
have serious restriction on the possible signs ε, εQ, εi that occur.

Examples 3.12. 1. Let k = 1 and suppose that the variation is irre-
ducible, i.e. m = 1 and that dimQ(V ) = 2g. Then, by [Sat, IV, § 6]
only the following possibilities may occur

• GU (R) =
∏N3 Spg, GV (R) = id,

• g is even, say g = 2h, GU (R) =
∏N3 Spg ×

∏M1 SUh(H), GV (R) =∏N3 SO2×
∏M1 S1,

• g = 2h is even, andGU (R) =
∏N1 SOh×

∏N4 SUg(H)−, GV (R) =∏M1 SO2×
∏N3 S1,

• For some factor r of 2g and some (ci, di), (c′i, d
′
i) with ci + di =

2g, c′i + d′i = r, one has GU (R) =
∏M1 SU2g ×

∏M2
i=1 SU(pi, qi),

GV (R) =
∏M2
i=1 SU(pi, qi)×

∏M1 SUr.

From this, one can deduce [Sa, Theorem 8.1] that the variation is non-
isotrivial and non-rigid there must be at least two factors and in both
groups there must be compact and non-compact factors. This is only
possible in the last case and then one must also have r ≥ 2. One
deduces that the Q-rank of GV is zero and hence, there can’t be any
non-trivial unipotent element in the monodromy group.

2. k = 2, h2,0 = 1. In the irreducible situation, one [S-Zu, Theorem 5.2.3]
deduces that GU (R) = SL2×

∏M1
i SU2, GV (R) = SL2×

∏M1
i SU2.

From this it also follows that the variation is rigid if there is a unipotent
element in the monodromy group of order of nilpotency ≥ 3.
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