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1 Motivation

Consider the following situation. Let π : X → S be a smooth projective
family over a quasi-projective base S which is effectively parametrized; for
instance, if there is a good moduli theory for the fibers, there is an injective
map µ(π) : S ↪→ M , with M a coarse moduli space for the fibres. A defor-
mation of π with fixed base S and parametrized by a germ of an algebraic
variety (T, o) is a smooth projective family πT,o : XT,o → S × (T, o) which
restricts to π over S × {o} = S. Let µ(π{T,o}) : S × T → M be the corre-
sponding moduli map. If µ(π{T,o})|{s}×(T, o) is immersive for generic s ∈ S
one speaks of an effective deformation. If no effective positive dimensional
deformation exists, one says that the deformation is rigid.

One may “linearize” the situation by passing to the corresponding coho-
mology groups. As is well known (see e.g.[CSP]), the primitive cohomology
group Hk

prim(Xs), Xs = π−1(s) form a polarized variation of Hodge struc-
ture:

Definition 1.1. A Q-variation of Hodge structure on S of weight n is a
local system WS of finite dimensional Q-vector spaces such that each fiber
over t ∈ S admits a Hodge structure of weight n, say W t⊗C = ⊕p+q=nW p,q

t

and such that
— the associated Hodge flag F •t , where F pt = ⊕r≥pW r,s

t , depends holomor-
phically on t,
— the flat connection ∇ satisfies Griffiths’ transversality condition:

∇ξF qt ⊂ F
q−1
t , ξ a germ of a holomorphic tangent field at t .

The Hodge structure is polarized by a flat bilinear integral form q if q induces
a polarization on the Hodge structure on each fibre of WS .

These conditions can also be expressed using the period domain D which
classifies the Hodge structures on W polarized by q and having the same
Hodge numbers as the Hodge structure Fo on W = W o. Let me briefly
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recall the construction of D. On the real vector space WR := W ⊗Q R the
form induced by q will be denoted by qR. The group

G := GL(WR, qR)

acts transitively on D with isotropy group at o ∈ D a compact group V
corresponding to the isomorphisms fixing the Hodge structure F •o on W . So
D = G/V.

The map assigning to t ∈ S the Hodge structure F •t ∈ D is multivalued
because of the action of the monodromy group Γ ⊂ GL(WR, qR). Incorporat-
ing this as a left action, one gets the period map p : S → Γ/D, a well-defined
holomorphic map. It replaces the moduli map. As a substitute for effective
families one should consider immersive period maps.

The spaces of fibre-wise endomorphisms

Et := End(W t, qt), t ∈ S (1)

receive a Hodge structure of weight zero: put

E−p,pt = {the q-skew endomorphisms sending Er,st to Er−p,s+pt }.

Observe that E := E0 = G. It turns out that the Hodge structure induces a
Cartan splitting

E = k⊕ p,

k := G ∩
⊕
p even

E−p,p (2)

p := G ∩
⊕
p odd

E−p,p. (3)

Indeed, k is the Lie algebra of a maximal compact Lie subgroup K of G and
the Cartan-involution is the Weil-operator of the weight 0 Hodge structure
on E. Since the above splitting is invariant under the adjoint action of K
one gets a real vector bundle G ×V p, in fact a sub bundle of the real tan-
gent bundle T (D) mapping isomorphically to T (G/K) under the canonical
projection D = G/V→ G/K.

To find the holomorphic tangent bundle, observe that there is a V-
equivariant splitting

GV ⊕m, mC =
⊕
p 6=0

E−p,p

so that
T (D) = G×V m.
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The holomorphic subbundle T holD as a sub bundle of the complexification
T (D)C is just

T hol(D) = G×V m−, m− =
⊕
p>0

E−p,p.

The horizontal tangent bundle T horD is the sub bundle

T hor(D) = G×V p−, p− :=
⊕

p>0, odd

E−p,p.

Inside this bundle there is the bundle of directions which come up in period
maps, defining the strictly horizontal tangent bundle

T shor(D) = G×V E
−1,1.

A holomorphic map p : U → D is called (strictly) horizontal if for all u ∈ U
the image p∗[TuU ] belongs to the horizontal tangent bundle, respectively to
the strictly horizontal tangent bundle.

Griffith’s transversality is equivalent to the period map S → Γ/D being
strictly horizontal: the latter notion is defined purely locally on the base so
that the period map can be replaced by any local lifting pU : U → D and
Griffiths’ transversality just states that p is strictly horizontal. Deformations
and effective deformations of a period map can now be defined as for moduli
maps, except that not all deformations will be relevant: we want the end-
result to be a period map as well. For deformations coming from geometry
one even want the total deformation to be a period map. Those will be called
strictly horizontal deformations. One may slacken the condition slightly by
looking at horizontal deformations only.

By the rigidity theorem [Sch, Theorem 7.24] the sub algebra

E = EndΓ(W, q) ⊂ E = G (4)

of endomorphisms skew with respect to q which commute with the mon-
odromy action inherits a Hodge structure of weight 0 which is constant in
the following sense: a section s ∈ E is a global flat section of the bundle E
of fibre wise endomorphisms whose fibre is Et (see (1)); the space of these
flat sections form a constant sub variation of Hodge structure of weight 0
inside the variation of Hodge structures of weight zero on E . Note that E is
canonically associated to the variation, or, what is the same, its period map
p. The relevance of this space to the problem of finding the deformations
to a period map is the following slight generalization of [Pe90, Theorem 3.2
and Proposition 3.6]:

Theorem 1.2. The tangent space to the horizontal deformations of p is
E∩p− = E∩p (since E is real) and the tangent space to the strictly horizontal
deformations of p is E∩E−1,1. So if E∩p = 0 the period map is horizontally
rigid and if E ∩ E−1,1 = 0 the period map is strictly horizontally rigid.
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It is therefore clear that a rigidity study should include a systematic
study of the above endomorphism algebra. As a first step, note that for any
variation of Hodge structures the monodromy representation is complete
reducible:

Theorem 1.3 ([Del71, 4.2.6]). A polarized variation of Hodge structures
over a quasi-projective manifold is a direct sum of irreducible ones.

Here one has to pay attention: an irreducible variation of Hodge struc-
ture is not in general irreducible as a local system, but the direct sum of
all irreducible systems isomorphic to it. In other words, the irreducible
variations correspond to the isotypical local systems.

2 Isotypic Representations

Motivated by theorem 1.3 I now study isotypic representations in general.
More precisely, fix a field k of characteristic zero, a group G and a k-vector
space which is a completely reducible right G-module. Let V be an irre-
ducible submodule and let W be the sum of all the submodules isomorphic
to V . We set

W := V ⊕ · · · ⊕ V︸ ︷︷ ︸
m

D := EndG V

U := HomG(V,W )

Z := Center(D).

By Schur’s lemma D is division algebra over its center. Hence Z is a finite
extension field of k. We put

dimZ D := r2

d := [Z : k].

The algebra D acts naturally by composition on U from the right and from
the left on V . Hence there is an action on U⊗kV and if we divide out by the
subspace generated by the elements u◦γ⊗v−u⊗γ(v) we get a k-vector space
denoted by convention U ⊗D V . Note that V and U both being D-modules
are also Z-vector spaces. Hence W is.

The composition makes the module D into a left-right D-module. The
opposite algebra Do is the same as D but the product is reversed. For
instanceMd(D), the full matrix algebra of matrices of sizem with coefficients
in D is isomorphic as a D-module to EndDo(D). Usually one thinks of Do

as the collection γo, γ ∈ D where γ 7→ γo is some fixed anti-isomorphism.
For example, if D is the full matrix algebra Md(k), the transpose map is
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such an anti-automorphism. This can be used to switch between left and
right D-modules.

The following result describes the position of the G-endomorphisms with
inside the full algebra of Z-endomorphisms:

Lemma 2.1 ([Sat, Ch. IV, § 1]). 1. U is a D-module of rank m and
W = U ⊗D V . If rankDV = n, we have dimZ V = nr2, dimZW =
mnr2.

2. There is a natural identification

EndZW = EndDo U ⊗Z EndD V,

the action of γ ∈ G on W can be written id⊗γ|V and

EndGW = EndDo U ⊗ idV .

From now on we assume that G is an algebraic group defined over k.
Since the G-action is entirely on the V -factor, the G-action restricts Z-
linearly on V :

G ↪→ GLZ(V ).

It follows that G “comes from” an algebraic group G̃ defined over Z. More
precisely:

Lemma 2.2. There is an algebraic group G̃ ⊂ GL(V ) defined over Z such
that

G = RZ/kG̃.

The centralizer C(G) is the Weil-restrictriction of the Z-group C(G̃).

Remark 2.3. Note that EndGW is the commutant of the Lie-algebra of G
inside the Lie-algebra EndkW . In other words, the Lie group of C(G) is
EndG(W ).

I refer to appendix A for the notion of Weil-restriction

3 Invariant bilinear forms

Start out with a division algebra D over a field k with centre Z equipped
with an involution a 7→ a∗, a ∈ D. This means that (ab)∗ = b∗a∗ and
that [a∗]∗ = a. The involution is not necessarily Z-linear: it induces an
involution on Z which may or may not be the identity. If it is, we say that
the involution is of the first kind and otherwise that it is of the second
kind.

Any non-degenerate Z-bilinear form q : D×D → D defines an involution
of the first kind: just take the transpose with respect to q. The theorem of
Skolem-Noether implies that any involution of the first kind on D is of this
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sort. Since D is a simple algebra over Z the form q is either symmetric or
anti-symmetric:

q(x, y) = ±q(x, y), ∀x, y ∈ D.

and we denote this sign by ε∗. It is called the sign of the involution ∗.
Let T be a k-vector space which is a right D-module of rank say n. One

has EndD T 'Mn(D) and one puts

GLD(T ) = the group of units in EndD T (' GL(n,D)) (5)

SLD(T ) = the elements of norm 1 in GLD(T ) (' SL(n,D)). (6)

One says that a k-bilinear map

h : T × T → D

is (D, εT )-hermitian with respect to ∗ if

h(x, y)δ = h(x, y)δ
h(y, x) = εT [h(x, y)]∗

}
, ∀x, y ∈ T, δ ∈ D. (7)

Such a form defines an involution ∗h on EndD T .
The unitary group UD(T, h) and the special unitary group SUD(T, h)
are defined in the usual way.

Examples 3.1. Over R we only have 2 central division algebras R (Case
(R1)) and H (Case (R2)).
(R1). D = Mr(R), and Z = R. Any involution, automatically of the first
kind, is of the form A 7→ A∗ := Q−1 TAQ for some quadratic form Q on Rr.

Let T = Mr,rn(R) = Dn ' Rr2n viewed as column vectors X =

X1

. . .
Xn

 ,

Xj ∈Mr(R) on which D acts from the right.
Write the form h(X,Y ) = X∗1Y1 · · ·X∗pYp − X∗p+1Yp+1 − · · · − X∗p+qYp+q
(p+ q = n) on Dn as 1p⊕−1q. It is an example of a (D,+)-hermitian form
on T = Dn. The group U(T, h) is denoted OGD(p, q); for r = 1 this gives
the standard quadratic form 1p⊕−1q with corresponding group OGR(p, q).
If Q is symmetric, say Q = 1a ⊕ 1b, then the induced trace form T

D/Rh is
equal to p[Q⊗Q]−q[Q⊗Q], a form of signature [(a2+b2)p−2abq, (a2+b2)q−
2abq]. If Q is symplectic, then r is even and the form T

D/Rh is symplectic
as well.
For n is even and h the symplectic form

h(X,Y ) =
(
X∗1 . . . X∗n

)
Jn

 Y1

. . . ,
Yn

 J =

(
0 −1 1

2
n

1 1
2
n 0

)
.

we call the group UD(h) the symplectic group which will be denoted
operatornameSpD(1

2n). For a symmetric form Q we get a symplectic trace
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form while for Q symplectic, the trace form becomes a symmetric form of
signature (1

2r
2n, 1

2r
2n).

All groups considered so far are real algebraic groups.
(R2). Then r is even and D = M 1

2
r(H). Any involution is of the first

kind. Let a 7→ a∗ be the standard involution on H (the one that sends
a+ bi + bj + ck to a− bi− bj− ck). Then an arbitrary involution of the first
kind on D is of the form A 7→ Q−1 TA∗Q, where Q is a bilinear form. Let
us consider Q = 1r and the form 1p ⊕ −1q on H

1
2
rn, 1

2rn = p + q. The
corresponding group is UH(p, q) and the corresponding trace form leads to
the real unitary groups UC(4p, 4q). A (D,−)-form is the real algebraic group
Un(H)− = {g ∈ GLn(H) | g∗(j1n)g = j1n}.
(C). Over C the only division algebra is C. This is called “Case (C)”. There
are two involutions, the identity (first kind) and the complex conjugation
(second kind).
(C)1. This case is largely similar to (R1) except that the trace form now
gives the complex algebraic groups OGC(p, q) ' OGC(n) and the complex
symplectic groups SpC(1

2n).
(C)2. This case leads to unitary groups UD(p, q) whose trace forms give real
algebraic groups UC(p, q) both for a (D,+)-hermitian) or a (D,−)-hermitian
form. This last is seen using the skew-hermitian form form −i1p ⊕ i1q.

Return now to the situation of § 2 where W = U ⊗D V is supposed to
have a non-degerate k-bilinear form q which is ±-symmetric and G-invariant.
Denote this sign by εq. The form q defines an involution on EndkW (just
take the transpose of endomorphisms with respect to q) and hence there is
an involution on EndGW as well and its center D. The latter is denoted ∗.
We have

Lemma 3.2 ([Sat, Ch IV. §2]). There exists a (D, εU )-hermitian form hU :
U×U → D (with respect to ∗) and a (Do, εU εq)-hermitian form hV : V×V →
Do (with respect to ∗o) such that

q(u⊗D v, u′ ⊗D v′) = T
D/k

(
hU (u, u′)

[
hV (v, v′)

]o)
.

This is abbreviated by writting

q = T
D/k(hU · hoV ).

If the involution ∗ on D is of the first kind one has εU = ε∗ and if ∗ is of
the second kind εU can be chosen freely.

Observe that the group G acting only on the V factor in the decompo-
sition W = U ⊗D V , we have an embedding G̃ ↪→ U(hV ) which is defined
over Z (use the trace map T

D/Z), i.e. there is an embedding

G = RZ/kG̃ ↪→ RZ/kU(hV ). (8)
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Likewise there is a natural isomorphism

G′ := CGL(W,q)(G) = RZ/kCGL(W,q)(G̃) ' RZ/kU(hU ). (9)

For later use we observe:

Lemma 3.3. The Lie-algebra of G′ consists of the k-linear endomorphisms
α of W which preserve q in the sense that q(α(v), w) + q(v, α(w) = 0 for all
v, w ∈W . In other words, using the notation (4) we have Lie(G′) = E.

4 Field Extensions

Suppose that D is a simple algebra over k with center Z and suppose

dimZ D = r2.

Fix any extension field K of k and an algebraic closure K̄ of K. Then

Z ⊗k K =
⊕
σ∈Σ

Zσ, d′ = [Zσ : K] <∞,

where Σ is the set of Gal(K̄/K)-orbits in the finite set T of k-embeddings
iτ : Z ↪→ K̄ and the image of Zσ in K̄ equals iτ (Z)K, where τ represents
σ ∈ Σ. We have

d = #Σ · d′
dimK D ⊗Z Zσ = d′ dimZ D = d′r2.

(10)

In the situation of § 2 we have

VK := V ⊗k K =
⊕
σ∈Σ

ZσV, ZσV ' V ⊗Z Zσ,

WK := W ⊗k K =
⊕
σ∈Σ

ZσW, ZσW 'W ⊗Z Zσ,

EndG(ZσV ) ' D ⊗Z Zσ.

So the ZσV are the isotypic components of VK , say of irreducible type V σ

and the ZσW are the isotypic components of WK . The algebra EndG V
σ is

a K-division algebra with center Zσ. Put

Dσ = EndG V
σ, Zσ = Center(Dσ)

dimZσ D
σ = r2

σ (11)

rankDσV
σ = nσ, (12)

EndG(ZσV ) ' Msσ(Dσ). (13)
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One can identify ZσV with the matrices of size sσ × nσ on which Msσ(Dσ)
acts from the left. The sσ rows correspond to the sσ isotypic components.
If we identify the Dσ-module of the first row vectors with V σ we can write

ZσV = ε11V
σ ⊕ · · · ⊕ εsσ1V

σ,

where eij ∈ Msσ(Dσ) denotes the matrix with 1 on the (i, j)-th entry and
zero elsewhere. Now one has HomG(V σ, VK) = Zσε11U and

Uσ := HomG(V σ, VK) ' ZσU,
ZσW = Uσ ⊗Dσ V σ.

Recalling (10), (11), (12) and (13), a short calculation gives:

Lemma 4.1. We have rankDσU
σ = msσ, rankDσV

σ = nsσ and r = rσsσ.

Example 4.2. In the case K = R the division algebra Dσ equals R (Case
R1), H (case R2) or C (Case C).

Suppose for example that k = Q and that Z is a totally real algebraic
extension (of degree d). Then d′ = 1, d = t. Here only cases (R1) and (R2)
are possible. In case (R1), one has rσ = 1 and s = r = sσ, Uσ = Rmr,
V σ = Rnr. In case (R2), one has rσ = 2, Zσ = R = K and s = 1

2r = sσ. In

particular r must be even and U = H
1
2
mr, V = H

1
2
nr.

If Z is an imaginary extension of a totally real number field, we have case
(C) with Zσ = C and hence d′ = 2. In this case rσ = 1, so that Uσ = Crm,
V σ = Crn.

In the situation of § 3 one has [Sat, Ch. IV §3]:

Lemma 4.3. Let there be given a non-degenerate k-bilinear form q on
W = U ⊗D V inducing the involution ∗ on D, with product decomposi-
tion q = T

D/k(hU ⊗ hoV ). Let qσ the induced bilinear form on W σ and let
∗σ the induced involution on Dσ. Then there are signs εσ such that hU in-
duces a (Dσ, εσεU )-hermitian form hUσ on Uσ (with respect to ∗σ) and a
([Dσ]o, εσεV εq)-hermitian form hV σ on V σ (with respect to ∗σ) such that

qσ = T
Dσ/K [hUσh

o
V σ ].

Fix some embedding σ : Z ↪→ K̄, a non-degenate (Dσ, η)-hermitian form
hσU on Uσ. From the decomposition (17) for the group G̃ given by (8) one
gets :

G(K) = RZ/kG̃(K) =
∏
σ

G̃σ(σZ), (14)

G′(K) = RZ/kG̃
′(K) =

∏
σ

G̃′
σ
(σZ). (15)
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Example 4.4. Continuing with the situation of example 4.2, examples 3.1
we take k = Q and suppose that Z is either a totally real extension of Q of
finite degree (Case (R)), or an imaginary extension thereof (Case (C)). In
the cases (R) we suppose that the involution is the “standard involution”
with fixed field R while for the case (C) we suppose it is the complex con-
jugation. Again we take K = R and we have the following possibilities for
the component Gσ in (14). A similar analysis holds for G′σ.

R1 Dσ = R, D ⊗Z Zσ = Msσ(R), U = Rmr, V = Rnr and according to the
sign η of hσU we have

R1+ G̃σ(R) = O(p, q) with p+ q = mr if η = 1

R1− G̃σ = Sp(1
2mr) if η = −1. In this case mr is even.

or

R2 Dσ = H, r is even, D ⊗Z Zσ = Msσ(H), U = H
1
2
mr, V = H

1
2
nr and

according to the sign η of hσU we have

R2+ G̃σ(R) = UH(p, q) with p+ q = mr if η = 1.

R2− G̃σ(R) = UH(n)− if η = −1.

C Dσ = C, D⊗Z Zσ = Msσ(C), U = Cmr, V = Cnr and G̃σ(R) = UC(p, q),
p+ q = mr, irrespective of the sign.

5 Monodromy Representations of a Variation of
Hodge structure

Let (S, o) be a arc-wise connected pointed topological space and WS a local
system of Q-vector spaces on S. The stalkW = W o at o ∈ S is a left π1(S, o)-
module under the monodromy action. Suppose that W comes equipped with
a non-degenerate Q-bilinear form q, preserved by the monodromy action
and let G ⊂ GL(W, q) the connected component of the Zariski-closure of the
monodromy group. It is called the (connected) algebraic monodromy group.

In studying rigidity questions, one may replace WS by its pull back
under a finite unramified cover of S and hence one may assume that the
Zariski-closure of the monodromy group itself is connected so that the con-
siderations of the previous sections can be applied to this situation. For
instance, EndG(W ) is the algebra of global endomorphisms of the local sys-
tem WS . Suppose next that WS admits a q-polarized Q-variation of Hodge
Recall that W is the fiber of WS considered as G-module where G is the
algebraic monodromy group. One has [Del71, Cor. 4.2.9]:

Lemma 5.1. G is semi-simple; in particular, its center is finite.
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The fiber V = V o is an isotypical component and D = EndG(V ) so that
we can apply the considerations of § 2–5.

Since the Lie-algebra of the real points of the group G′ defined by (9) is
precisely E Theorem 1.2 implies that the variation is horizontally rigid, i.e
pC ∩ E = 0 precisely if the group G′ happens to be compact:

Corollary 5.2. The real group G′(R) is compact precisely if the variation
is horizontally rigid.

Remark 5.3. 1. In particular, the Q-rank of W is divisible by r2[Z : Q],
r2 = dimZ D. So if this rank is a square-free number, D = Z is a field and
D = D0,0. In particular, if in this case the local system is irreducible, the
system is (strongly) rigid. This is automatically the case if the rank of the
system (which equals mnr2[Z : Q]) is a prime number.
2. A local system which remains irreducible after extending to C is said to
be absolutely irreducible. If such a system carries a polarizable variation
of Hodge structure it is strongly rigid, since then End(W )⊗C = C must be
pure of type (0, 0). Examples include the variation given by the primitive
cohomology of Lefschetz pencils of complete intersections (except for a small
number of obvious exceptions).

The division algebra D is of a special kind: the Weil operator on the
center Z is the identity and hence the fact that q polarizes the Hodge struc-
ture implies the involution on Z is positive. Then as in [S-Zu, Thm. 2.4.1]
Albert’s classification implies:

Theorem 5.4. Suppose that WS underlies an isotypical q-polarized vari-
ation of Hodge structures with irreducible component V S and let D be the
algebra of flat endomorphisms of V S. Then for the center Z of the divsion
algebra D one has two possibilities

(R) Z = Z0 is either a totally real number field and ∗ is of the first kind,

(C) Z is a quadratic extension of a totally real number field Z0 and ∗ is the
complex conjugation on Z.

Let me use this to study what happens when I extend scalars to K = R.
Our variation of Hodge structure on WS splits over the reals as

(W, q)⊗ R '
⊕
σ

(W, q)σ. (16)

and the classification of Example 4.4 applies. In particular, W σ = Uσ ⊗Dσ
V σ is isotypical of type V σ. Recall also (Prop. 3.2) that if the induced
hermitian form on Uσ has sign εσ then the induced form on V σ has sign
−εqεσ. In this way, one thus obtains:
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Proposition 5.5. Let σ : Z0 ↪→ R be any of the real embeddings of Z0.
For each of the types (R1)+, (R2)+ respectively (C), let (pσ, qσ), (p′σ, q

′
σ) be

the signatures of the corresponding hermitian forms on Uσ, respectively V σ.
Then with the notation (14), (15) and the conventions of Appendix B, one
has

G(R) =
∏

σ of type R1+
pσ+qσ=mr

O(pσ, qσ)×
∏

σ of type R1−

SpR(
1

2
mr)×

∏
σ of type R2+

pσ+qσ=1
2mr

UH(pσ, qσ)×
∏

σ of type R2−

UH(
1

2
mr)− ×

∏
σ of type C
pσ+qσ=mr

UC(pσ, qσ),

and if εq = 1, respectively εq = −1, one then has correspondingly

G′(R) =
∏

σ of type R1−
p′σ+q′σ=nr

O(pσ, qσ))×
∏

σ of type R1+

SpR(
1

2
nr)×

∏
σ of type R2−
p′σ+q′σ=1

2nr

UH(p′σ, q
′
σ)×

∏
σ of type R2+

UH(
1

2
nr)− ×

∏
σ of type C

p′σ+q′σ=nr

UC(p′σ, q
′
σ),

respectively,

G′(R) =
∏

σ of type R1+
p′σ+q′σ=nr

O(pσ, qσ)×
∏

σ of type R1−

SpR(
1

2
nr)×

∏
σ of type R2+

p′σ+q′σ=1
2nr

UH(p′σ, q
′
σ)×

∏
σ of type R2−

UH(
1

2
nr)− ×

∏
σ of type C

p′σ+q′σ=nr

UC(p′σ, q
′
σ),

From the above decomposition and Cor. 5.2 we deduce:

Corollary 5.6. A variation of Hodge structure is (horizontally) rigid if and
only if the following conditions hold simultatiously:

• p′σq′σ = 0 for type (R1)−, (R2)− and (C) for even weight, and p′σq
′
σ = 0

for type (R1)+, (R2)+ and (C) for the case of odd weight,

• no factor of type (R1)+, (R2)+ for even weight, and no factor of type
(R1)−, (R2)− for odd weight.

It turns out that the indices of the various hermitian forms are strongly
related to the type of Hodge structure on the various irreducible constituents
V σ of the isotypical parts W σ from (16). As an illustration we mention 2
examples.
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Examples 5.7. 1. K3-surfaces. In [S-Zu] one finds that the transcendental
variation W associated to a family of K3’s which is non-isotrivial and non-
rigid (i.e. there exist no non-trivial strictly horizontal deformations) has
a very particular structure: D itself is a quaternion-algebra with center a
totally real field and W = V is of rank one over D. In particular, W must
have rank 4d, i.e. divisible by 4. Moreover, D splits over exactly one place
so that

D ⊗Z R = M2(R))×H× · · · ×H︸ ︷︷ ︸
d−1

G(R) = G′(R) = SLR(2)×UC(2)× · · · ×UC(2)︸ ︷︷ ︸
d−1

.

This has remarkable consequences for the monodromy group: if the mon-
odromy group has a non-trivial unipotent element T such that (T−id)N 6= 0
for N = n0 while higher powers are zero, one must have n0 = 2 and then the
whole monodromy group embeds in 2,Q. This follows since as soon as G(R)
contains a compact factor, the Q-rank of G is zero and G does not contain
a non-trivial unipotent element defined over Q (Appendix A). In particular,
the assumption then implies that in the above decomposition of G(R) one
has d = 1.
2. Weight one. In [Sa] one finds that in this case, the above orthogonal
groups and the quaternionic unitary groups all must be definite. This im-
plies G(R) has t compact factors and d/d′ − t non-compact factors, the
opposite is true for G′(R). If if the variation is non-isotrivial and non-rigid
one can show that t > 0 and d/d′ − t > 0. In particular, since G(R) then
has compact factors, the Q-rank must be zero. By Appendix A this implies
that one cannot have a non-trivial T ∈ G(Q) which is unipotent.

6 The role of the Mumford-Tate group

The Hodge group of the fibres of a variation of Hodge structure vary, but
one can easily show that there is a dense open subset over which it stays
constant. The resulting group is called the generic Hodge group, or the
Hodge group of the variation and denoted Hggen. It is known that G, the
algebraic monodromy group, is a normal subgroup of the generic Hodge
group. In fact, one has [André, Theorem 1]:

Lemma 6.1. G/Hgss
gen, the “semi-simple part” of the generic Hodge group

i.e its commutator subgroup [Hggen,Hggen].

I say that the generic Hodge group is as small as possible equality holds
in lemma 6.1, i.e. G = Hgss

gen. The motivation behind this terminogy is as
follows. One fixes a local system over S which carries at least one polarizable
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variation of Hodge structure and hence the group G is considered to be fixed
while the generic Hodge group depends on which varation of Hodge structure
one puts on the local system. Minimality thus refers to a theoretical minimal
possible generic Hodge group among all possible variations on the given local
system.

Rigidity forces contraints on the generic Hodge group:

Proposition 6.2. If the generic Hodge group is as small as possible, then
the period map p is horizontally rigid. Conversely, if p is horizontally rigid
and moreover k ∩ m is abelian, then the generic Hodge group is as small as
possible.

Proof : The action of the Hodge group on End(W ) = W ⊗W∨ factors its
semi-simple quotient since the central torus acts trivially. This semi-simple
quotient contains the Weil-operator which acts as − id on vectors in End(W )
of pure type (−p, p) for p odd. So these cannot be invariant under Hgss(V ).
Suppose that o is very general so that Hgss(V ) = Hgss

gen and suppose that
moreover Hgss

gen = G. So then End(W ) has no vectors of this type invariant
under the monodromy group, i.e. E⊗C =

⊕
q E
−2q,2q and in particular the

period map is horizontally rigid.
For the converse, let me first analyze the position of G(R) and Hgss

gen(R)
inside the group G = GL(WR, qR). These groups are all semi-simple and
so they can be written as the semi-direct product of their simple factors.
In particular Hgss

gen(R) can be written as a semi-direct product Hgss
gen(R) =

G(R) ·H where H is a normal subgroup of the centralizer G′(R) of G in G.
The Lie-algebra of the centralizer of Hgss

gen(R) inside G is precisely E0,0
R .

It follows that the Lie-algebra of H is entirely contained in m. Write H =
Hc ·Hnc, where Hc, Hnc are the products of the compact, respectively the
non-compact factors of H. The Lie-algebra of Hc is contained in E ∩ k ∩ m
while the Lie-algebra of Hnc is contained in p ∩ E. Although in general
Hc 6= 1, if k ∩ m is abelian this group must be trivial since then the semi-
simple group H+

c is abelian. Since p ∩ E are the tangents to horizontal
deformations, the result follows.

Example 6.3. The condition that k ∩ m is abelian is trivially fulfilled for
weight 0-variations and for weight 2-variations with h2,0 = 1, i.e. for K3-
variations, since for those k = E0,0

R and hence k∩m = {0}. For these variation
horizontal rigidity and strict horizontal rigidity also coincide.

A Useful Facts on Algebraic Groups

See [Sat, Bor66, Bor69, Hum] for further details.
Let k be a field of characteristic zero, k̄ an algebraic closure of k. Al-

gebraic group are supposed to be defined over k. Moreover they are to be
connected, and linear in the sense that it has a faithful representation as
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an algebraic matrix group. An algebraic k-group T is an m-torus if T (k̄) is
isomorphic to a direct product of m copies of the multiplicative group k̄∗.
There is a finite Galois extension L/k so that T (L) is already isomorphic
to m copies of L∗. One says that T is split over L. A torus is anisotropic
if it has no non-trivial characters defined over k, i.e. no homomorphisms
T (k) → k∗ besides t 7→ 1. Any k-torus T can be written uniquely as
T = Tspl · Tan where Tspl is largest k-split subtorus of T and Tan is the
largest k-anisotropic subtorus. The k-rank of T is the dimension of the
maximal k-split subtorus of T . This rank is 0 if and only if T is anisotropic.

An algebraic group is semi-simple if it has no nontrivial closed normal
commutative subgroups. The corresponding Lie-algebra is semi-simple and
is the direct sum of its simple ideals. This translates as follows: a semi-simple
group is the almost direct product of its simple components, by definition
the closed normal non-abelian subgroups which have no non-trivial closed
normal subgroups themselves. Any closed normal subgroup of a semi-simple
group is a product of some of its simple components.

An algebraic group is reductive if it contains no normal subgroups
that are solvable. It contains maximal tori defined over k and they are all
conjugate by [Bor69, §11.3]. The k-rank of G is the k-rank of any of its
maximal tori. If this rank is zero G is called anisotropic.

A reductive group G can be written as an almost direct product G =
Z(G) ·Gss of its center and its commutator subgroup Gss = [G,G] which is
semi-simple. The center Z(G) is an algebraic torus.

Example A.1. Let k = R. Then a 1-torus is either R∗ with trivial Galois
action, or S1, with Galois action θ 7→ −θ. In the first case the torus is
split and the rank is 1; in the second case the torus is anisotropic and the
R-Cartan group is 1 so that R-rank is 0.

Remark A.2. Let G be a reductive algebraic group in characteristic zero
is anisotropic if and only if G has no non-trivial characters over k and no
unipotent elements g ∈ G(k), g 6= 1. See [Bor66, § 6.4] for this assertion.

Here is a sketch of the proof. The kernel N of a non-trivial character
χ : G → k∗ is a normal subgroup and clearly [N,N ] = N . Hence N is
semi-simple and G = Z(G) · N with Z(G) a central torus to which χ re-
stricts non-trivially contrary to the assumption that there are no k-split tori.
For the second assertion, any non-trivial unipotent element corresponds to
a nilpotent element X in the Lie-algebra of the semi-simple part. It can
be completed to a standard triple {H,X, Y }, i.e. a triple k-isomorphic to
sl(2; k) and contained in Gss (essentially by using the Jordan-Chevalley the-
orem and the non-degeneracy of the Killing form on the semi-simple part).
Hence the Lie group must contain a non-trivial split k-subtorus contrary to
the assumption that G is anisotropic.

For the converse, first observe that the first assumption (no non-trivial
k-characters exist for G) implies that Z(G) can not have split k-tori. As
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before, using standard triples, one can see that any split k-torus in the
semi-simple part of G gives rise to an embedded copy of 2, k and hence a
non-trivial unipotent element in G(k) contrary to the second assumption.

Example A.3. Let k be a finite extension of Q and G a k-group such that
for some embedding σ : k ↪→ R the resulting group Gσ is compact. Then
the k-rank is 0. Indeed, any character χ for G induces a character χσ for
Gσ and any unipotent g ∈ G gives a unipotent element gσ in Gσ. Hence
χσ = 1, gσ = 1 and also χ = 1, g = 1.

Next, let me recall the construction of the Weil restriction [Weil, 1.3].
Let Z/k be a finite Galois extension of a field k of degree d. Suppose that XZ

is a variety defined over Z and let Xk be the same set viewed as a k-variety,
i.e. the Z-points of XZ form the k-points of Xk. However, one would like to
find a variety YZ defined over Z such that its k-points YZ(k) are in one-to
one correspondence to the k-points Xk(k) of Xk. The correspondence should
be “natural” in that any algebraic structure on Y should be inherited by
the one on X. If such Y exists we say that X is the Weil restriction of Y ,
denoted X = RZ/kY .

For algebraic groups there is a direct construction as follows. Viewing
Z as a k-algebra, we get the regular representation ρ : Z → Md(k). Then
for all positive integers m from the representation ρ one gets a new one,
ρ(m) : MZ(m) → Mk(md), defined by ρ(m)(Aij) = (ρ(Aij)). Suppose
now that G is a Z-matrix group G ⊂ GLZ(N), then the Weil restriction
RZ/kG is the k-group ρ(N)(G). If dimZ G = n, then dimk RZ/kG = nd. By
construction, its group of Z-points is a product

RZ/kG(Z) =
∏
σ

Gσ(Z), Gσ := G⊗σ(Z) k̄, (17)

where σ runs over the set of k-linear embeddings σ : Z ↪→ k̄ of Z in some
algebraic closure of k. There are d distinct such embeddings.

From example A.3 one gets the following obvious but useful result.

Lemma A.4. Let H be an algebraic group defined over a number field Z
and let G = RZ/QH be its Weil-restriction. Suppose that G(R) decomposes
as a direct product of real groups G =

∏
iGi. Then the Q-rank of G is at

most maxi(R-rank Gi). In particular, if some Gi is compact, the Q-rank of
G is zero.

Example A.5. The Weil restriction S = RC/RC∗ is the algebraic group C∗
viewed as a real group. Its complex points consists of C∗×C∗ with complex
conjugation acting as (z, w) 7→ (w̄, z̄). The embedding R∗ ↪→ C∗ induces a
homomorphism of algebraic groups w : Gm → S.

A representation of S on a real vector space V such that w(t) acts as
multiplication by tk is a real Hodge structure where V p,q is the subspace
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of V ⊗ C on which (z, w) ∈ S(C) acts as zpwq. If w(C∗) is defined over
Q we have a rational Hodge structure. The Mumford-Tate group is the
algebraic closure MT of the image of S inside GL(V ). The unitary subgroup
of C∗ gives rise to a morphism U(1) → S. The complex points of its image
is the subgroup of S(C) of points of the form (z, z̄−1). Its Zariski-closure in
GL(V ) is called the Hodge group Hg of the Hodge structure. These groups
by construction are connected and MT = Gm · Hg. If the Hodge structure
on V is polarized, the definitions imply that the Hodge group preserves
the polarization. In fact, if q is a polarization, one has Hg = MT ∩ V, q.
In that situation it is known that the Mumford-Tate group is reductive
[DMOS] It follows that is the product of its center and a semi-simple group
Hgss = [Hg,Hg].

B Classical groups

Over C one has the following classical groups:

1. n;C the group of complex n × n matrices of determinant 1 and the
corresponding Lie algebra sl(n;C).

2. O(n;C) the group of complex n × n orthogonal matrices A, i.e. for
which TAA = 1; the corresponding Lie algebra is o(n;C). There is
only one non-degenerate symmetric form on Cn represented by the
matrix 1n.

3. Sp(n;C) the group of complex 2n × 2n symplectic matrices A, i.e.

those for which TAJA = J , J =

(
0n 1n
−1n 0n

)
. The corresponding Lie-

algebra is sp(n;C). Up to isomorphism J is the unique skew form on
C2n.

The real forms of these classical groups either use real, complex or quaternion
vector spaces in their description:

1. SL(n;R) with Lie algebra sl(n;R);

2. O(p, q) the group of real n× n matrices A with TA1p,qA = 1p,q where

1p,q =

(
1p 0
0 −1q

)
, p + q = n. The corresponding Lie-algebra o(p, q)

consists of complex n × n matrices A with TA1p,q + 1p,qA = 0. Up
to isomorphism there is a unique non-degenerate symmetric form of
signature (p, q) represented by the matrix 1p,q.

3. Sp(n;R) the group of real 2n×2n symplectic matrices with Lie algebra
sp(n;R).
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4. UC(p, q) the group of complex n × n matrices A with TĀ1p,qA = 1p,q

where 1p,q =

(
1p 0
0 −1q

)
, p + q = n. The corresponding Lie-algebra

uC(p, q) consists of complex n×n matrices A with TĀ1p,q +1p,qA = 0.
Up to isomorphism there is a unique hermitian form of signature (p, q)
represented by the matrix 1p,q. The unique skew hermitian form is
represented by i1p,q.

5. UH(p, q) the group of quaternionic n× n matrices A with TA∗1p,qA =

1p,q where 1p,q =

(
1p 0
0 −1q

)
, p + q = n. The corresponding Lie-

algebra uH(p, q) consists of quaternionic n×nmatricesA with TA∗1p,q+
1p,qA = 0. Here A∗ is the matrix where each entry a+ ib+ jc+ kd is
replaced by its conjugate a− ib− jc−kd. Up to isomorphism there is a
unique quaternionic hermitian form of signature (p, q) represented by
the matrix 1p,q.

6. Un(H)−, the group of quaternionic n×n matrices A with A∗(j1n)A =
j1n and with Lie-algebra u(n;H)−. There is a unique skew-hermitian
form on Hn represented by j1n.

C Nilpotent and Unipotent Elements in Classical
Groups

Here the base field is R but many arguments also work for any field of
characteristic zero. A nilpotent matrix N is said to have nilpotency-index
k if Nk = 0 but Nk−1 6= 0. The nilpotency index ν(g) of a matrix Lie algebra
g is the maximal nipotency index which occurs among the nilpotent N ∈ g.
For instance ν(sl(n;R)) = n as exemplified by the Jordan matrix

Nn =


0 1 0 · · · 0
0 0 1 · · · 0
...

. . .
. . .

...
0 0 · · · 0 1
0 0 · · · 0 0




n

of size n.
If A is a unipotent matrix, its index of unipotency is the index of

nilpotency of A− I and the unipotency index ν(G) of a matrix Lie group G
is the maximal index of unipotency occurring among the unipotent A ∈ G.
It is clearly equal to ν(Lie(G)).

To calculate ν(Lie(G)) one proceeds as follows. A nilpotent X ∈ Lie(G)
can be completed to a standard triple (H,X, Y ) defining a Lie sub algebra
isomorphic to sl(2;R). If Lie(G) ⊂ End(V ), the vector space V thus is
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an sl(2;R)-representation and hence completely decomposes into irreducible
ones, say V =

⊕k
j=1 Vj and X = (X1, . . . , Xk) corresponds to the partition

(r1, . . . , rk) of n = dimV which follows the dimensions rj = dimVj of the
irreducible constituents. Any irreducible representation is completely given
by its highest weight vector. Here Vj is the irreducible representation of
sl(2;R) of highest weight (rj − 1)which means that it is isomorphic to Rrj
on which X acts as Nrj , H as the diagonal matrix with entries (rj , rj −
2, . . . ,−rj + 2,−rj) and Y as the matrix

0 0 0 · · · 0
µ1 0 0 · · · 0
...

. . .
. . .

...
0 0 · · · 0 0
0 0 · · · µrj−1 0


where µi = i(rj − i), i = 1, . . . , rj − 1. It follows that X has index of nilpo-
tency ν(X) = max{rj}. Hence triples containing a nilpotent X correspond
to partitions of n and one can read of the index of nilpotency of X from the
partition. There is a systematic way of describing which partitions occur for
the classical groups. See for instance [Go-McGo, Chapter 5, Chapter 9.3].
From this classifcation one deduces easily:

Theorem C.1. The unipotency index of the classical groups is given as
follows:

1. For SL(n;C) and SL(n;R) it is n;

2. for Sp(n;C) and Sp(n;R) it is 2n;

3. for O(n;C) it is n if n is odd, but (n− 1) if n is even;

4. for O(p, q), UC(p, q) and for UH(p, q) with p > q it is 2q+ 1 and when
p = q it equals n = 2p (in particular it equals 1 in the definite case);

5. for Un(H)− it equals n.
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