
Applications of Mixed Hodge Modules to

Representation Theory After Burgos-Wildeshaus

Chris Peters
Institut Fourier, Université de Grenoble I
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Chapter 0

Introduction

The goal of this note is to discuss the article [Bu-Wi]. It uses rather delicate
constructions from the theory of mixed Hodge modules which are applied to
Shimura varieties. The article very well illustrates how one could apply these
tools to obtain deep results in other fields.

The main result from loc. cit.1 concerns representation theory of certain re-
ductive algebraic groups, namely the ones that come up as homogeneous groups
for bounded symmetric domains. This class of groups has been characterized
group-theoretically a long time ago by E. Cartan for which the reader may
consult [He].

To any representation V of such a group G one can associate a homogeneous
polarized variation of Hodge structure over the corresponding domain. One
can further divide out by the action of an arithmetic subgroup which yields a
locally symmetric quotient X. The latter turns out to be a quasi-projective
variety to which the variation descends. The Baily-Borel compactification X∗

is a minimal compactification of X and its boundary consists of a union of
similar locally symmetric quotients, say Y associated to a reductive groups G′

(depending on Y ) canonically associated to a certain parabolic subgroup P ⊂ G.
The group G′ is a quotient of P and hence the G′-module associated to this
boundary component corresponds to the U -invariant subspace V U ⊂ V . The
same construction as for X now gives a polarized variation on Y . Theorem 1.7.1
tells you how this variation can be obtained using the standard operations from
mixed Hodge modules defined by the inclusions Y ↪→ X∗ and X ↪→ X∗.

These results are indeed non-trivial: they generalize for instance earlier re-
sults of Looijenga-Rapoport [L-R] that are directly related to Looijenga’s solu-
tion [L] of the Zucker conjecture for L2-cohomology. It should be said however
although the articles [L-R] as well as [Bu-Wi] simplify and clarify the proof in
[L], some unavoidable hard analysis is still needed to obtain Looijenga’s result
and cannot be substituted by the purely algebraic treatment of [Bu-Wi].

The proof of the main result, Theorem 1.7.1 is complicated and uses a lot of
background material:

First of all group theoretical background on bounded symmetric domains,
the corresponding locally symmetric varieties and their compactifications, both
the Baily-Borel compactifications and the various toroidal compactifications.

1Corresponding to Theorem 1.7.1 in these notes.
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6 CHAPTER 0. INTRODUCTION

The latter are needed if one wants to work with degenerations of mixed Hodge
modules on a smooth background variety along a normal crossing variety. 2

Secondly, material on mixed Hodge modules, especially Verdier specializa-
tion plays an important role in the proof as well as mixed Hodge modules with
group actions.

Thirdly there are abstract simplicial constructions and implications thereof
on the level of mixed Hodge modules. This comes from the combinatorics of the
toroidal strata in the toroidal compactification.

In the final step of the proof some very abstract categorical constructions
from group theory are needed.

The reader can see from the list of contents which of these topics I discuss
and where.

2This is probably not really necessary but the technical details of the actual situation
needed (degeneration of mixed Hodge modules on the Baily-Borel compactification along its
boundary) might very well be equivalent to what has been done in [Bu-Wi] and would therefore
not simply the proof.
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Notation. • Let k be a field, L ⊃ k a field extension and G an algebraic
group defined over k. Then GL = G×k Spec(L) denotes the extension of
G to L while G(L) stands for the group of points of G in L. If V is a
k-vector space we accordingly write VL := V ⊗k L;

• For an algebraic Q-group G the notation G0(R) means the connected com-
ponent in the classical topology and G0 is the corresponding irreducible
component;

• Gm: the Q-group such that for k ⊃ Q one has Gm(k) = k×, the multi-
plicative group of the field k; an algebraic k-torus is an algebraic group
T such that some field extension L ⊃ k and some integer r one has an
L-isomorphism T (L) ' (L×)r. If this already holds for L = k we say that
T is a k-split torus;

• S the Q-group called Deligne torus:

S(k) =

{(
x y
−y x

)
| x, y ∈ k;x2 + y2 6= 0;

}

• the weight cocharacter w : Gm → S defined by w(t) =

(
t 0
0 t

)
;

• U: the algebraic circle group: the Q-subgroup of the Deligne torus given
by the equation x2 + y2 = 1; its real points U(R) can be identified with
the circle {z ∈ C | zz̄ = 1};

• For a group G the center is denoted Z(G).
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Chapter 1

Shimura Varieties, their
Compactifications and the
Main Result

1.1 Bounded Symmetric Domains

Definition 1.1.1. 1. D ⊂ Cn is called bounded symmetric domain if it is
bounded and if, moreover, for every x ∈ D there exists a holomorphic
involution sx : D → D which has x as isolated fixed point.

2. A symmetric hermitian space (X, g) is a complex manifold X equipped
with a hermitian metric g such that for each x ∈ X there are holomorphic
involutions sx as in 1.

Before discussing their structure let me recall a few notions from the theory
of algebraic groups. The notions of (semi)simple groups and reductive groups
are assumed to be known. See for example [Bo91]. In this note only algebraic
matrix groups of this sort will be considered. Semisimple groups (over a fixed
field) are isogenous to products of simple groups (over the same field).

Definition 1.1.2. Let G be an algebraic group.

• G is of adjoint type if the adjoint representation Ad : G → GL(Lie(G))
(given by g 7→

{
X 7→ gXg−1

}
is injective – equivalently — if Z(G) = 1.

The adjoint group Gad is the image under the adjoint representation and
a group is of adjoint type if and only if Gad = G;

• G is (algebraically) simply connected if every isogeny G′ → G with G′

a connected algebraic group is an isomorphism. Its group of real points,
G(R), is simply connected if and only if this is so in the classical topology;

• An involution σ : G → G of a real reductive algebraic group is called a
Cartan involution if on the Lie algebra we have (Lie(G))dσ=1 = k = Lie(K)
with K a maximal compact subgroup. Note that with (Lie(G))dσ=−1 = p
one has

Lie(G) = k⊕ p, [k, k] ⊂ k, [k, p] ⊂ p, [p, p] ⊂ k.

9



10 CHAPTER 1. SHIMURA VARIETIES

An important property of Cartan involutions is:

Lemma 1.1.3 ([De72, 2.8]). An involution σ of a real reductive group G is
Cartan if and only if σ = AdC, for some C ∈ G(R) for which C2 is in the
center and for which there exists a faithful embedding

G ↪→ Aut(V, b), V an R-space, b a symmetric bilinear form with

b(−, C−) an inner product.

For the structure of symmetric hermitian spaces, I can now quote [He, Ch.
VIII, Prop. 4.4.]:

Proposition 1.1.4. 1. A symmetric hermitian space is a product of irre-
ducible ones; an irreducible hermitian space is either of compact, non-
compact or of euclidean type.

2. An irreducible factor is compact, non-compact, respectively euclidean if
the curvature of its metric is positive, negative, respectively zero. A non-
compact factor is biholomorphic to a bounded symmetric domain.

3. The connected component of the group of biholomorphic automorphisms
of a compact, respectively non-compact factor is a compact, respectively
non-compact simple Lie group of adjoint type. It has the structure of an
algebraic simple group defined over R.

4. Let D be an irreducible bounded symmetric domain and G the connected
component of its group of holomorphic automorphisms. The group G acts
transitively on D; the isotropy group Kx of x is a maximal compact sub-
group of G with connected 1-dimensional center: Z(Kx) ' S1 and there
is an algebraic homomorphism

νx : U(R)→ G, Im(νx) = Z(Kx) (1.1)

with the following properties:

(a) dνx(i) = J , the complex structure on (TxD)C (coming from the em-
bedding D ⊂ Cn);

(b) the adjoint operation of νx(−1) on Lie(G) is a Cartan involution of
the pair (G,Kx) and induces1 dsx = − id on TxD = Lie(G)/Lie(Kx).

5. Conversely, any simple algebraic group of adjoint type with one-dimensional
connected center is the connected component of the group of automor-
phisms of a hermitian symmetric domain.

Let me look at the complex structure on D = G/K. For this, first note that
the Cartan decomposition

g := Lie(G) = k⊕ p

identifies TxD = p and in fact, using the adjoint representation of K on p the
tangent bundle T (D) can be written

T (D) = G×AdK p. (1.2)

1Recall that sx is the involution at x defining a symmetric domain.
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The complex structure on TxD = p induces a splitting of the complexification
(TxD)C = T 1,0

x ⊕T 0,1
x in the ±i-eigenspaces of the complex structure J = νx(i).

In fact, we get a splitting

T 1,0 T 0,1∥∥ ∥∥
gC = kC ⊕ p+ ⊕ p−︸ ︷︷ ︸

pC

which implies that dνx(z) = Ad(νx(z)) acts as follows:

gC = kC ⊕ p+ ⊕ p−

	 	 	
id z−1 z.

(1.3)

This ties in with the compact dual Ď of D, a projective manifold homogeneous
under G(C) with stabilizer P at x the connected Lie group with Lie algebra

gC = kC ⊕ p+.

To see that this is a Lie algebra, note that [pC, pC] ⊂ kC and [kC, p
±] ⊂ p±. The

tangent space TxĎ gets identified with p− which as a real space is isomorphic to
p and so the embedding G ↪→ G(C) induces an embedding D = G/K → GC/P .
The group P is indeed a parabolic subgroup: it is the stabilizer of the flag
{Lie(GC) ⊃ p+}.

Such domains admit a canonical polarizable variation of Hodge structure.
This can be most easily seen if you use the group theoretic definition of a pure
Hodge structure which I now recall:

Definition 1.1.5. A pure Hodge structure of weight k on a rational vector
space V is an algebraic morphism

h : S→ GL(V )

defined of R and such that the weight co-character

wh = h◦w : Gm
w−→ S

h−→ GL(V )

is given by t 7→ tk id.

Let me now pass to a bounded symmetric domains D = G(R)/Kx with G
an algebraic group defined over Q. Note that if G is connected and of adjoint
type this can always be assumed: see [Bo91, 7.9]. We choose some faithful
representation as a matrix group, say G ⊂ GL(W ). Using Proposition 1.1.4,
one gets an algebraic morphism

u : U(R)
νx−−→ G(R) ⊂ GL(WR)

and hence a weight zero Hodge structure on W . Similarly, one obtains a weight
zero Hodge structure on any representation ρ : G→ GL(V )

h = hx : S(R)
z 7→z/z̄
−−−−−→ U(R)

u−→ G(R)
ρ
−→ GL(VR). (1.4)
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This structure evidently depends on x ∈ D.
As an example, one has g = Lie(G). We have a decomposition according to

the characters 1, z̄/z, z/z̄ of S(C) respectively:

kC p− p+∥∥ ∥∥ ∥∥
gC = g0,0 ⊕ g−1,1 ⊕ g1,−1.

	 	 	
id z̄/z z/z̄

with corresponding Hodge flag

F •x =
{
F−1 ⊃ F 0 ⊃ F 1

}∥∥ ∥∥ ∥∥
gC ⊃ kC ⊕ p+ ⊃ p+.

Letting x vary we get a G-homogeneous variation of Hodge structure on D.
Indeed, this is a holomorphically varying flag and Griffiths transversality is a
direct consequence of (1.2) and(1.3). Moreover, by Lemma 1.1.3 it is a polarized
variation of Hodge structure. Similarly. anyG-representation gives a weight zero
G– polarized variation of Hodge structure over D, but now the Hodge numbers
may be different.

Lemma–Definition 1.1.6. Let G be of adjoint type and let ρ : G → GL(W )
be an algebraic representation defined over a subfield F ⊂ R. Then ρ◦νx de-
fines a weight 0 F -Hodge structure. The resulting local system on D defines a
polarizable F -variation of Hodge structures, µ̃(ρ) of pure weight 0; it is called
the standard construction. It yields a functor

µ̃ : G-RepsF → {polarizable F -VHS on D = G/K.}

1.2 Shimura Data

The passage to Shimura varieties starts with the observation that a symmetric
space can be written in many ways as D = G/K with G a semisimple or even a
reductive algebraic group. For the purpose of representations this is an impor-
tant remark, since representations of Gad do not always lift to representations
of G.

To elaborate on this let me describe the points of an irreducible D = G/K
with G connected and of adjoint type differently. By Prop. 1.1.4, the algebraic
homomorphisms νx : U(R)→ G satisfy

U1 Only the characters
{

1, z, z−1
}

of U(R) occur in the representation Ad ◦νx :
U(R)→ GL(gC)

U2 Ad ◦νx(−1) is a Cartan involution.

Instead, one can also use the associated homomorphisms h = hx : S(R)→ G(R)
from (1.4). These satisfy

S1 Only {1, z/z̄, z̄/z} occur in the representation Ad ◦h : S(R)→ GL(gC)

S2 Ad ◦h(i) is a Cartan involution.
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Then one can see that for a connected group of adjoint type, one has:

D = {G(R)-conjugates of non-const. ν : U(R)→ G(R) | U1 and U2 hold.}
= {G(R)-conjugates of non-const. h : S(R)→ G(R) | S1 and S2 hold.}

As a hint as to why, note that ν being non-constant is equivalent to G and hence
D being not compact and for νx it implies that Im(νx) = Z(Kx) and hence

g(x) = x for some g ∈ G ⇐⇒ g ∈ Kx ⇐⇒ gνx(u)g−1 = νx(u) for all u ∈ U.

To extend this to reductive G defined over Q, one considers likewise h : S→ G
obeying S1 and S2, but this does not suffice. The problem is that the maximal
semi-simple quotient Gss might have simple factors which do not correspond to
irreducible bounded Hermitian domains. To correct this, one demands an extra
axiom

S3 Gss has no simple Q-factor on which h is constant.

This leads to the introduction of the homogeneous domain

X =
{
Gad (R)-conjugates h : U(R)→ G(R) | S1, S2 and S3 hold.

}
See [Mi04, Chapter 5] for details. The resulting pair (G,X) or (G,K) is then
called a Shimura datum.

Remark. Note that X may or may not be connected. See Example 1.2.2
below. If instead, one only considers morphisms h : S→ Gad (R)0, the resulting
X is necessarily connected and one calls (G,X)0 the corresponding connected
Shimura datum. Note that if G is connected, simple and of adjoint type, G(R) =
Gad (R)0 and the corresponding Shimura datum is automatically connected.

Clearly, for a given Shimura datum the weight

w(G,X) := wh : Gm(R)→ G(R) (1.5)

is independent of [h], the class of h and is called the weight of the Shimura datum.
It implies that for a given irreducible representation ρ of G the composition ρ◦h
defines a Hodge structure which is not necessarily of weight 0. It turns out
[De77, Part1], [Mi04, Chapter5] to be still polarizable and when x varies we still
get a polarizable variation of Hodge structure on X.

Lemma–Definition 1.2.1. Given a Shimura datum (G,X) and a represen-
tation ρ : G → GL(V ), the polarizable variation on X which at [h] is given
by

ρ◦h : S→ GL(V )

is called the standard construction for the representation ρ : G→ GL(V ).

Remark. Since ρ is no longer assumed to be irreducible, the variation splits as
a direct sum of variations of possibly different weights. Let me still call such a
variation a variation of Hodge structures.

In this broader set-up indeed non-connected domains may arise since the
group G is not assumed connected.
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Example 1.2.2. Consider the Siegel upper half space Hg = Sp(g; R)/U(g).
The group Sp(g; R) is simple but not of adjoint type: its center is ±I2g. In
the theory of Shimura varieties also the union of upper and lower half planes
play a role. This is the non-connected domain C Sp(g; R)/CU(g) where the C
stands for ”similitudes”; the group C Sp(g; R) is reductive with one-dimensional
center. Here homogeneous weight one Hodge structures come up. For instance,
the tautological variation on the upper half plane (and the same on the lower
half plane) is such a variation. These already appear for the symplectic group
itself (due to the non-trivial center).

1.3 Quotients: Locally Symmetric Varieties

Let (G,X) be a Shimura datum. We choose a fixed representation of G as a
matrix subgroup of GL(n).

Definition 1.3.1. 1. A subgroup Γ of G(Q) is called arithmetic if it is com-
mensurable with GZ := G(Q) ∩GL(n; Z) (i.e. Γ ∩GZ has finite index in both
Γ and GZ);
2. A congruence subgroup of G(Q) is a subgroup of G(Q) containing

G(Q) ∩ {g ∈ GL(n; Z) | g ≡ id modN}

as a subgroup of finite index. A congruence subgroup is arithmetic;
3. A subgroup of G(Q) ⊂ GL(n; Q) is neat if for any given element its eigenval-
ues generate a torsion free subgroup of C× (in particular it cannot have finite
order).

It is a fact [Bo69, 17.4] that arithmetic subgroups contain neat congruence
subgroups of finite index.

Let Γ be any neat congruence subgroup of G(Q). Then

X(Γ) := Γ\X

is a smooth quasi-projective variety. Such varieties are also called locally sym-
metric varieties.

Lemma–Definition 1.3.2. Let there be given a Shimura datum (G,X), a tor-
sion free congruence subgroup Γ of G(Q) and a representation ρ : G → GL(V )
defined over a subfield F of R. Then the polarizable variation from Lemma-
Definition 1.3.2 descends to X(Γ) which defines the standard construction for
the representation ρ : G→ GL(V ) on X(Γ) and is denoted µ(ρ).

It yields a functor

µ : G-RepsF → {polarizable F -VHS on X(Γ).}

Remark 1.3.3 (The adelic description). Let Af be the ring of the finite adèles.
For simplicity I shall only consider the case of a simply connected and simple
group G. Then congruence subgroups of G(Q) are given by compact and open
subgroups of G(Af ): if K is such a subgroup

Γ = K ∩G(Q)
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is congruence and conversely, any congruence subgroup can be written in this
way. One can see [Mi04, Prop. 4.18] that one gets a bijection

X(Γ) −→ (G(Q)\X)× (G(Af )/K)

x 7−→ [x, 1].

The resulting variety is a connected Shimura variety. A similar assertion holds
for general Shimura data, leading to (in general non-connected) Shimura vari-
eties. The reason for this is number theoretical: if one wants to find models
defined over a fixed number field which work for all arithmetic subgroups Γ at
the same time, one uses the Galois action to permutes components which makes
the union of these components defined over a smaller field. To descend all the
way to such a canonically defined number field (the reflex field) one also needs
to consider all congruence subgroups at the same time. That this indeed would
work was completely unexpected at the time and it was shown by Shimura,
justifying the terminology! See [Mi04] for pertinent references; it also serves as
a good introduction.

1.4 Baily-Borel Compactification

From now on I assume that G is a connected non-compact simple group defined
over Q (not necessarily of adjoint type), D the associated irreducible Hermitian
domain and (G,D) the corresponding Shimura datum.

Let Γ ⊂ G(Q) a neat arithmetic subgroup and D(Γ) the associated quasi-
projective Shimura variety. It admits a canonical compactification D(Γ)∗, the
Baily-Borel compactification of D = G/K. Let me describe how this works.
To start, D ⊂ Ď, the compact dual and we let D̄ be the closure of D in
Ď. Points in the boundary that can be joined by the holomorphic image of
a unit disk in D̄ generate an equivalence relation on D̄ and the equivalence
classes are called boundary components. Note that D itself is also a boundary
component. It is called an improper boundary component; the others are the
proper ones. For any proper Q-rational parabolic subgroup P ⊂ G there is a
unique proper boundary component DP normalized by P , called the rational
boundary component associated to P . The group P turns out to stabilize a flag
W• in V where G ⊂ GL(V )). To describe it, recall that giving a grading V• on V
is the same as giving a homomorphism µ : Gm → V : the character space for the
character λ → λk is Vk. The associated grading is defined by W` =

⊕
k≤` Vk.

We have:

Proposition 1.4.1 ([Mi90, V.2]). Let D = G/K be hermitian symmetric with
G a rational reductive group. Given a Q-parabolic subgroup P of G there is a
unique homomorphism

λP : Gm → P

such that for all representations ρ : P → GL(V ) the 2 data

• the filtration W on V obtained from the grading defined by ρ◦λP ;

• the Hodge filtration defined by ρ◦µx

define a mixed Hodge structure on V .
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I shall now deduce from this that there exists a nice filtration on P . First
introduce

W−kP := {g ∈ P | ρg = id on W•(ρ)/W•−k(ρ) for all ρ} .

It turns out [Mi04, p. 82] that this yields indeed a 2-step filtration in which
figures

U = the unipotent radical of P :

Z(U) ⊂ U ⊂ P∥∥ ∥∥ ∥∥
W−2P ⊂ W−1P ⊂ W0P = P

.

It follows that P/U is semisimple; it is the centralizer of λP . Moreover, Z(U) as
well as U/Z(U) are abelian and will be identified with their Lie algebras. These
define two real vector spaces that play a role later on:

E := U(R)/Z(U)(R). (1.6)

F := Z(U)(R)(−1) ⊂ Z(U)(C). (1.7)

Let me isolate the subgroup of automorphisms of DP that act as the identity

G′P = {Centralizer in P/U of DP } .

Then, since P/U is semi-simple, there is a factorization P/U = GP · G′P (this
is an almost direct product) with GP semi-simple. Note that P/U has a non-
trivial center AP which is also the center of G′P ; in fact one has (as algebraic
groups over Q)

AP := Z(G/U) ' Gm. (1.8)

The inverse image P1 of GP in P plays a special role. Summarizing, one has

P/U = GP ·G′P , P1 := GP · U / P, (1.9)

The connected reductive group P1 is such that DP = P1/K1, where K1 is a
connected maximally compact subgroup. In other words, (DP , P1) is a (con-
nected) Shimura datum. Note that one could also has an equivalent Shimura
datum (DP , GP ) with GP simple (but not in general of adjoint type).

Let me now introduce the following open subset in the compact dual:

D(P ) = Z(U)(C) ·D ⊂ Ď,

i.e. the set of translates of D by elements of Z(U)(C). This set contains DP

and all rational boundary components having DP in its closure such as D. Since
Z(U) is normal in U , and U normal in P , this set is acted on by Z(U)(C)×P (R).
It turns out to be fibered over DP in the obvious way: first divide out by the
(left) action under the abelian group Z(U)(C) and next under the remaining
action of U(R)/Z(U)(R). It turns out that both fibrations are trivial and so
one may identify equivariantly

D(P ) = Z(U)(C)× E ×DP . (1.10)
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Since Z(U) = W−2P , the vector space underlying Lie(Z(U)) has a polarized
weight−2 Hodge structure and hence the real vector space F := Lie(Z(U))(−1) ⊂
Z(UC) admits a polarized weight 0 Hodge structure. The adjoint action of
G′P (R) on Lie(Z(U)) induces an action on F and the cone

C(P ) := {G′P (R)-orbit of 1 ∈ Z(U)} ⊂ F. (1.11)

This cone is clearly homogeneous under the adjoint action of G′P (R) and it
turns out to be self-dual with respect to the polarization on F .

There is a family of R-bilinear forms

ht : E × E → F, t ∈ DP

depending in a real-analytic fashion on t such that, setting

ΦP : D(P ) → F ⊂ FC (1.12)

(z, v, t) 7→ 2πi[Im(z)− ht(v, v)],

one has the realization of D as a Siegel domain of the third kind

D = Φ−1
P C(P ).

For a proof see e.g. [Mi90, V.3].

1.5 Two Weight Filtrations

On the P -module V there is a canonical weight filtration W , as explained in
Prop. 1.4.1. There is a second weight filtration directly related any operator

T ∈ Z(U)(Q) such that ± 1

2πi
T ∈ C(P ).

Note that N := log T ∈ W−2(Lie(P )) is nilpotent and via dρ acts nilpotently
on the representation space (V, ρ) of P . Moreover, it acts on the W -filtration
since N has weight (−2). For every integer k the operator N defines a unique
filtration W•(N)[k] the monodromy weight filtration centered at k characterized
by

1. NWp(N) ⊂Wp−2(N) for all p;

2. there are isomorphisms N ` : Gr
W (N)
k+`

'−→ Gr
W (N)
k−` for all ` ≥ 0.

A priori this has nothing to do with W . Suppose now that the two are linked
as follows:

1. NWp ⊂Wp−2 for all p;

2. The filtration induced byW on Gr
W (N)
k is the monodromy weight filtration

centered at k.

Then this is the only such filtration and is called the weight filtration of N
relative to W . In the situation at hand this is indeed the case, basically because
the mixed Hodge structure defined by W and ρ◦µx define a split mixed Hodge
structure (see Prop. 1.4.1):

Proposition 1.5.1 ([Wi2, Prop. 1.3]). The weight filtration of N on V relative
to W exists and is the same as W (N). In particular, the latter does not depend
on the choice of T provided ± 1

2πiT ∈ C(P ).
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1.6 Interlude: Homological Algebra and Groups

In this section I review two concepts: group cohomology and twisted repre-
sentations. I shall only look at the classical situation. In [Bu-Wi, Section 3.]
this is extended to group actions on Abelian categories (such as those of pure
Hodge structures). This requires some rather abstract considerations on derived
functors.

Group Cohomology

If G is an abstract group and V a finite dimensional G-representation (over a
field F ), one defines group cohomology usually using right resolutions of Z by
free ZG-modules as follows. Fix such a resolution F•. Then

Hp(G,V ) := Hp(Hom(F•, V )).

In particular, H0(G,V ) = V G, the G-invariant subspace of V . Suppose now
that U is a subgroup of G and consider the functor

G-RepsF → (G/U)-RepsF , V 7→ V U .

Its derived version invU produces out of a G-module V an object in the derived
category Db((G/U)-RepsF ) and hence is representable by a complex of G/U -
modules and this holds similarly, for complexes of G-modules as representing
an object in the derived category Db(G-RepsF ). Concretely:

(invUV •)n =
⊕

−p+q=n
[Hom(Fp, V

q)]
U
.

Twisted representations of abstract groups

First note that if K CG is normal in G and V is any K-representation, conju-
gation by γ ∈ G on K defines new representation:

(V γ , ργ); ργg (v) = ργ·g·γ−1(v), ∀g ∈ K , v ∈ V.

Definition 1.6.1. Let G be an abstract group, H ⊂ P a subgroup, K C G
a normal subgroup and V an F -representation for K. An H-twisting for V
consists of a collection of isomorphisms in K-RepsF

fγ : V γ
∼−→ V, γ ∈ H

such hat

1. fγ(v) = ργ−1v whenever γ ∈ K;

2. the co-cycle condition holds: fγγ′ = fγ◦f
(γ)
γ′ : V γγ

′ ∼−→ V .

Morphisms between H-twistings are defined in the obvious way; the resulting
category is denoted

(K-RepsF , H) : the category of F -representations for K with an H-twisting .
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Remark 1.6.2. 1. Whenever one has a G-representation V , by restriction to K
one obtains a K-representation with an obvious H-twisting (for any subgroup
H ⊂ G: just take fγ := ργ−1 .
2. Next, consider the following situation: Suppose G = P/U for some abstract
group P and U C P and one starts out with a P -module W . Then the in-
variant submodule V := WU is a G-module . Suppose now moreover that all
G-representations are fully reducible (i.e. G is reductive). Then the spectral
sequence for the functor ”taking U -invariants” degenerates at E2 and reads:

invU (W •)
∼−→
⊕
q

Hq(U,W •)[−q], W • ∈ Db(P -RepsF ). (1.13)

Here one should see Hq(U,W •) as a complex which at place n has Hq(U,Wn)
and so Hq(U,W •)[−q] has at place n the module Hq(U,Wn−q).
3. Suppose that moreover G = K · L, an almost direct product with K,L
both normal in G such that L acts trivially on V so that V is an fact a K-
representation. Then for any subgroup H of G the preceding lines apply to
(G,K,H): V is an H-twisted K-representation in an obvious way. Then (1.13)
takes place in the category (K-RepsF , H).

1.7 Main Result and Implications

Suppose now that Γ is an arithmetic subgroup of G(Q). It acts not only on D
but also on the rational boundary components. I shall use the convention

ΓH/I := (Γ ∩H)/(Γ ∩ I) ⊂ H/I, H a subgroup of G, I / H.

With this convention, the group

ΓP := ΓP/U/ΓG′P

is an arithmetic subgroup of GP which acts freely and discontinuously on DP

and there is a closed embedding

iP : DP (ΓP ) ⊂ D(Γ)∗, (1.14)

where D(Γ)∗ is the Baily-Borel compactification [B-B] of D(Γ). The latter is a
projective variety, in general highly singular, which contains D(Γ) as a Zariski-
dense open set:

j : D(Γ) ↪→ D(Γ)∗. (1.15)

The morphisms iP and j play the crucial role in the statement of the main result
from [Bu-Wi]. These induce exact functors i∗P and j∗ on the level of polarizable
mixed Hodge modules. Following Saito’s convention, I’ll denote their derived
functors by the same symbols.

As a first step, one has to see the functor µ defined in Lemma-Definition 1.2.1
as a functor with target the polarizable mixed Hodge modules. Next, one ob-
serves that this functor is exact and hence defines a functor in the derived
category:

µG : Db(G-RepsF )→ Db(MHMFD(Γ).
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Any given G-representation V gives by restriction a P1-representation , denoted

ResGP1
V,

respectively, and the subspace of U -invariants [ResGP1
V ]U is a P1/U -representation,

or, what is the same, a GP -representation. By what has been recalled in § 1.6
this construction works in the derived categories as well (see also [Wi3, Theorem
2.2, 2.3]) and hence gives a functor

invU : Db(G-RepsF ) −→ Db(GP1
-RepsF )

V • 7−→ ([ResGP1
V •]U .

The main result states that the only obvious natural relation one could guess
indeed holds:

Theorem 1.7.1. Recall that

c = codimD(Γ)∗ DP (ΓP ).

One has an equality of functors

µP1
◦invU = (i∗P ◦j∗)[−c]◦µG : Db(G-RepsF )→ Db(MHMFDP (ΓP ),

i.e. the diagram

Db(G-RepsF )

invU

��

µG
// Db(MHMFD(Γ))

i∗P j∗[−c]
��

Db(P1-RepsF )
µP1

// Db(MHMFDP (ΓP ))

is commutative.

Despite the apparent simplicity of this statement, it has quite deep con-
sequences which I now briefly discuss. Firstly, since by (1.5) the weight of a
connected Shimura datum is fixed, the above isomorphism sends an irreducible
G-representation to a direct sum of pure VHS on the boundary components:

Corollary 1.7.2. For any V ∈ G-RepsF ) the MHVS µP1
◦invU (ResGP1

V ) is a
direct sum of pure VHS (in general of different weights).

Use now Remark 1.6.2, 3 with K replaced by GP and H the group 2

ΓG′P := ΓG′PU/ΓU ⊂ G
′
P (Q). (1.16)

It is not the spectral sequence (1.13) that is of interest, but rather the one which
is implied by a Theorem 1.7.1:

Ep,q2 = µP1
◦Hp(ΓG′P , H

q(U, (V •)U ) =⇒ Hp+q−ci∗j∗◦µG(V •).

It follows that this spectral sequence also degenerates and one deduces

2Of course, one may, if one wishes, take instead twisting by subgroup of G/U(Q) generated
by ΓG′

P
and the group GP (Q); this is done in [Bu-Wi]; it is there called H̄Q
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Corollary 1.7.3. There is a canonical and functorial isomorphism of MVHS
on DP (ΓP )

Hni∗P j∗µG(V )
∼−→

⊕
p+q=n+c

µGPH
p(ΓG′P , H

q(U,ResGP1
V )), V ∈ G-RepsF .

Recall that AP = Z(P/U) is one-dimensional (1.8). Choose a lift AP ↪→ P
of the inclusion AP ↪→ GP . Its action on any P1-representation space W gives
rise to a splitting of W into character spaces Wχm on which t ∈ AP acts through
multiplication with tm. Using abstract representation theory, one deduces from
Cor 1.7.2 that this is compatible with weights (see [Bu-Wi, Cor. 2.10]:

Corollary 1.7.4. There is a canonical and functorial isomorphism

GrWm Hni∗P j∗µG(V )
∼−→

⊕
p+q=n+c

µGPH
p(ΓG′P , (H

q(U,ResGP1
V ))χm).

Remark 1.7.5 (The adelic description–continued). I continue to use the nota-
tion of Remark 1.3.3. Let me point out the following dictionary:

Notation in [Bu-Wi] My notation

G, Q, P1, W1, G1 G, P, P1, U, GP
H,H1 D,DP

MK(G,H), MK1(G1,H1) D(Γ), DP (ΓP )
HQ, HC , ∆1, ∆ ΓG′P · P1(Q), ΓG′P · U(Q), ΓG′P , {1}

H̄Q, H̄C ΓG′P ·GP (Q), ΓG′P

Note that in [Bu-Wi] due to the appearance of non-connected Shimura varieties
some complications occur so that the group ∆ in general is no longer trivial.
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Chapter 2

Tools From Mixed Hodge
Modules

2.1 Nearby and Vanishing Cycle Functors

Let X be a smooth manifold, f : X → C a holomorphic function with image
the unit disk ∆ and 0 as the only possible critical value. We let X0 = f−1(0),
i : X0 ↪→ X the natural embedding, and assume that it is normal crossing
divisor. Complexes of sheaves of Q-vector spaces on X on which the monodromy
operator T around 0 acts are called monodromical complexes. Recall that with
the universal cover ∆̃ = upper half plane→ ∆∗,

X∞
def
= X ×∆∗ ∆̃

and k : X∞ → X the natural projection (which factors as X∞
k′−−→ X∗

j
−→ X),

one has the nearby cycle map

ψf (K)
def
= i∗(k∗((k

′)∗K))), K ∈ Db(QX∗)

So, by the very definition of the nearby cycle functor

ψf : Db(QX∗)→ Db(QX0
)

sends any bounded complex of sheaves of Q-vector spaces on X to a mon-
odromical sheaf. From adjunction K → k∗(k

∗K), one obtains the specialization
morphism

spX0|X(K) : i∗K → i∗(k∗(k
∗K))) = ψf (j∗K)

which is used to define the vanishing cycle functor:

φf (K)
def
= Cone(spX0|X(K)),

and T operates on such cones as T (x, y) = (x, Ty), x ∈ K[1], y ∈ ψfK. Set
var(x, y) = Ty− y and can(y) = (0, y). It follows that we have homomorphisms
of complexes

φfK
var

,,
ψfK.canll (2.1)

23
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To do this for perverse complexes we need shifts:

ψf [−1] : Perv QX
∗ → Perv QX0

and

φf [−1] : Perv QX
∗ → Perv QX0.

2.2 Quivers

By definition, (2.1) gives an example of a quiver on the abelian category A =
Perv QX0: a directed graph with for each vertex v an object Kv in A and for
each arrow a a morphism fa in the category.

Example 2.2.1. (1) Any n-truncated cubical Q-vector space yields a quiver and
in particular those that are at the same time n-truncated cubical and co-cubical
vector spaces. Let me call these n bi-cubical quivers. An explicit description
is as follows: start with the ordered set [n] = {1, 2, . . . , n} and for each subset
J ⊂ [n] one has a vector space VJ (also for J = ∅) and for each pair I, J ⊂ [n]
such that I ⊂ J there are two morphisms cIJ : VI → VJ , vJI : VJ → VI with
the obvious compatibilities coming from the inclusions. For n = 3 this gives:

V123

v123,23

,,

		

��

V23
c23,123

ll

��




V13

II

,,

��

V3ll

��

JJ

V12

RR

++

		

V2ll

RR




V1

II

,,

RR

V∅ll

RR

JJ

The compatibilities imply that the quiver is commutative in the obvious sense.
This implies that it is completely determined by specifying the neighboring
subquivers

VJ

cJ,J−j
,,
VJ−j .vJ−j,Jkk (2.2)

Note that the compositions

Nj = c∅j◦vj∅ : Vj → Vj
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define endomorphism on Vj and similarly, using the above subquivers (2.2) we
get endomorphisms Nj = cJ−j,J ◦vJ,J−j .
(2) For n = 1 there is a standard such example: Take X = ∆, f = id, j : ∆∗ ↪→
∆ the embedding, and take for the perverse complex Rj∗V[1], V a local system
on ∆∗. Then V can be given as a pair (V, T ) with V the stalk of V at some
point of ∆∗. Then ψid(j∗V) = φid(Rj∗V) = V , var = T − id and can = id.

Recall at this point that T is quasi-unipotent. Assume for simplicity that it
is unipotent and put

N :=
log T

2πi
.

In the above let me replace T − id by N . This gives

V = V1

N --
V = V∅.idmm

(3) Let me now pass to higher dimension: Replace ∆∗ by U = (∆∗)n, X = ∆n

and let (z1, . . . , zn) the coordinates. Start with a perverse complex K on X. The
local monodromy operators Tj , j = 1, . . . , n around the coordinate hyperplanes
Zj = {zj = 0} act on K as automorphisms. We assume that these are all
unipotent. We let Nj = log(Tj) ∈ End(φzjK). For every j ∈ [n] consider the
quiver on Perv QZj given by

ψzjK

vj=var

++
φzjK, cj◦vj = Nj .

cj=can

jj (2.3)

These are the building blocks for n bi-cubical quivers where for I = {i1, . . . , ik}
and [n]− I = {j1, . . . , jn−k} we put

VI = ψzi1 · · · · · ψzik · φzj1 · · · · · φzjn−kK,

which is a vector space since it is supported on the origin in X. Since Ti and
Tj commute, also Ni and Nj commute so that the order in which one takes the
vanishing and nearby functors in defining VI does not matter. Pick j ∈ J and
write VI = φzjW ; then the quiver (2.3) induces the neighboring quivers

VI = φzjW

vj
,,

VI∪j = ψzjW, cj◦vj = Nj .

cj

ll

Such n bi-cubical quivers are called monodromical bi-cubical quivers.

For instance, if V is a local system on U , take K = Rj∗V where j : U ↪→ X
is the inclusion. Then VI = V , the stalk at any point of U , vj = Nj and cj = id,
which generalizes what has been done in dimension 1.
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2.3 Comparison of Weight Filtrations

Let me continue with the situation of monodromical bi-cubical quivers,coming
from local systems V on U = (∆∗)n. For each subset J ⊂ {1, . . . , n} set

ZJ =
⋂
j∈J

Zj , NJ =
∑
j∈J

Nj .

Then NJ is a nilpotent endomorphism of the restriction of V to a small neigh-
borhood of z ∈ ZJ in U . A priori the weight filtration W (NJ) on V depends
on the choice of z. If it does not and the filtrations glue to a global filtration
(over U) of V by local subsystems, one says that the resulting pair (V,W•) is
a uniform weight filtration. The same terminology can be used with respect to
the shifted weight filtrations W (NJ)[k] and then (V,W [k]) is called a uniform
monodromy weight filtration.

With the obvious modifications this local notion can be made global, i.e.
where U is a complex manifold embedded in a complex manifold X such that
Z = X − U is a normal crossing divisor whose components are smooth.

The main auxiliary result is:

Theorem 2.3.1. Let X be a complex manifold and Z ⊂ X a normal crossing
divisor whose components are smooth. Suppose g : X → C is a holomorphic
function such that

Z = {x ∈ X | g(x) = 0} .

Let j : U := X − Z ↪→ X be the inclusion. Assume that V is a local system on
U underlying a polarized weight k variation of Hodge structure.

Suppose that there exists a uniform monodromy weight filtration (V,W [k]).
Then the following two filtrations on the perverse complex ψgRj∗V[−1] coincide:

1. the filtration1 W (N)[k] where N is the monodromy operator associated to
the monodromy around g−1(0);

2. the filtration induced by the given uniform monodromy weight filtration.

The proof uses quivers as described in § 2.2 as well as the Cattani-Kaplan-
Schmid results [C-K, Sch]. The theorem then is used in the following model
example to which the later weight comparison is applied (see § 4.2).

Example 2.3.2. Start with a G-representation V . Suppose that there is a
compactification D(Γ)] by normal crossing divisors Z, say Z � DP (ΓP ). Let
X be an open neighborhood of Z in D(Γ)] such that D := Z ∩U is the fiber at
0 of a holomorphic function g : X → C Assume for simplicity that the variation
µG has pure weight k. Consider the local system V underlying the restriction
to U of this variation. Then by Proposition 1.5.1 the canonical weight filtration
on ResGP V defines a uniform weight filtration on this system and hence by
Theorem 2.3.1 coincides with the weight filtration defined by the monodromy
along the divisor D shifted by k.

1See § 1.5.



2.4. VERDIER SPECIALIZATION 27

2.4 Verdier Specialization

Let X be an algebraic variety and i : Z ↪→ X a closed sub variety. Let

NZ|X : the normal cone to Z.

If Z is smooth then this nothing but the total space of the normal bundle
of Z in X. In general it is an affine bundle over Z with a natural inclusion
iZ : Z ↪→ NZ|X . Introduce

EZ|X := BlZ×{0}(X ×C)− BlZX

This variety is fibered over C and the fiber over 0 is precisely NX|Z . It turns
out that the part of the fibration over C∗ is naturally isomorphic to X × C∗

and there is a commutative diagram

Z� _
iZ ��

� ~

i

++NZ|X

��

� � // EZ|X
t
��

X ×C∗
πX
//

��

? _oo X

{0} � � // C C∗? _oo

which shows that t defines a deformation of NZ|X to X. Let F be a constructible
sheaf on X. Pull it to X × C∗ via the projection πX . Recall that the nearby
cycle functor produces from a constructible sheaf on the complement of the
special fiber a constructible sheaf on the special fiber itself. So, ψt yields a
constructible sheaf on the special fiber of t which is the normal cone. This
succession of operations defines the Verdier specialization

spZ|X(F ) := ψt(π
∗
XF ).

Its derived functor preserves perversity:

spZ|X : Perv QX → Perv QNZ|X

The same formula defines Verdier specialization mixed Hodge modules and the
two are compatible:

MHMQX spZ|X
//

rat

��

MHMQNZ|X

rat

��
Perv QX spZ|X

// Perv QNZ|X

Moreover, one has:

Proposition 2.4.1. 1. Let M be a polarized mixed Hodge module on X. Then
spZ|XM is naturally polarized.
2. One has

i∗ = i∗Z◦ spZ|X : MHMQX → MHMQZ.

3. If Z is a divisor given by a single equation g = 0, then NZ|X = Z ×C and
using the maps s : z 7→ (z, 1), j : X∗ = Z ×C∗ ↪→ X, one has

ψg = s∗◦ spZ|X ◦j
∗.

In particular, the notion specialization of § 2.1) corresponds to the notion of
Verdier specialization.
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2.5 Hodge Modules with Group Actions

Let X be a reduced C-scheme which is locally of finite type and H be an abstract
group acting on X through algebraic morphisms. Fix a subfield F of R.

Definition 2.5.1. Let M be a an F -mixed Hodge module on X. An H-twisting
for M consists of a collection of isomorphisms in MHMFX

fγ : γ∗M
∼−→ M, γ ∈ H

such that the co-cycle condition holds: fγγ′ = fγ◦fγ′ : γγ′
∗
M

∼−→ M . Mor-
phisms between H-twistings are defined in the obvious way; the resulting cate-
gory is denoted

(MHMFX,H) : the category of F -mixed Hodge modules on X with an H-twisting.

Assume next that the action of H on X is free and proper so that H\X is
a reduced C-scheme and let π : X → H\X be the quotient map. One shows
[Bu-Wi, Section 4]:

Proposition 2.5.2. The induced morphism

π∗MHMFH\X → (MHMFX,H)

is an equivalence of categories with a canonical pseudo-inverse. The same is
true for the bounded derived categories.
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Other Tools

3.1 Toroidal Compactifications

Let me recall briefly the ingredients of a toroidal compactification of D(Γ).

The Relevant Torus Fibration

The starting point is the fibration

D(P ) = Z(U)(C) ·D → Z(U)(C)\D(P )

Now divide out by the action of the discrete group

Γ′P := Z(U)(C) ∩ Γ

which acts on this fibration fibre-wise. Note that

T (P ) := Γ′P \Z(U)(C) (3.1)

is an algebraic torus. So one gets a T (P )-torsor Γ′P \D(P )−−→ Z(U)(C)\D(P ).
For later use, recall that on Z(U)(C)\D(P ) there is a further action of

U(R)/Z(U)(R) which makes the projection Z(U)(C)\D(P )→ DP (ΓP ) a rela-
tive Abelian scheme. Summarizing

πP : Γ′P \D(P )
πtorus−−−−→ Z(U)(C)\D(P )

πAb−−−→ DP (ΓP ), (3.2)

where πtorus is a TP -torsor and πAb is a relative Abelian scheme.

Associated Torus Embeddings

Recall now the self dual cone C(P ) ⊂ F (see (1.11)). The group Z(U)(R) ∩ Γ
gives a lattice FZ in F and hence one gets a rational structure on F . The group
G′P is the automorphism group of (F,C(P )) and hence the trace of Γ in it which
precisely the group ΓG′P – defined by (1.16) – acts properly discontinuously on
the pair (F,C(P )) .

Definition 3.1.1. Set Γ̄ = ΓG′P . A Γ̄-admissible fan Σ on F is a collection

of rational cones together with all of its faces such that 2 cones overlap only in
common faces and such that

29
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1. Γ̄ preserves Σ;

2. modulo the action of Γ̄ there are only finite many cones in Σ;

3. the support |Σ| := {
⋃
σ | σ ∈ Σ} is a contractible set1 with the property

C(P ) ⊂ |Σ| ⊂ C(P )

The fan Σ on F defines a torus embedding T (P ) ⊂ T (P )Σ with T (P ) the
algebraic torus with character space Z(U)(C) ∩ Γ = Γ′P . This torus is indeed
the one from (3.1).

Let me briefly pause at this point to explain how the combinatorics of the
strata relate to the group Γ̄. Consider Σ as an index set and for each σ ∈ Σ put

St(σ) =
⋃
τ<σ

open cone |τ |0 ⊂ |Σ|.

These given an open covering of |Σ| indexed by Σ. By assumption the group Γ̄
acts on this covering. Since |Σ| is contractible, one has:

Lemma 3.1.2. The natural augmentation

C•({St(σ)}σ∈Σ ; Z)→ Z

of the Čech chain complex for the covering is a free Z[Γ̄]-resolution.

Partial Compactification

Let me from now on write ΣP instead of Σ to stress the dependence on P .
The T (P )-torsor D(Γ′P )(P ) → Z(U)(C)\D(P ) can be fibre wise compacti-

fied by taking the corresponding T (P )ΣP -torsor. This gives a fibration

(Γ′P \D(P ))ΣP → Z(U)(C)\D(P )

of toroidal varieties. There remains the second projection from (3.2). In total

πP : (Γ′P \D(P ))Σ
toroidal scheme−−−−−−−−−−→ Z(U)(C)\D(P )

Abelian scheme−−−−−−−−−−→ DP (ΓP )
(3.3)

Note that Γ′P \D ⊂ Γ′P \D(P ) and set

D(Γ′P )ΣP := Int
[
Γ′P \D ⊂ (Γ′P \D(P ))ΣP

]
. (3.4)

One has a natural extension of the canonical map D(Γ′P )→ D(Γ) fitting in the
commutative diagram:

ZP := p−1
P [DP (ΓP )]
_�

iP

��

// // DP (ΓP )
_�

��
D(Γ′P )ΣP pP

// D(Γ)∗

D(Γ′P )
?�

jΣP

// // D(Γ)
?�

(3.5)

1This demand is not standard; it is put here for technical reasons; obviously, by adding
some orbits this can be assumed.
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The variety ZP is a locally finite union of algebraic varieties on which Γ̄ acts
freely and discretely. In particular, it is not an algebraic variety (but the quo-
tient is). However, by (3.3) it is a smooth relative torus-embedding and hence
affine.

The next step is to divide out by the action of ΓP . One shows that the
action on D(Γ′P )ΣP is by a proper discontinuous and (under the assumption of
Γ being neat) free action of the quotient ΓP /Γ

′
P so that

D(Γ)ΣP := ΓP \D(Γ′P )ΣP (3.6)

is a complex manifold. By construction, the top half of diagram (3.5) can be
completed by inserting the intermediate quotient varieties:

ZP_�

iP

��

q̃P
// //

p̃P
&&

Z̄P_�

iP

��

pP
// // DP (ΓP )

_�

��
D(Γ′P )ΣP qP

// D(Γ)ΣP pP
// D(Γ)∗

(3.7)

Glueing Partial Compactifications

Definition 3.1.3. A family S = {ΣP } of fans ΣP , one for each rational bound-
ary component DP is called Γ-admissible if it has the property that

1. ΣP is Γ̄-admissible (recall that Γ̄ = ΓG′P and so depends on P );

2. for all γ ∈ Γ one has γΣP = Σ(γPγ−1);

3. one has compatibility with inclusions: if DP ′ ⊂ DP , one has Σ(P ′) =
{σ ∩ C(P ′) | σ ∈ ΣP }.

Next, one may divide out by the action of Γ and obtain the toroidal com-
pactification D(Γ)S. More precisely, one has [AMRT, p. 253–310]

Theorem 3.1.4. 1. For every Γ-admissible family of fans D(Γ)S is a compact
analytic space. It is glued from the D(Γ)ΣP (3.6) which are open in D(Γ)S.
This procedure induces an analytic inclusion of D(Γ) ↪→ D(Γ)S.

2. There exists Γ-admissible families of fans such that (D(Γ))S is a smooth
projective variety. The above identifications are then algebraic and (D(Γ))S
contains D(Γ) as a Zariski-dense open set.

3. There is a natural proper morphism p : D(Γ)S → D(Γ)∗ restricting to
the identity on the Zariski dense open subsets D(Γ).
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Let me summarize some of these constructions in the following diagram

D(Γ)
� � jS // D(Γ)S DP (ΓP )ΣP

? _
iSoo

pP

~~

D(Γ)ΣP

?�

open

OO

DP (ΓP )ΣP
? _oo

D(Γ′P )

OOOO

����

� � jΣP // D(Γ′P )ΣP

��

qP

OOOO

ZP

p̃P

��

? _
iZPoo

q̃P

OOOO

D(Γ)
� � j // D(Γ)∗ DP (ΓP ).? _

iPoo

(3.8)

One can further show:

Lemma 3.1.5 ([Bu-Wi, §8]). Recall (3.2): one has a commutative diagram

ZP� _

�� p̃ ''
Z(U)(C)\D(P )

πAb

// DP (ΓP )

The image of ZP in Z(U)(C)\D(P ) is a closed union of strata of the torus
embedding πtorus.

3.2 Simplicial Constructions

Let Σ be an index set, and let S(Σ) be the associated simplicial set: S(Σ)p =
Σp+1 the collections of (p + 1)-tuples (σ0, . . . , σp) in Σ and for each increasing
map f : [q]→ [p] a map S(Σ)f : Σp → Σq satisfying the obvious compatibilities.
Let Z be a complex algebraic variety. Then one may form Z×S(Σ) and one may
consider mixed Hodge modules over this simplicial variety. such a simplicial
mixed Hodge module H• consist of mixed Hodge modules Hσ0,...,σp over Z
indexed by S(Σ) together with morphisms H(f) : Hf(σ0),...,f(σq) → Hσ0,...,σp

for increasing maps f : [q] → [p]. It may happen that for all i ∈ [q] one has
f(σi) ∈ [p] and vice versa. One says that the simplicial Hodge module H• is
reduced, if for such f, [p] and q] the morphism H(f) is an isomorphism. Set

(MHMFZ)S(Σ) :=
{

full abelian subcategory of MHMFZ × S(Σ)
of reduced simplicial Hodge modules.

}
.

I need a standard construction that links the two categories MHMFZ and
(MHMFZ)S(Σ), the one associated to forming the normalized chain complex:
Let H• be a simplicial mixed Hodge module over Z. Then one has morphisms
dj : Hσ0,...σp → Hσ0,...σp−1 , one for each j ∈ [0, . . . , p] which can be combined to

d =
∑

(−1)jdj : Hσ0,...σp → Hσ0,...σp−1
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These turn out to give a complex of mixed Hodge modules on Z. From this
complex one extracts a new complex with the same cohomology, called normal-
ized sub complex. See [Sel, 8.6]. This construction is functorial and extends to
the derived categories upon taking total complexes first and then pass to the
normalized sub complex. This yields:

Tot : Db((MHMFZ)S(Σ))→ Db(MHMFZ).

Example 3.2.1. Suppose that for all σ one has Zσ = Z. In that case one has
an isomorphism

Tot : Db((MHMFZ)S(Σ))
∼−→ Db(MHMFZ).

Next, suppose that one has a covering S =
⋃
σ∈Σ Sσ by closed subvarieties.

Then one also has a functor in the other direction:

S• : MHMFZ → (MHMFZ)
S(Σ)

H 7→ (iσ0,...,σp)∗◦(iσ0,...,σp)∗H.

Actually, this functor is not defined by the above formulas; some adjustments
have to be made. See [Bu-Wi, Section 5]. One has:

Proposition 3.2.2. [Bu-Wi, Prop. 5.6] There is a canonical isomorphism of
functors

Tot◦S• ' Id : Db(MHMFZ)−−−−→ Db(MHMFZ)
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Chapter 4

Sketch of the Proof

4.1 Transport to a Toroidal Compactification

To show the equality of functors from Theorem 1.7.1, one needs to reinterpret
i∗P j∗◦µG. The first step is to lift this composition of functors to a suitable
toroidal compactification of D(Γ). Here I use the notation and results from
§ 3.1.

Recall the diagram (3.8). The closed subvariety ZP ⊂ D(Γ′P )ΣP lies over
the boundary component DP (ΓP ). It is only locally an algebraic variety; it
has infinitely many components. On it the group ΓG′P acts freely and properly
and the quotient yields one of the divisors in the boundary of D(Γ)S. It is
contained as a closed sub variety in the open subset D(Γ)ΣP ⊂ D(Γ)S which is
the quotient of D(Γ′P )ΣP under the free action of ΓG′P .

Remark. 1. Since ZP is only locally an algebraic variety one has a serious
problem: the yoga of the Grothendieck functors cannot be directly applied to
mixed Hodge modules.
2. Another technical problem is that ZP is not in general a normal crossing
variety. However, after a suitable barycentric subdivision of S this can always
be achieved [Pink90, Proof of Prop. 9.20]. So in what follows this will always
be assumed.

One needs to study the normal cones to various strata of D(Γ)S. Especially
those in ΓG′P \ZP which come from those of ZP . One can show that.

ΓG′P \NP |D(Γ′P )ΣP
' NDP (ΓP )S|D(Γ)S .

From Prop. 2.5.2 one has:

Db(MHMFD(Γ′P )ΣP ) = Db(MHMFZP ,ΓG′P )

and
Db(MHMFNDP (ΓP )S|D(Γ)S) = Db(MHMFNZP |D(Γ′P )ΣP

,ΓG′P )

Set
i0 : DP (ΓP )S ↪→ NDP (ΓP )S|D(Γ)S

and recall (§ 2.4) the Verdier specialization functor:

sp1 := spD(Γ)|DP (ΓP )S
: Db(MHMFDP (ΓP )S)→ Db(MHMFNDP (ΓP )S|D(Γ)S)

35
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and property 2 from Theorem 2.4.1. Combining the two preceding remarks,
there is a commutative diagram

Db(MHMFNZP |D(Γ′P )ΣP
,ΓG′P )

i∗0

ss

Db(MHMFD(Γ)S)
sp1 //

i∗S
++

Db(MHMFNDP (ΓP )S/D(Γ)S)

i∗0��
Db(MHMFDP (ΓP )S)

Db(MHMFZP ,ΓG′P ).

(4.1)

Combine diagrams (3.8) and (4.1):

i∗P j∗ = pP∗i
∗
S(jS)∗ = p∗i

∗
0 sp1(jS)∗ (4.2)

4.2 Local Comparison in the Toroidal Compact-
ification

Recall from diagram (3.8) the affine morphism

jΣP : D(Γ) ↪→ D(Γ′P )ΣP .

Now, even if D(Γ′P )ΣP is only locally of finite type, the fact that jΣP is affine
allows to define an exact functor

(jΣP )∗ : MHMFDP (ΓP )→ MHMFD(Γ′P )ΣP .

In the same way there is a specialization functor

sp2 := spZP : MHMFD(Γ′P )ΣP → MHMFNZ|D(Γ′P )ΣP
.

Both functors admit ΓG′P -equivariant versions. Recall (3.6) that there is a holo-
morphic map

q̃ : D(Γ′P )ΣP � D(Γ)ΣP = ΓG′P \D(Γ′P )ΣP ⊂ D(Γ)S

which is local biholomorphism near ZP .

The following result is one of the crucial results of the paper. It allows to
replace sp1 ◦(jS)∗ in (4.2) by sp2 ◦(jΣP )∗.
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Proposition 4.2.1. There is a natural commutative diagram

Db(RepsFG)
µG //

ResGP ��

Db(MHMFD(Γ))

jS∗

��

Db(RepsFP )

��
Db(RepsFP1,ΓG′P · P1(Q))

µP
��

Db(MHMFD(Γ′P ),ΓG′P )

jΣP ∗ ��
Db(MHMFD(Γ′P )ΣP ,ΓG′P )

sp2 ��

Db(MHMFD(Γ)S)

sp1��
Db(MHMFNZP |D(Γ′P )ΣP

,ΓG′P ) Db(MHMFNDP (ΓD)|D(Γ)ΣP
)

Now combine this diagram with (4.2):

Corollary 4.2.2. One has

i∗P j∗µG = pP∗◦i
∗
0◦ sp2 ◦(jΣP )∗◦µP1

◦ResGP . (4.3)

Sketch of the proof of Prop. 4.2.1. Let V be a G-representation. The operation
µP1

in the diagram requires a bit of explanation. The group P1 = PU ⊂ G
acts on D and since ResGP V defines a twisted P1-representation under G′PU ,
one gets a variation of Hodge structure on D with a G′PU -twisting on D and
since Γ′P ⊂ Z(U)(C) ⊂ P1(′C) this further descends to D(Γ′P ).

Next put
VG := µG(V ), VP := µP1(ResGP V )

The open set D(Γ′P )ΣP contains DP (ΓP ) as well as D(Γ′P ) so that via q̃P one can
pull both up VG and VP to D(Γ′P )ΣP . The first is the pull up of (jS)∗µG(V );
the second is the pull up of (jΣP )∗µP1(resGP V ). The underlying local systems
are canonically isomorphic on D(Γ′P )ΣP , say

α : q̃−1
P VG

∼−→ q̃−1
P VP.

It is not hard to see that the Hodge filtrations on both variations correspond
under α (the representation determines the Hodge filtration from the action
of the Deligne torus inside G and since it also sits in P , the restriction functor
preserves Hodge filtrations). Then apply (jΣP )∗. By [Sa, Proof of Theorem 3.27]
the Hodge filtrations on a mixed Hodge modules (jΣP )∗M only depends on the
Hodge filtration on M . So through α the Hodge filtrations on (jΣP )∗q

−1
P VG

and (jΣP )∗q
−1
P VP coincide. Next, apply the two specialization functors sp1 and

sp2. By the very definition of the mixed Hodge module structure on these (see
[Sa, 2,3, 2.30]) these are completely determined by those on (jΣP )∗q

−1
P VG and

(jΣP )∗q̃
−1
P VP respectively. So under the identification α the Hodge structures

on sp2(jΣP )∗q̃
−1
P VG and sp2(jΣP )∗q̃

−1
P VP coincide.

Next, the weight filtrations. Assume for simplicity that µGV has pure weight
k. Let me consider q̃−1

P VP with its canonical weight filtration. Then by Theo-
rem 2.3.1 and Example 2.3.2 this weight filtration is the uniform weight filtration
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and coincides with the weight filtration of the monodromy around ZP shifted
by k.

The latter, again by [Sa, 2.3] defines the weight filtration on sp2(jΣP )∗VG.

4.3 Passing to Simplicial Level

Let me summarize in a diagram the morphisms discussed so far and which are
going to play a role: 1

Γ′P \D(P )

� ?

πP

rel. dim=c // DP (ΓP )

D(Γ′P )
� � jΣP // D(Γ′P )ΣPOO

iP

� ?
ZP

p̃P
++

OO

iσ

� ?

q̃P

finite // // Z̄P

� ?

pP
// // DP (ΓP )

� ?
Zσ

∼ // Zσ // // pP (Zσ).

(4.4)

To understand the bottom line, recall Lemma 3.1.5 where it is stated that ZP
is a ΓG′P -equivariant torus embedding which is covered by the closures Zσ, σ ∈
ΣP of strata of the torus-embedding. The image Z̄P is covered by closed sets
q̃P (Z̄σ) ' Zσ. So, if you replace ΣP by its finite image, the finite set Σ̄P under
q̃P one may write

ZP =
⋃

σ∈ΣP

Zσ, Z̄P =
⋃

σ∈Σ̄P

Zσ.

Then, one uses the geometry of the situation: the strata Zσ of ZP go isomorphi-
cally to their images in Z̄P and intersections of strata Zσ in Z̄P are either empty
or some stratum Zτ with τ ≺ σ. Use now the notation and results of §3.2. The
induced simplicial set S(Σ̄P ) consists of singletons only with morphisms either
the identity or the zero. The associated covering of Z̄ is not necessarily the triv-
ial one but the covering contains exactly one closed stratum Zσtop = Z̄ and this
stratum maps onto the component DP (ΓP ) of the Baily-Borel compactification.
For this reason one may (and does) take the trivial cover on DP (ΓP ) defining
(MHMF Z̄P )Σ̄P . Because of Example 3.2.1 one has

Tot : (MHMFDP (ΓP ))Σ̄P ∼−→ MHMFDP (ΓP )

and there is a corresponding morphism

(pP∗)
Σ̄P : (MHMF Z̄P )Σ̄P −−→ (MHMFDP (ΓP ))Σ̄P .

1 Recall that c = codimDP (ΓP )|D(Γ)∗
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Lemma 4.3.1. The functor (pP∗)
Σ̄P is right exact2 (and hence passes to the

derived categories). It defines the derived p∗ as follows [Bu-Wi, Prop. 9.7]:

Db(MHMF Z̄P )

p∗

��

S•
66

Db((MHMF Z̄P )Σ̄P )
Totoo

(p∗)
Σ̄P

��
Db(MHMFDP (ΓP ))

S•
66

Db((MHMFDP (ΓP )Σ̄P ).
'oo

Hence, one gets

i∗P j∗µG = p∗◦i
∗
0◦ sp2 ◦(jΣP )∗◦µP1

◦ResGP

= Tot◦ (p∗)
Σ̄P ◦S•◦i

∗
0◦ sp2 ◦(jΣP )∗◦µP1︸ ︷︷ ︸
νP

◦ResGP .
(4.5)

4.4 Passing to U-invariants

The starting point is the observation that Γ′P \D(P ) is homogeneous under P1

and so the canonical construction µP1
yields a mixed Hodge module µP1

on
Γ′P \D(P ).

Secondly, without giving the details for which I refer to [Bu-Wi, §9] , there
is a simplicial variant of the canonical construction:

µΣP
P1

: (RepsFG1,ΓG′P )−−→ (MHMFDP (ΓP ),ΓG′P )ΣP = (MHMFDP (ΓP ))Σ̄P

The crucial assertion is:

Proposition 4.4.1 ([Bu-Wi, Prop. 9.9]). One has

νP [−c] = µΣP
P1
◦invU .

Hint of the Proof. Let V be an F -vector space which is a G-module and V1 =
ResGP V . One first shows that (cf. also Prop. 2.4.1, 2)

(p̃◦iI)∗◦ i
∗
0I◦ sp2︸ ︷︷ ︸
i∗I

◦(jΣP )∗◦µP1
(V1)

is the component of νPV1 with index I := (σ0, . . . , σp). Note that the geometry
of the situation as summarized in diagram (4.4) tells me that whenever ZI 6= ∅
one has (p̃◦iI)∗◦i

∗
I
◦(jΣP )∗ = π∗ and hence

(p̃◦iI)∗◦i
∗
I◦ sp2 ◦(jΣP )∗◦µP1

V1 = π∗◦µP1
V1.

Since π is a morphism with fibres of dimension c = codimDP (ΓP )|D(Γ)∗ one
expects

µP1
(V1)U = π∗µP1

(V1)[−c].
which thus would complete the proof upon going to strata. The actual proof
is complicated by the fact that in first instance one knows this equality only at
the level of cohomology. It requires the full abstract treatment of representation
theory as given in [Bu-Wi, §4] to complete the proof.

2Note that p∗ is neither left nor right exact)
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Combining the preceding Proposition with (4.5) one has

i∗P j∗µG[−c] = Tot◦µΣP
P1
◦invU ◦ResGP . (4.6)

4.5 Replacing Simplicial Functors; Conclusion

In view of (4.6), suffices to prove:

Proposition 4.5.1. One has Tot◦µΣP
P1

= µP1
◦inv

ΓG′
P .

Sketch of Proof. Recall that by Lemma 3.1.2 the combinatorics of the toroidal
strata define the free ZΓG′P -resolution

C•({St(σ)}σ∈Σ ; Z)→ Z

and then, by abstract group theory [Bu-Wi, §4] one concludes the following
equality for objects V • in the derived category:

inv
ΓG′

P (V •) = Hom(C•({St(σ)}σ∈Σ ; Z), (V •))
ΓG′

P .

On the other hand, the definition of the functor µΣP
P1

(which I did not give here)
is just made up such that (after some minor adjustments)

Tot◦µΣP
P1

ResV GP = µP1
◦Hom(C•({St(σ)}σ∈Σ ; Z), (V •))

ΓG′
P .
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