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Introduction

These notes reflect the lectures I have given in the summer school Algebraic
Geometry and Number Theory, 2-13 June 2014, Galatasaray University Is-
tanbul, Turkey. They are based on [P].

The main goal was to explain why the topological Euler characteristic
(for cohomology with compact support) for complex algebraic varieties can
be refined to a characteristic using mixed Hodge theory. The intended audi-
ence had almost no previous experience with Hodge theory and so I decided
to start the lectures with a crash course in Hodge theory.

A full treatment of mixed Hodge theory would require a detailed ex-
position of Deligne’s theory [Del71, Del74]. Time did not allow for that.
Instead I illustrated the theory with the simplest non-trivial examples: the
cohomology of quasi-projective curves and of singular curves.

For degenerations there is also such a characteristic as explained in
[P-S07] and [P, Ch. 7–9] but this requires the theory of limit mixed Hodge
structures as developed by Steenbrink and Schmid.

For simplicity I shall only consider Q–mixed Hodge structures; those
coming from geometry carry a Z–structure, but this iwill be neglected here.
So, whenever I speak of a (mixed) Hodge structure I will always mean a
Q–Hodge structure.

1 A Crash Course in Hodge Theory

For background in this section, see for instance [C-M-P, Chapter 2].
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1.1 Cohomology

Recall from Loring Tu’s lectures that for a sheaf F of rings on a topolog-
ical space X, cohomology groups Hk(X,F), q ≥ 0 have been defined. In
particular, for any ring R this gives groups

Hk(X,R) := Hk(X,RX), RX the constant sheaf R.

If f : X → Y is continuous there are induced homomorphisms f∗ : Hk(Y,Q)→
Hk(X,Q) which provide functors from topological spaces to Q–vector spaces.

The standard cohomology groups, such as the singular or Betti–cohomology
groups Hk

B(X,R) and the de Rham cohomology groups Hk
dR(X,R) (for dif-

ferentiable manifolds X) can be compared with sheaf cohomology.
To state the comparison results let us provisionally introduce:

Definition 1.1. The category of perfect topological spaces Top∗ has as
its objects Hausdorff second countable spaces that are locally compact and
locally contractible and for which the total cohomology

⊕
qH

k(X,Q) is
finite dimensional.

Example 1.2. Recall that a cell is a topological space homeomorphic to an
open ball and a cell complex is a Hausdorff second countable space which is
the union of cells glued along the boundaries. Cell complexes need not have
finite dimensional cohomology and so are not necessarily perfect. However,
if only finitely many cells are needed they form perfect topological spaces.
For instance differentiable manifolds, as well as complex manifolds or even
complex algebraic varieties can be given the structure of a finite cell complex.

Note that if X ∈ Top∗, also its one-point compactification X∗ is a per-
fect topological space, so that the above finiteness properties also hold for
compactly supported cohomology

Hk
c (X,Q) := H̃k(X∗,Q),

where H̃k(Y ) = coker(a∗Y : Hk(pt) → Hk(Y )) is reduced cohomology of
Y , (aY : Y → pt is the constant map). Reduced cohomology differs from
ordinary cohomology only in degree 0.

The following comparison results hold:

1. For a perfect topological space X there is a canonical functorial iso-
morphism Hk(X,R)

∼−→ Hk
B(X,R);

2. For a differentiable manifold integration over singular chains induces
a functorial isomorphism (De Rham’s isomorphism theorem)

Hk
B(X,R)

∼−→ Hk
dR(X) =

ker(d : Ap(X)→ Ap+1(X))

Im(d : Ap−1(X)→ Ap(X))
,

where Ap(X) stands for the real vector space of global p–forms on X.
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Suppose next that X is a complex manifold; using complex-valued forms,
the De Rham theorem can be stated for these as well:

Hk
B(X,C)

∼−→ Hk
dR(X)C,

where the subscript refers to the use of complex-valued forms. Such forms de-
compose in types: locally in a chart with holomorphic coordinates {z1, . . . , zn}
a form of type (p, q) is a linear combination of forms

dzi1 ∧ · · · ∧ dzip ∧ dz̄j1 ∧ · · · ∧ dz̄jq .

whose coefficients are C∞ functions. Because the gluing functions are holo-
morphic, a form which is of type (p, q) in one coordinate system is also
of the same type (p, q) in any other. Consequently, there is a direct sum
decomposition

Ak(X;C) =
⊕
p+q=k

Ap,q(X), (1)

whereAp,q(X) is the vector space of forms of type (p, q) onM andAk(X;C) =
Ak(X)⊗ C is the vector space of complex-valued k-forms. Note that

Ap,q(X) = Aq,p(X).

We now ask whether this decomposition passes to cohomology. To make
this precise, we let

Hp,q(X) := {classes representable by a closed (p, q)-form} ⊂ Hp+q
dR (X)

so that obviously
Hp,q(X) = Hq,p(X). (∗)

The decomposition we are after is

Hk
dR(XC) =

⊕
p+q=k

Hp,q(X)

and is called a Hodge decomposition for Hk. These might or might not exist.
It is customary to employ the notation

hp,q(X) = dimHp,q(X)

for the dimension of these spaces. These are the Hodge numbers.
Here is a simple example which shows that there need not be a Hodge

decomposition. It is based on the fact that if H1 has a Hodge decomposition,
its dimension is equal to h1,0 + h0,1 = 2h1,0, an even number.

Example 1.3. Start with Cn − {0} equipped with an action of the infi-
nite cyclic group with generator g acting as g(x) = 2x. A fundamental
domain for this action is the annulus 1 ≤ ‖z‖ ≤ 2 with the inner and outer
sphere identified. So the quotient Xn which is a complex manifold, the
n–dimensional Hopf manifold, is homeomorphic to S1 × S2n−1 and so, by
standard calculations has H1

B(Xn;R) = R, an odd-dimensional space.
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1.2 Hodge Decomposition

A compact oriented differentiable manifold X can be equipped with a Rie-
mannian metric g and using it, one can define the so-called harmonic forms
on X. These exist in all degrees and are closed forms giving a basis for the
De Rham cohomology groups. The spaces of harmonic forms Harmk(X) are
finite dimensional and so gives a nice model for the De Rham cohomology
groups.

This applies to compact complex manifolds (they have a natural orien-
tation) and one gets an isomorphism

Hk
dR(X)C = Harmk(X)C.

What happens with (p, q)–forms? The problem is that in general the (p, q)–
components of a harmonic form are no longer harmonic. Also, the complex
conjugate of a harmonic form need not be harmonic.

These problems can be shown not to occur for a special class of metrics:

Definition 1.4. A Kähler metric is a hermitian metric which in some holo-
morphic chart (z1, . . . , zn) is euclidean to order 2 at least:

hij̄ = δij +O(z2, (z̄)2)

where the local expression of hermitian metric h is
∑

i,j hij̄dzi ⊗ z̄j .
Equivalently, the imaginary part ωh of the hermitian metric h is a closed

form. Recall that ωh is a global form of type (1, 1) which locally in coordi-
nates (z1, . . . , zn) is given by

i/2 ·
∑
i,j

hij̄dzi ∧ z̄j .

A manifold equipped with a Kähler metric is called a Kähler manifold.

As indicated above, one has the following central result in Hodge theory:

Theorem 1.5 (Hodge Decomposition). Let X be a compact Kähler man-
ifold. Then the complex harmonic forms admit a type decomposition com-
patible with complex conjugation and hence one has a decomposition

Hk
dR(X)C =

⊕
p+q=k

Hp,q(X), Hp,q(X) = Hq,p(X).

Example 1.6. (1) The Fubini-Study metric on Pn is given by the following
form on Cn+1 − {0} :

Ω = i∂∂ log ‖z‖2, z = (z0, . . . , zn).

It is real because in general the conjugate of i∂∂ρ, where ρ is real-valued, is

−i∂∂ρ = i∂∂ρ,
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where we have used ∂∂ + ∂∂ = 0. It is closed because in general

d∂∂ = (∂ + ∂)∂∂

= ∂2∂ − ∂2
∂

= 0.

What is less trivial is the positivity of the form. It is left as an exercise.
(2) If X has a Kähler metric, it restricts to a Kähler metric on every complex
submanifold. In particular one sees: all complex projective manifolds admit
a Kähler metric.
(3) A complex torus is the quotient of Cn by a lattice of maximal rank. The
euclidean metric is invariant under translation and hence gives a metric on
the torus. This metric is Kähler. Since there are non-algebraic tori, this
shows that the class of Kähler manifolds is strictly larger than the class of
complex projective manifolds.

1.3 Pure Hodge Structures

Formalizing the Hodge decomposition, one introduces

Definition 1.7. (1) A weight k Hodge structure consists of a finite di-
mensional Q–vector space H with a direct sum decomposition, the Hodge
decomposition

HC := H ⊗Q C =
⊕
p+q=k

Hp,q, Hp,q = Hq,p.

Equivalently, HC admits a decreasing filtration F •, the Hodge filtration with

HC = F p ⊕ F k−p+1.

The relation is given by:

F p =
⊕
a≥p

Ha,k−a, Hp,q = F p ∩ F q.

(2) A graded pure Hodge structure is a finite direct sum of weight k Hodge
structures;
(3) A morphism of Hodge structures is a Q–linear map f : H1 → H2 such
that for the complex extension of fC one has fC : Hp,q

1 → Hp,q
2 .

(4) The category of graded pure Hodge structures is denoted hs.

One can show that the category hs is Abelian. For example, if V1, V2 are
pure of weight k1, k2 the space Hom(V1, V2) is pure of weight k1 − k2 with

[Hom(V1, V2)]p,q = {f : (V1)C → (V2)C | fV a,b
1 ⊂ V a+p,b+q

2 }.
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Examples 1.8. (1) For a complex projective manifold X the cohomology
Hk(X) is a weight k Hodge structure and if f : X → Y is a morphism
between smooth complex projective varieties, the induced homomorphism
f∗ : Hk(Y ) → Hk(X) is a morphism of Hodge structures. The total coho-
mology H∗(X) is a graded pure Hodge structure. This gives a functor

H∗ : SmProj→ hs,

where SmProj is the category of complex projective manifolds.
(2) The Hodge-Tate structures Q(k) are 1-dimensional of pure type (−k,−k)
where Q(k) = (2πi)kZ ⊂ C. The Lefschetz structure is L = Q(−1).

2 The Hodge Characteristic

2.1 Topological Considerations

For X in the category Top∗ the two Euler-characteristics are finite

χtop(X) =
∑

(−1)kbk(X), bk(X) = dimQH
k(X;Q);

χctop(X) =
∑

(−1)kbck(X), bck(X) = dimQH
k
c (X;Q).

In general the first is not additive, while the second is:

Proposition 2.1. If Y ⊂ X is a closed subset Y,X ∈ Top∗ then χctop(X) =
χctop(Y ) + χctop(X − Y ).

Proof : Set i : Y → X and j : U = X − Y → X and consider the exact
sequence

· · · → Hk
c (U)

j!−→ Hk
c (X)

i∗−→ Hk
c (Y )

δ−→ Hk+1
c (U)→ · · · ,

where j! is the extension by zero map: a cocycle on U having support in
K ⊂ U can be extended to a cocycle on X.

One can reformulate this K-theoretically as follows. Introduce the free
group Z[Top∗] on homeomorphism classes in Top∗: an element from this
group is a finite sum nj{Xj}, nj ∈ Z and {Xj} the homeomorphism class of
Xj . Introduce an equivalence relation given by the scissors relation:

{X} ∼ {Y }+ {X − Y } whenever Y is closed in X.

The equivalence classes will be denoted [X]. Hence in the quotient group

K0(Top∗) = Z[Top∗]/ ∼

one has equality [X] = [Y ]+[X−Y ]. The preceding Proposition is equivalent
to the fact that the Euler characteristic with compact support induces a
homomorphism

χctop : K0(Top∗)→ Z.
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In fact, the right hand side can be viewed as a K-group as well. Recall that
for any abelian category A the associated group K0(A) consists of the free
group Z[A] on isomorphism classes of objects in A modulo the subgroup
generated by the relations

[A] = [B] + [C], whenever 0→ B → A→ C → 0 is an exact sequence.

So the Euler characteristic becomes

χctop : K0(Top∗)→ K0(Vect) ' Z,

where Vect denotes the category of finite dimensional Q-vector spaces.

2.2 Hodge Theoretic Version

I want to investigate what happens if we restrict the Euler characteristic to
the category SmProj. Since the cohomology groups have a richer structure,
namely they carry pure Hodge structures, one expects a homomorphism

χHg : K0(SmProj)→ K0(hs).

The problem here is that the scissors relation does not preserve the category
SmProj: cutting out a closed subvariety yields a quasi-projective variety and
such a variety cannot be expected to have cohomology with pure Hodge
structures.

However, one can compare the left hand with an a priori different K-
group which is built from SmProj: the equivalence relation is given by the
blow-up relation:

{X} − {Y } ∼ {Z} − {E}

where

E
j
−→ Z = BlY XyπE yπ

Y
i−−→ X,

(2)

X is smooth projective and Y ⊂ X is a smooth subvariety; the map i is
the inclusion and π : BlY X → X is the blow-up of X along Y ; finally
E is the exceptional divisor included in Z through the inclusion j. The
quotient K0(SmProj) is the free group Z[SmProj] on isomorphism classes
of smooth projective varieties modulo the equivalence relation given by the
blow-up relation [X]− [Y ] = [Z]− [E] where X,Y, Z,E are as in the blow-up
diagram (2) together with the trivial relation [∅] = 0.

The comparison with the K-group built from the scissors relation on
the category Var of complex algebraic varieties is given by a result due to
Bittner:
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Theorem 2.2 ([Bitt]). The inclusion induces an isomorphism

K0(SmProj)
'−→ K0(Var).

Corollary 2.3. There is a commutative diagram

K0(Top∗)
χc
top−−−→ K0(Vect)y y

K0(SmProj)
χHg−−−→ K0(hs).

Proof : It suffices to show that one has a long exact sequence

· · · → Hk(X)
π∗+i∗−−−−→ Hk(Z)⊕Hk(Y )

j∗−(π|E)∗

−−−−−−−→ Hk(E)→ · · ·

Indeed, this sequence is a sequence of pure Hodge structures and the relation
χHg(X)− χHg((Y ) = χHg(Z)− χHg(E) follows.

The above exact sequence is a consequence of a special type Mayer-
Vietoris sequence associated to the topological space Z

∐
π|E Y where one

glues E × [0, 1] to Z by identifying the ”top” (e, 0) to e ∈ E and to Y by
identifying the ”bottom” (1, z) and π(z) ∈ Y . Indeed, the usual Mayer-

Figure 1: Mayer-Vietoris for a blow-up

Z
Y

V

EU∩VU

Vietoris sequence reads

· · · → Hk(U ∪ V )→ Hk(V )⊕Hk(U)→ Hk(U ∩ V )→ · · ·

and in the above situation the picture shows that X is a deformation retract
of U ∪ V , V retracts to Z, U to Y and U ∩ V to E.

The goal of these lectures is to understand the resulting homomorphism

K0(Var)
χHg−−−→ K0(hs) directly in terms of Hodge theory. For this one needs

an extension of Hodge structures.
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3 Mixed Hodge Structures

3.1 Main Results

Definition 3.1. 1. A mixed Hodge structure is a triple (H,W,F ) where
W is an increasing filtration on H, the weight filtration and F a de-
creasing filtration on HC, the Hodge filtration, such that F induces a
pure Hodge structure of weight k on GrWk := Wk/Wk−1.

2. Morphisms of mixed Hodge structure are Q-linear maps preserving
weight and Hodge filtrations.

3. The Hodge numbers are hp,q(H) = dimC GrpF GrW
C

p+qHC where WC :=
W ⊗Q C.

The K-group associated to the abelian category of mixed Hodge struc-
tures is just K0(hs) since in K0 there is the relation [H] =

∑
[GrWk H]. This

suggests to define χHdg(X) using a mixed Hodge structure on Hk
c (X). That

this is indeed possible is a consequence of the following central result:

Theorem 3.2 ([Del71, Del74]). Let U be a complex algebraic variety and
V ⊂ U a closed subvariety (V may be empty). Then Hk(U, V ) has a mixed
Hodge structure which is functorial in the sense that if (U, V ) → (U ′, V ′)
is a morphism of pairs, the induced morphism Hk(V ′, U ′) → Hk(U, V ) is
a morphism of Hodge structures. Moreover, for U smooth projective, the
mixed Hodge structure on Hk(U) is the classical one, i.e. the pure weight k
Hodge structure coming from the decomposition of forms into types.

3.2 Examples

Assuming that the mixed Hodge structure behaves functorially, I shall cal-
culate mixed Hodge structures for curves.

Example 1: A punctured curve C = C̄−Σ where C̄ is a smooth projective
curve and Σ is a set of M points. Let j : C ↪→ C̄ be the inclusion. For
ordinary cohomology one has an exact sequence of mixed Hodge structures

0→ H1(C̄)
j∗

−−→ H1(C)
res−−→

⊕
x∈Σ

H0(x)(−1)→ 0.

This shows that H1(C) = W2 ⊂W1 = H1(C̄) and Gr2
W = M · L.

For compact supported cohomology one has

0→ H0(C̄)→ H0(Σ)→ H1
c (C)→ H1(C̄)→ 0,

showing that H1
c (C) = W1 ⊂ W0 = H̃0(Σ) = (M − 1) · 1 where 1 = Q(0)

while Gr1
W = H1(C̄).
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Let Vg(C̄) = H1(C̄) be the usual weight one Hodge structure. It follows
that χHodge(C) = (1−M) · 1− Vg(C̄) + L. Topological considerations give
that b0(C) = bc2(C) = 1. Also H2(C) = 0 since C is affine. Then by the
above exact sequences Table 1 below can be made up.

From the table one finds χHdg(C) = (1−M)·1−Vg(C̄)+L. Note also that
the analogous character for ordinary cohomology reads 1−Vg(C̄)+(M−1)·L
which is different from the Hodge characteristic!

Table 1: Cohomology of the punctured curve C

H0 H1 H2 H2
c H1

c H0
c

weight 0 1 0 0 0 (M − 1) · 1 0

weight 1 0 Vg(C̄) 0 0 Vg(C̄) 0

weight 2 0 (M − 1)L 0 L 0 0

Example 2: D a singular curve with N double points forming Σ ⊂ D. Con-
sider the normalization n : D̃ → D, a curve of genus g with H1(D̃) = Vg(D̃),
a Hodge structure of weight one. The exact sequence

0→
⊕

H0(n−1Σ)→ H1(D)
n∗
−−→ H1(D̃)→ 0

shows that H1(D) = W 1 ⊃W0 with Gr1
W = H1(D̃). One gets the following

table showing that χHdg(D) = (1−N) · 1− Vg(D̃) + L.

Table 2: Cohomology of the singular curve D

H0 H1 H2

weight 0 1 N · 1 0

weight 1 0 Vg(D̃) 0

weight 2 0 0 L

3.3 The Mixed Hodge Characteristic

Compactly supported cohomology on U can be calculated with the help of
a compactification X of U as relative cohomology:

Hk
c (U) = Hk(X,T ), T = X − U,

and so, as a consequence of Theorem 3.2, it carries a mixed Hodge struc-
ture. This Hodge structure can be shown not to depend on the way one
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compactifies U . The (mixed) Hodge characteristic can now be defined by
setting:

χHdg(U) =
∑
k

[GrWk Hk
c (U)] ∈ K0(hs).

What has to be shown is that it is additive, i.e. that it respects the scissors
relation. This uses the following result.

Theorem 3.3. Given a triple (U, V,W ) of complex algebraic varieties, i.e
W is closed in V and V is closed in U . Then the inclusions define a long
exact sequence of mixed Hodge structures

· · · → Hk(U, V )→ Hk(U,W )→ H(V,W )→ Hk+1(U, V )→ · · ·

For a proof see e.g. [P-S07, Ch. 5].

Corollary 3.4. The Hodge characteristic induces a homomorphism

χHg : K0(Var)→ K0(hs).

Proof : Let me apply Theorem 3.3 as follows. Let (X,Y ) be a pair in Var
and choose a compactification X̄ of X and let Ȳ be the Zariski closure of
Y in X̄. Set T = X̄ −X and consider the triple (X̄, Ȳ ∪ T, T ) and remark
that also ∪̄T is a compactification of Y . So one gets a long exact sequence
of mixed Hodge structures

· · · → Hk
c (X − Y ) → Hk

c (X) → Hk
c (Y ) → Hk+1

c (X − Y )→ · · ·
‖ ‖ ‖ ‖

Hk(X̄, Ȳ ∪ T ) → Hk(X̄, T ) → Hk(Ȳ ∪ T ) → Hk+1(X̄, Ȳ ∪ T ).

This shows that χHg is additive.

4 Mixed Hodge Complexes

In this Lecture I explain some of the technical ideas behind the construc-
tion of a functorial mixed Hodge structure on cohomology. Some general
notions having to do with complexes (in an abelian category) are useful. A
complex K• is bounded below if Kp = 0 for all p ≤ p0. A complex with
decreasing filtration (K•, F •) consists of subcomplexes F pK• for all p such
that F pKk ⊃ F p+1Kk for all p, k. The associated graded complex GrpF K
has F pKk/F p+1Kk at place k.

Likewise, we can speak of increasing filtered complexes, denoted with a
lower index (K•,W•).

It should be clear what is meant by a bi-filtered complex.
The following examples are useful:
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Examples 4.1. (1) For any complex L• the trivial decreasing filtration is
given by

F pL = L≥p = {0→ · · · → 0→ Lp → Lp+1 → · · ·},

a complex starting in degree p.
(2) For any complex K•, one has the canonical filtration which is the in-
creasing filtration given by

τpK = [· · · → Kp−1 → ker dp → 0→ 0 · · · ].

There are further notions that play a role. We say that a morphism of
complexes f : K → L is a quasi-isomorphism if the induced morphisms in
cohomology Hk(f) : Hk(K) → Hk(L) are isomorphisms. A morphism of
filtered complexes f : (K,F )→ (L,G) is a filtered quasi-isomorphism if the
induced morphisms Grq(f) : GrqF K → GrqG L are quasi-isomorphisms. This
implies that f itself is a quasi-isomorphism.

4.1 Hodge Theory Revisited

Let X be a complex projective manifold. The proof of the existence of a
Hodge structure on cohomology can be analyzed as follows.

1. On the level of complexes of sheaves one has the constant sheaves
coming with an inclusion QX ↪→ CX . This puts a rational structure
on Hk(X,C).

The cohomology groups of the latter sheaf is calculated using the de
Rham complex (A•X)C of sheaves of complex valued differential forms.
Alternatively, one may use the holomorphic de Rham complex Ω•X .
This complex is resolved by (A•X)C. Note that (A•X)C = sA•,•X , the
simplex complex associated to the double complex A•,•X of C∞ forms
of type (p, q). Indeed, for any double complex (L•,•, d′, d′′) one has
sLk =

⊕
p+q=k L

p,q with differential d = d′ + d′′. In our case d′ = ∂

and d′′ = ∂.

2. One has the trivial filtration

F pΩ•X = Ω≥pX ↪→ F pA•,•X = A≥p,•X .

3. Now we pass to cohomology groups. On the level of complexes K• of
sheaves on X this is done by hypercohomology, the so-called derived
section-functor RΓ. This is computed using a fine resolution K• ↪→ L•

by setting
RkΓ(X,K•) = Hk(Γ(X,L•)).
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In the above situation, for K• = Ω•X , respectively K• = Ωp
X , one has

Hk(X,C) = RkΓ(X, (A•X)C) = RkΓ(X,Ω•X)

Hq(X,Ωp
X) = RqΓ(X,Ap,•).

The first is by de Rham’s theorem (or the holomorphic de Rham the-
orem); the second is Dolbeault’s theorem.

4. We do the same for the filtrations:

F p(RkΓ(Ω•X)) = RkΓ(X, sA≥p,•X ) =
⊕
b≥p

Hk−b(X,Ωb).

Indeed the single complex associated to sA≥p,•X is the following complex
which starts in degree p:

· · · 0→ 0→ Ap,0X → A
p+1,0
X ⊕Ap,1X → · · · →

⊕
k≥0

Ap+r−k,kX · · · .

This is the direct sum of several Dolbeault complexes each placed
in a suitable degree, namely the one for Ωb

X , placed in degree b for
b = p, . . . , n. This shifts the degrees when we calculate cohomology in
degree k; for Ωb

X it calculates cohomology in degree k − b.

5. Next, one considers the spectral sequence for the F filtration on the
double complex A•,•(X):

Ep,q2 = RqΓ(X, (Ap,•X , δ)) =⇒ RΓp+q(X, sA•,•)
‖ ‖

Hq(X,Ωp
X) =⇒ Hp+q(X,C).

The crucial information from the Hodge decomposition theorem im-
plies that this spectral sequence degenerates at E2: the Hodge decom-
position has the property that the associated filtration F pHk(X,C)
is same as the filtration induced by F on the ”limit” Hp+q(X,C).
This implies that the dimensions of the terms Ep,q2 and the terms Ep,q∞
in the spectral sequence are the same. This in turn is equivalent to
degeneration of the spectral sequence.

Alternatively, purely in terms of the F -filtration, one has GrpF Ω•X =
Ωp
X [p], i.e. the sheaf Ωp

X placed in degree p. Its hypercohomology in
degree (p + q) then is Hq(X,Ωp

X). So the spectral sequence for the
F–filtration on hypercohomology for Ω• = L• reads

Ep,q1 = RΓp+q(X,GrpF L
•) =⇒ Rp+qΓ(X,L•). (3)
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6. Since only cohomology groups matter, one better works in a different
category, the derived category of bounded below complexes of sheaves of
C-vector spaces on X. Here the objects are bounded below complexes
of sheaves on X, but the morphisms are a bit complicated. Without
giving details, two morphisms linked by a homotopy are considered
the same; their class is called a homotopy class. They induce the
same homomorphism on the level of cohomology sheaves. Next, all
morphisms that induce isomorphisms on cohomology, i.e. the quasi-
isomorphisms, should be considered invertible in this category. This
has an important advantage: in D(X) quasi-isomorphic complexes are
isomorphic. For instance [CX ], [Ω•X ] and [sA•,•X ] are all isomorphic in
this category.

The above can be formalized by the following concepts:

Definition 4.2. (1) A Hodge complex of weight m on X is a triple
(L•, (L•C, F

•), α), where

• L• is a bounded complex of Q–vector spaces,

• (L•C , F
•) is a bounded filtered complex of C–vector spaces whose differ-

entials are strict with respect to F (recall: this means that Im(d)∩F p =
Im(d|F p) for all p),

• α : L• → L•C, the comparison morphism, which is a morphism of
complexes such that α⊗ 1 : L• ⊗ C→ L•C is a quasi-isomorphism.

• Moreover, F induces a Hodge structure of weight m+ k on Hk(L•) .

(2) A Hodge complex of sheaves on X is a triple (L•, (L•C , F •), α), where

• L• is a bounded complex of sheaves Q–vector spaces,

• (L•C, F •) is a bounded filtered complex of sheaves of C–vector spaces,

• α : L• → L•C, the comparison morphism, is a morphism of complexes
such that α⊗ 1 : L• ⊗ C→ L•C is a quasi-isomorphism.

• The complex (RΓ(X,L•), (RΓ(X,L•C), F ), RΓα) is a Hodge complex
of weight m.

Remark. The demand that (RΓ(X,L•C), F •) is a bounded filtered complex of
C–vector spaces whose differentials are strict with respect to F is equivalent
to degeneration at E1 of the F -spectral sequence (3). So, indeed

Q•X := {QX , (Ω
•
X , F ),QX ↪→ CX ↪→ Ω•X} (4)

is a Hodge complex of sheaves on X of weight 0.

Summarizing: to show that a hypercohomology group RkΓ(X,L•) car-
ries a Hodge structure, one should construct a Hodge complex of sheaves
out of L•. One should make full use of the flexibility of the derived category.
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4.2 Mixed Hodge Theory Revisited

The above philosophy can be made to work for Hk(X,C) for X a complex
algebraic variety, and also for the cohomology of pairs or triples in the
category Var provided one throws in an extra ingredient, the weight filtration.

To explain how this works on the level of complexes, in the definition
of Hodge complexes of sheaves one replaces the complex of sheaves L• by
a filtered complex (L•,W ) where now W is a decreasing filtration. Next,
one replaces (L•C, F ) by (L•C,WC, F ) a bi-filtered complex of sheaves with
comparison α : (L•,W ) → (L•C,WC) such that α ⊗ 1 becomes a filtered
quasi-isomorphism. Moreover, taking the gradeds GrWm L• should give a
Hodge complex of sheaves of weight m. The resulting data consisting of the
triple

L• = {(L•,W ), (L•C,WC, F ), (L•,W )
α−→ (L•C,WC)}

is called a mixed Hodge complex of sheaves on X.
One passes from mixed Hodge complexes of sheaves on X to mixed Hodge

complexes upon applying the derived section functor.
The next result gives the main tool for constructing mixed Hodge struc-

tures.

Theorem. Given a mixed Hodge complex of sheaves, the cohomology of the
resulting mixed Hodge complex receives a natural functorial mixed Hodge
structure.

Now there is one subtlety. The mixed Hodge structure on RkΓ(X,L•)
has its weight filtration not induced by W but by the shifted weight filtration
W [k]. So the m–th graded part comes from Wm−kL•.

Instead of explaining how this yields Deligne’s mixed Hodge structure on
cohomology, let me do this for one example: the cohomology of a punctured
curve C = C̄ −Σ where C̄ is a smooth projective curve and Σ is a set of M
points.

To describe the mixed Hodge complex of sheaves, we let j : C ↪→ C̄ be
the inclusion and introduce the filtered complex in degrees 0 and 1

(Rj∗QC , τ) := (QC̄
0−→ QΣ, τ).

Observe that
τ0 = QC̄ in degree 0

Grτ1 = QΣ in degree 1.
(5)

To calculate H1(C,C) one uses the complex Ω•
C̄

(log Σ) which differs from
Ω•C in that it is generated by dz/z near a puncture where z is a local coor-
dinate. Its weight filtration is given by

Ω•C̄︸︷︷︸
W0

↪→ Ω•C̄(log Σ)︸ ︷︷ ︸
W!

15



Note that its graded pieces are the complexes Ω•
C̄

resolving CC̄ and

Gr1
W = CΣ in degree 1.

So, by (5), the complexes Rj∗QC⊗C and {Ω•
C̄

(log Σ), W} are filtered quasi-
isomorphic. The comparison is given by

α : Rj∗QC → Rj∗CC
qis
−−→ Ω•(log Σ),

where ”qis” means that the morphism a quasi-isomorphism. Using F for
the trivial filtration, the triple

Q•C := {(Rj∗QC , τ), (Ω•C̄(log Σ), W, F ), α}

then is a mixed Hodge complex of sheaves.
To see that this gives the desired mixed Hodge structure on H1(C,Q),

consider the filtration induced by F on the weight-graded complexes. Then
one sees that τ0j∗QC is the Hodge complex QC̄ from (4) and so calculates
the pure weight one Hodge structure H1(C̄,Q) while Gr1

τ j∗QC calculates
the weight 2 Hodge structure coming from the points Σ.

Here, note that in view of the shifts, Gr1
W being a weight 1 Hodge com-

plex of sheaves, it induces a weight 2 Hodge structure on Gr2
W H1(C) (and

similarly of course for W0 which induces a weight 1 structure on W1H
1(C).
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