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Theorem (Barth-van de Ven, Inventiones 1974)

Let X ⊂ Pn
C be a degree d smooth projective variety of dimension

n − 2(=codimension 2).
If d < 1

4n + 3
2 then X is a complete intersection.

Explanation of the terms in the theorem:

Definition

A complex projective algebraic variety is the solution set of a collection of
homogeneous polynomials f1, . . . , fr . The solution set V (f1, . . . , fr ) is to be
taken in projective n–space Pn

C:

Pn
C = {lines in Cn+1 through 0}

= {ratios (x0 : x1 : · · · : xn), xj ∈ C}
= {equiv. classes [~x ], ~x ∼ λ~x ∀λ ∈ C∗}

V (f1, . . . , fr ) = {[~x ] = (x0 : · · · : xn) ∈ Pn
C | fj(~x) = 0, j = 1, . . . , r}.
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A projective variety V (irreducible) need not be a manifold, i.e., locally
”like” some open set in Cm, but this is so around ”most” points. Then
m =dimension of V . If V is a manifold, we call it a smooth variety.
The next invariant depends on the embedding:

the degree (V ) = number of pnts. in V ∩ L,

L a general linear space of codim. m.

Examples:
1. A hypersurface V (f ) ⊂ Pn

C with f of degree d has dimension n − 1 and degree
d .
2. A variety V (f1, . . . , fr ) has dimension ≥ n − r (each fj is a condition or
constraint and each condition lowers the dimension at most by one). If equality
holds it is by definition a complete intersection. In that case:

degV (f1, . . . , fr ) = deg f1 · deg f2 · · · deg fr (theorem of Bezout).

3. The rational curve, image of t 7→ (1 : t : t2 : t3) is not a complete intersection

(by Bezout).
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Relation with Hartshorne’s conjecture

Conjecture (Hartshorne (1974))

Suppose that X ⊂ Pn
C is a smooth projective variety of dimension > 2

3n.
Then X is a complete intersection.

1. This conjecture is still wide open. Hartshorne made some contributions
but the above theorem by Barth and van de Ven is the most substantial
one. It proves the conjecture in the first interesting case, that of
codimension 2 provided the degree is not too big.
2. Barth and van de Ven and, independently, Hartshorne a bit later proved
similar results for any codimension. The sharpest version is:

n ≥ d(d − 1) =⇒ X is a complete intersection.
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Ingredients of proof

Here vector bundles play a central role. I don’t give a formal definition,
just an idea of what a (complex) vector bundle α looks like – van de Ven
drew this picture many times on the blackboard:
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Ingredients of proof
More formally,:

A total space E = E (α) (in this context: a complex manifold);
a base space B = B(α) (in this context: a complex manifold);
a bundle map π : E → B (here: a holomorphic map) such that the
fibers Fb = π−1b are complex vector spaces of fixed dimension r , the
rank of α;
the fiber structure is ”locally constant”.

Examples

1. The tangent bundle TX of a manifold X .
2. The normal bundle NX of an embedded submanifold X ⊂ Y .

Terminology

A line bundle is a vector bundle of rank 1. The normal bundle to a
hypersurface V (f ) is a line bundle.
A vector bundle of rank r ≥ 2 may or may not be a direct sum of line
bundles. If it is, the vector bundle splits.
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Ingredients of proof

The link with vector bundles comes via the normal bundle:

Outline of proof

Codimension 2 submanifolds V ⊂ Pn
C have rank 2 normal bundles NV

and the so called Serre construction shows that for n ≥ 3:

NV extends to a rank 2 bundle α on Pn
C.

For extendable normal bundles NV = α|V one has:

V complete intersection ⇐⇒ α splits .

Determine when 2-bundles on Pn
C split and translate this in a

condition on the degree of V .
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Serre’s Construction

Suppose X is a complex algebraic manifold, Y ⊂ X is locally a complete
intersection (e.g. Y smooth) with the properties

codimYX = 2;

Let IY be the ideal sheaf of Y and set L−1 = detNY /X . The locally
free rank one sheaf ExtOX

(IY , L) is trivial as a line bundle.

Then the sheaf-extension E

0→ L→ E → IY → 0

defined by the canonical generator 1 ∈ H0(X , ExtOX
(IY , L)) is locally free,

and so defines a vectorbundle E on X . Moreover, the dual bundle E ∗ has
a section vanishing exactly along Y and E ∗|Y = NY /X , i.e. E ∗ is an
extension of the normal bundle of Y to all of X .
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Theorem (Van de Ven 1966)

1. The smooth manifold P2
C# · · ·#P2

C︸ ︷︷ ︸
n

admits an almost complex

structure if and only if n is odd.
2. It admits a complex structure only for n = 1.

Explanation of the notation: If X and Y are two smooth manifolds the
connected sum X#Y is a smooth manifold obtained by cutting out discs
from X and Y and glueing in a tube:
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Terminology

Definition

X has an almost complex structure ⇐⇒ there is a smoothly varying
”complex multiplication” Jx on the tangent space TX ,x :

Jx : TX ,x → TX ,x , J2x = −identity.

Obviously: X complex manifold =⇒ X has an almost complex structure,
but not conversely: The above theorem claims that a connected sum of
three copies of P2

C has an almost complex structure but not a complex
structure.
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Ingredients for the proof:

One needs topological invariants:

1 The Euler number e(X ); for instance e(P2
C) = 3 and one knows

e(X#Y ) = e(X ) + e(Y )− 2 =⇒ e(P2
C# · · ·#P2

C︸ ︷︷ ︸
n

) = n + 2.

2 The intersection form I (X ) in middle cohomology. Example: for a
genus 2 surface C2:

the form I (C2) is a skew symmetric form.
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Ingredients for the proof

By contrast, if dimR X ≡ 0 mod 4, the form I (X ) is a symmetric form and
can be diagonalized over Q, say I (X )(x1, . . . , xn) =

∑
ajx

2
j and one

defines

σ(X ) = (number of aj with aj > 0)− (number of aj with aj < 0).

For example

I (P2
C# · · ·#P2

C︸ ︷︷ ︸
n

) = the diagonal form

~x = (x1, . . . , xn) 7−→
∑
j

x2j of signature n.
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Ingredients for the proof
For the proof of 1. one uses:

Lemma (Wu and G. Reeb (1952))

Let X be a compact connected oriented smooth 4-manifold and let w2 be
the second Stiefel-Withney class of X . Then:

X has an almost ⇐⇒ (∗) ∃k ∈ H2(X ), k ≡ w2 mod 2
complex structure with I (X )(k) = 3σ(X ) + 2e(X ).

In case X = P2
C# · · ·#P2

C (n copies) this condition (∗) boils down to

I (X )(~x) =
n∑

j=1

x2j = 4 + 5n has a

solution ~x = (x1, . . . , xn) in odd integers xj .

Such a solution exists if and only if n = 2m + 1, e.g. (3, 3, 1, 3, 1, . . . , 3, 1)
(m ones).
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For the proof of 2. one uses much deeper tools:

Theorem (Bogomolov/Miyaoka/Yau, BMY–inequality)

Let X be a 4-manifold with a complex structure (=complex surface). Let
σ(X ) = signature of I (X ). Assume X is not a ruled surface. Then one has
the inequality

σ(X ) ≤ 1

3
e(X ).

Application: for P2
C# · · ·#P2

C︸ ︷︷ ︸
n

one has e = 2 + n, σ = n and so

3σ = 3n ≤ e = n + 2 =⇒ n = 1,

which proves 2.
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Historical Remarks about this section

Van de Ven’s 1966 article is a very special case of a more general study of
almost complex four-manifolds. His construction of a four-manifold with
an almost complex structure not coming from a complex structure is
different. In fact the above example could not be treated with the methods
of the 1966 article. In it one finds a weaker version of the BMY-inequality.
To explain this, recall the usual formulation of the BMY–inequality:

K 2 := 3σ + 2e =⇒ K 2 ≤ 3e.
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Historical remarks (cont,)

In the 1966 article one finds the inequality

K 2 ≤ 8e,

good enough for the alternative example. Only much later, in 1974 the
details of the proof appeared, shortly before Bogomolov (in 1975)
ameliorated it to K 2 ≤ 4e. Van de Ven suggested that the ”true” bound
should be K 2 ≤ 3e. This is proven a little later by Miyaoka (1977) and,
independently, by Yau (1977).
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