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Introduction

In these notes we give an elementary introduction to surface theory, i.e the theory
of compact two-dimensional complex manifolds. We refer freely to [Troika] for
details. For a more concise treatment and more on related topological questions
see [FM 2].

For these notes I have in mind the (differential)-topologist who wants to under-
stand the recent results on the topology of algebraic surfaces, but who is not well
versed in algebraic geometry.
I want to present a ’modern’ i.e postciteTroika-point of view. Two new ingredients
now go into the theory:

1. Mori’s theory of the interplay between nef-divisors and effective 1-cycles. In
Chapter II, based on Wilson’s article [Wi], we show how powerful this point
of view is when dealing with the classification of surfaces.

2. Reider’s method of constructing rank 2 vector bundles associated to points
which have a special role with regards to the geometry of a linear system of
divisors (i.e base points). We sketch in Chapter III how this can be used to
obtain a nice short and uniform treatment of the topic of pluricanonical maps
for surfaces of general type.

In Chapter V on the topology we only look at simply connected algebraic sur-
faces and gather some of the recent results on the differentiable structures on a
given surface oriented homeomorphic to a simply connected algebraic surface. The
Dolgachev surfaces introduced in Chapter I play an important role here. Also Bar-
low surfaces turn out to give interesting examples. These are treated in Chapter IV,
where we collect various recent results on the geography of surfaces.

It goes without saying that many interesting and important topics had to be left
out. We mention a few of these:

• Commutative algebra methods to describe the finer classification of surfaces
with special Chern invariants. We refer to [Cat 1] and [Reid 2] for recent
surveys.

• The recent results on obstructed surfaces by Catanese, which show how
abundant these are. See [Cat 2].
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• Reider’s work on irregular surfaces of general type. See [Reider 2].

• Recent bounds on the size of the automorphism group of surfaces of general
type. See [Xiao 2, HS, Corti].

I hope this is enough to convey the beauty and wealth of a subject which has kept
on developing since the appearance of [Troika].



Chapter 1

Basic material

1 Invariants

We let S be a compact connected complex manifold of dimension 2. Since S is an
oriented compact four- manifold we have

b0 = b4 = 1

b1 = b3.

The cup product form
H2(S,Z) × H2(S,Z)→ Z

defined by a · b = a ∪ b[S],a,b ∈ H2(S,Z) is unimodular on H2(S,Z)/torsion.
With b+, resp b−= number of positive, resp. negative eigenvalues of this form, the
signature is

τ(S) = b+ − b−.

There are further invariants a priori depending on the almost-complex structure:
the Chern classes c1 and c2. The Chern numbers c2

1[S] and c2[S] turn out to be
topological invariants as well. For the second number this is obvious:

c2[S] = e(S) (the Euler number) = 2 − 2b1 + b2.

while the first Chern number can be expressed in the signature and the Euler num-
ber using Hirzebruch’s signature formula :

τ(S) = 1/3(c2
1[S] − 2c2[S]).

Let Ωp be the sheaf of holomorphic p-forms on S and set

hp,q = dim Hq(S,Ωp) (the Hodge numbers) .

Another important formula is Noether’s formula, which relates the invariants

q = h0,1 (the irregularity)

pg = h0,2 =(the geometric genus) .
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In fact Noether’s formula states:

χ := 1 − h0,1 + h0,2 (the arithmetic genus) = 1/12(c2
1[S] + c2[S]).

If we eliminate c2
1[S] from the signature formula and Noether’s formula, we find

(b+ − 2pg) + (2q − b1) = 1.

It is easy to see that both numbers in parenthesis in the above formula are non-
negative, so we have two possibilities

(i) b+ = 2pg + 1, b1 = 2q,

(ii) b+ = 2pg , b1 = 2q − 1.

From the inequalities b1 ≥ 2h1,0 and h0,1 + h1,0 ≥ b1 it follows that h1,0 = 1
2 b1 in

the first case and h1,0 = 1
2 (b1 − 1) in the second case and so

b1 = h0,1 + h1,0

in both cases. Notice that e(S) =
∑

0≤p,q≤2(−1)p+qhp,q = 1 − 2b1 + (h2,0 + h1,1 +

h0,2) (we used Serre-duality to replace h2,1, resp. h1,2 by h0,1, resp. h1,0). It
follows that b2 = h2,0 + h1,1 + h0,2 and so

h1,1 = b2 − 2pg .

So we see:

for complex surfaces the Hodge numbers hp,q are topological invariants.

As a side remark, we note that for Kähler manifolds we have of course the first
possibility for the invariants. Much less trivial is the converse:

Theorem 1.1. A compact complex surface is Kähler if and only if the first Betti
number is even.

The proof of this theorem goes far beyond this introduction. It really uses the
classification theory of surfaces to reduce to the case of elliptic surfaces and K3-
surfaces. In 1974Miyaoka proved the theorem for elliptic surfaces with elementary
means([Mi 1]), while the result for K3-surfaces although conjectured already in
the fifties by André Weil, had to wait untill Siu in 1983 using very sophisticated
arguments (essentially using Yau’s solution of Calabi’s conjectures) finally proved
that all K3-surfaces are Kähler (see [Siu]).
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2 Divisors and pluricanonical bundles

First we recall some generalities about divisors and their associated linear systems.
By ’divisor’ we always mean Cartier divisors, i.e objects which are locally on

a coordinate patch Ui are given by one equation f i = 0 ( f i meromorphic and
nonzero) and such that in overlaps Ui ∩Uj the quotients f i/ f j are invertible holo-
morphic functions. A divisor D defines a line bundle O(D) defined by the transition
functions f i/ f j on intersections Ui ∩Uj and so there is a global section of O(D),
locally on Ui given by f i , vanishing along D. Sections of this line bundle yield
divisors D′ which are said to be linearly equivalent to D. Since two sections that
are the same up to a multiplicative constant define the same divisor, the projective
space PH0(O(D)) parametrizes effective divisors (i.e. non negative combinations
of curves) linearly equivalent to D. It is the linear system |D| associated to D. It
is not true that to any line bundle there corresponds a divisor; indeed, such a line
bundle would lead to a meromorphic function having a pole along the divisor, but
there are manifolds without any non-constant meromorphic functions. If however
S is algebraic, the existence of sufficiently many meromorphic functions shows
(after some work) that to any line bundle there is a corresponding divisor.

If |D| is a linear system of divisors, there is a maximal divisor Dfixed, the fixed
part of |D| with the property that for D′ ∈ |D| we have D′ = D′′ + Dfixed, D′′

effective.
If L is any line bundle, choose a basis {s0, s1, . . . , sN } for the sections of L and
define the meromorphic map

fL : S → PN

s 7→ (s0(s) : s1(s) : · · · : sN (s)).
This is not defined at points where all sections of L vanish. If L= O(D) for some
divisor D these are the base points of the linear system |D|.

The canonical bundle K of S is the line bundle associated to the sheaf Ω2 of
holomorphic 2-forms. In case there is a divisor whose line bundle is Kwe call it
the canonical divisor and denote it by KS = K . The m-th tensor power of K is the
m-th pluricanonical bundle and we set

Pm(S) = h0(K⊗m) the m-th plurigenus of S.

These bundles play an important role in classification.
Let us next recall that the intersection number of two line bundles L and M is
defined as

L ·M := c1(L) · c1(M)
and hence intersection numbers of divisors are also defined. Very useful is the
following formula:

Adjunction formula: K · C + C · C = 2 · (g(C̃) + δ − 1), (1.1)
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where C̃ is a smooth model of a curve C and δ ≥ 0 its defect, which vanishes
precisely when C is smooth.
Now, look at irreducible curves C with K · C < 0.

Proposition 2.1. If there exists a curve C on S with K · C < 0 and C · C ≥ 0,
all plurigenera of S are zero. If S is a surface with at least one non-vanishing
plurigenus and C is a curve on S with K · C < 0, the curve C is an exceptional
curve of the first kind, i.e. C is a smooth rational curve with C · C = −1.

Proof : Let D be a pluricanonical divisor and separate out the possible part of C
it contains: D = aC + R. Then mK · C = D · C = aC · C + R · C ≥ aC · C.
Since this is ≥ 0 in the first case, the plurigenera must all vanish. In the second
case, if K · C ≤ −2 the adjunction formula gives C · C ≥ 0 and we again have
a contradiction. So K · C = −1 and the adjunction formula shows that C is an
exceptional curve of the first kind. �

The exceptional curves of the first kind are easy to deal with. Such a curve
can be blown down to a point q in a new smooth surface T (Castelnuovo’s con-
tractability criterion). Conversely, one can blow up any point in S and the result
is again a smooth surface T . Topologically T is the connected sum of S and P2
with orientation reversed (the neighbourhood of the exceptional line in T looks
like the neighbourhood of a line the complex projective plane with the orientation
reversed.) It follows that

b2(T) = b2(S) + 1, e(T) = e(S) + 1, τ(T) = τ(S) − 1

and hence the arithmetic genus χ(S) = 1/4 (e(S) + τ(S)) is invariant. A simple
application of Hartog’s theorem shows that the plurigenera are invariant as well.
One can show that any bimeromorphic map between surfaces can be decomposed
as a sequence of such blowings down and their inverses. We conclude:

Proposition 2.2. The plurigenera and the arithmetic genus are bimeromorphic
invariants.

If we succesively blow down all exceptional curves we reach a surface which
by definition is (relatively) minimal. Such a model need not be unique, but in case
at least one plurigenus is positive, one can show that it is unique.
Going back to pluricanonical bundles, let us look at the pluricanonical maps fmKS ,
defined if Pm > 0. The maximal dimension of the image for varying m is called
the Kodaira dimension κ(S). By definition κ(S) = −∞ if all plurigenera are 0. We
have seen that a surface with a curve C for which K · C < 0 either can be blown
down or all the plurigenera of S vanish.

A divisor D with D · C ≥ 0 for all curves C is called nef.

So we can paraphrase the preceding proposition as follows

Suppose S is a surface whose canonical bundle is not nef. Then either S is not
minimal or κ(S) = −∞.
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Later we need a characterisation of the Kodaira dimension. In fact, we can de-
fine the Kodaira dimension for any line bundle L on a variety X as the maximal
dimension of dim fL⊗m (X) for growing m. We denote this number by κ(X,L).
Lemma 2.3. We have bounds

C ′mκ(X,L) ≤ dim H0(X,L⊗m) ≤ C ′′mκ(X,L)

characterizing the Kodaira dimension. Here C ′ and C ′′ are positive constants

3 Classification

The Kodaira-dimension is one of the basic invariants used to classify surfaces. To
explain the main result, we need some terminology.

A rational surface is a surface which is bimeromorphic to P2. Apart from P2

itself there are the Hirzebruch surfaces Fn , n = 0,1, . . . . These are defined as the
total space of the projective bundle over P1 obtained from O⊕O(n). Only F1 has an
exceptional curve. The other surfaces are minimal and there are no other minimal
rational surfaces.

A ruled surface is a P1-bundle over a curve.
A properly elliptic surface is a surface of Kodaira-dimension 1 admitting an

elliptic fibration, i.e. a holomorphic map f : S → C with general fibre an elliptic
curve.

A bielliptic surface is a surface with b2 = 2 admitting a holomorphic, locally
trivial fibre bundle structure over an elliptic curve with fibre an elliptic curve. These
are all of the form E × C/G, with E and C elliptic, G ⊂ C a finite group of
translations acting on E not only by translations. There are only 7 possible groups
G (see [Troika, p.148]) and all surfaces are algebraic.

A Kodaira-surface is a surface with b1 = 3 and admitting a holomorphic,
locally trivial fibre bundle structure over an elliptic curve with fibre an elliptic
curve or quotients of these under the action of a finite group which acts freely (for
these b1 = 1). Kodaira surfaces are not algebraic.

A K3-surface is a simply connected surface with trivial canonical bundle.
Examples: (i) Kummer surfaces, i.e. quotients of tori by the natural involution
z 7→ −z, or (ii) degree 4 surfaces in P3.
A K3-surface is not necessarily algebraic.

An Enriques surface is a surface with pg = b1 = 0 and K⊗2 trivial. The
universal cover is a K3-surface which doubly covers the surface. All Enriques sur-
faces admit elliptic fibrations S → P1 with precisely two double fibres. Examples
of Enriques surfaces are degree 6 surfaces in P3 passing doubly through the edges
of a tetrahedron (classical Enriques construction). All of them arise in this way or
as degenerations of such surfaces; in particular they are all algebraic.

A surface of class VII is a surface with κ = −∞ and b1 = 1. Such surfaces are
non-algebraic.
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A surface of general type is by definition a surface with maximal Kodaira
dimension 2. Examples: surfaces of degree ≥ 5 in P3.

Theorem 3.1 (Enriques-Kodaira classification). Every minimal surface belongs to
one of the following types:

1. Minimal rational or ruled surfaces (κ = −∞, algebraic),

2. Minimal class VII surfacess (κ = −∞, non-algebraic),

3. Tori, K3-surfaces, Enriques surfaces, bielliptic surfaces (κ = 0, Kähler),

4. Kodaira surfaces (κ = 0, non-Kähler),

5. Minimal properly elliptic surfaces (κ = 1).

6. Surfaces of general type (κ = 2.)

When we deal with the topology we need a classification of the simply con-
nected algebraic surfaces. We need:

Corollary 3.2. Simply connected minimal Kähler surfaces can be classified as
follows:

(a) P2 resp. Fn , n = 0,2,3 . . . (κ = −∞ and c2
1 = 9, c2 = 3 resp. c2

1 = 8, c2 = 4).

(b) K3-surfaces (κ = 0 and c2
1 = 0, c2 = 24)

(c) Simply connected and minimal properly elliptic surfaces. (κ = 1, c2
1 = 0).

(d) Simply connected and minimal surfaces of general type. (κ = 2, c2
1 > 0).

Whereas classes (a) and (d) are always algebraic, surfaces in classes (b) and
(c) can always be deformed into algebraic ones. We recall that S = X0 can be
deformed into S′ if there are finitely many surjective holomorphic maps of maximal
rank f j : X j → Tj , j = 1, . . . n of smooth threefolds to connected smooth curves Tj

(we say that f j is a family of surfaces over a curve) such that S is a fibre of the first
family f1, S′ a fibre of the last family fn and two families f j , f j+1, j = 1, . . . ,n−1
have at least one fibre in common. Since each family f j is differentiably a fibre
bundle we conclude:

Surfaces which can be deformed into one another are mutually oriented
diffeomorphic.

This applies in particular to K3-surfaces (see [Troika, Chapter VIII] ) and so

The K3-surfaces form the only one diffeomorphism type of simply connected
Kähler surfaces with κ = 0.

As for the elliptic surfaces, this is certainly not true, since there are many possible
Euler numbers.
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Example 3.3. Let Sk ⊂ P1 × P2 the zero set of a generic bihomogeneous polyno-
mial of bidegree (1 + k,3), k = 0,1, . . . . This is a simply connected surface and
the projection onto the first factor gives it the structure of a minimal elliptic fibra-
tion over P1. For any pair (p,q) of relatively prime integers we can perform the
logarithmic transforms of multiplicity p and q over two distinct points over which
the fibre is smooth [Troika, p.164]. The resulting simply connected elliptic surface
Sk
p,q has two multiple fibres pFp and qFq . The canonical bundle formula [Troika,

p.161] gives (here F is a general fibre):

K � (k − 1)F + (p − 1)Fp + (q − 1)Fq .

One concludes that for k = 0,min(p,q) = 1 we have a rational surface, that for
k = p = q = 1 we get a K3-surface and that for all other values the surface is
properly elliptic with invariants

pg(Sk
p,q) = k, c2(Sk

p,q) = 12(1 + k).
It is well known that any surface with these invariants can be deformed into one of
the surfaces Sk

p,q and so we obtain

The diffeomorphism types of minimal simply connected κ = 1 surfaces are
precisely those of Sk

p,q except if k = 0,min(p,q) = 1 or k = p = q = 1.

The surfaces S0
p,q , p ≥ 2, q ≥ 2 are elliptic κ = 1 surfaces with q = pg = 0 and

are called Dolgachev surfaces. We come back to the topology in Chapter V.

4 Tools: Riemann-Roch, Vanishing Theorems, Algebraic
Index Theorem

The Riemann-Roch theorem is an extension of Noether’s formula:

Theorem 4.1 (Riemann-Roch). For a line bundle L on a surface S we have:

χ(L) := dim H0(L) − dim H1(L) + dim H2(L)
=

1
2
L · (L−K) +

1
12

(c2
1(S) + c2(S))

For a proof we refer e.g. to [Hir].
Since we are often interested in getting sections for line bundles it is quite helpful
to know when higher cohomology groups vanish. Recall that a line bundle is called
ample if the sections of a positive tensor power embed the surface into projective
space. (i.e the map fmL is an embedding for large m). A standard vanishing
theorem is:

Theorem 4.2 (Kodaira Vanishing Theorem). Let L be an ample line bundle on a
compact complex manifold X. Then H i(X,K⊗L) = 0 for i > 0.
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Often we use Serre-duality in conjunction with Riemann-Roch:

Theorem 4.3 ((Serre Duality Theorem)). Let X be a compact complex manifold of
dimension n. We have:

dim H i(X,L) = dim Hn−i(X,K⊗L∨).
Example 4.4. Let S be a surface H an ample line bundle and C some curve on S.
Then there exist effective divisors in |mH−C | for m large enough. This can be seen
as follows: By Serre duality we have dim H2(mH−C) = dim H0(C+K−mH) = 0,
since otherwise H would intersect a divisor in |C + K − mH | negatively for large
m. Then we can apply Riemann-Roch: dim H0(mH −C) ≥ χ(mH −C) = 1

2 (mH −
C − K) · (mH − C) + χ > 0 for m large enough.

A second tool, which is used often, is the so-called Algebraic Index Theorem.
To state it, we recall that a Q-divisor is just a divisor with rational coefficients and
such a divisor is numerically trivial if and only if it has zero intersection product
with any divisor. This is the case if and only if its first Chern class is trivial in
rational cohomology. Chern classes of line bundles are represented by closed forms
of type (1,1) and since the intersection product has signature (1,h1,1 − 1) on the
space H1,1 spanned by classes of (1,1)-forms we conclude:

Theorem 4.5 (Algebraic Index Theorem). Let D and E be Q-divisors on an alge-
braic surface with D · D > 0 and D · E = 0. Then E · E ≤ 0 with equality if and
only if E is numerically trivial.



Chapter 2

Mori theory

5 Cone of effective 1-cycles

This aspect of the theory only works well in the case of algebraic surfaces and so
in this section we assume that S is algebraic.

On a surface any divisor is at the same time a 1-cycle, but for higher dimensions
the notions are dual under intersection pairing. In Mori theory this is essential. It
is also essential to work on possibly singular varieties. Two 1-cycles on a (not
necessarily smooth) algebraic variety X are said to be numerically equivalent if
they have the same intersection product with any divisor on X . Likewise we define
numerical equivalence for divisors. This equivalence relation is denoted by ≡. We
set

N1(X) = ({ 1-cycles on X}/ ≡) ⊗ R

N1(X) = ({ divisors on X}/ ≡) ⊗ R
N E(X) ={ cone generated by effective 1-cycles }
N E(X) = closure of N E(X) in N1(X).

Both real vector spaces are finite-dimensional and are dual under the intersection
pairing. If X is smooth we have Lefschetz theorem on (1,1)-classes:

N S(X) := ({ 1-cycles on X}/ ≡) � H1,1∩H2(X,Z) (the Néron-Severi group of S),
which shows that the dimensions of the preceding vector spaces are equal to

rankN S(X) (the Picard number of X).

We can formulate Kleiman’s ampleness criterion [Klei] as follows:

Proposition 5.1 (Kleiman’s Ampleness Criterion). Any Q–divisor D (i.e. a divisor
with rational coefficients) defines a linear form on N1(X) with rational coefficients
which vanishes on a hyperplane through the origin. Ample divisors are precisely
those divisors which have N E(X) − {0} on the strictly positive side of this hyper-
plane.

13
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Often one uses the following description of the nef -cone:

Corollary 5.2. The nef-cone is the closure of the ample cone, in particular L·L ≥ 0
for any nef divisor L.

In the next section we need:

Lemma 5.3. Let L be a nef divisor on a surface S and suppose that for some ample
divisor H we have L · H = 0. Then L ≡ 0.

Proof : By Example 4.4 the system |mH − C | contains a divisor D. Then 0 ≤
D · L = (mH − C) · L = −C · L ≤ 0 and so C · L = 0 for all curves C. �

6 Rationality theorem and an application

If a divisor D is not nef it defines a hyperplane in N1(X) for which part of N E(X)
is strictly on the negative side. So, if H is some ample divisor, in the connecting
pencil Ht = H + tD there is a member Hb whose hyperplane just touches the cone
N E(X).
Theorem 6.1 (Rationality theorem). If X = S a surface and D = KS is not nef,
there is a rational b such that the hyperplane corresponding to H + bD touches the
cone N E(X).
Proof : We follow [Wi, p.13]. For clarity, we recall

b := sup{t ∈ R | Ht = H + tKS is nef }.
Set

P(v,u) := χ(vH + uKS).
By Riemann-Roch (Theorem 4.1) this is a quadratic polynomial in v,u. If u and v

are positive integers with (u − 1)/v < b the divisor vH + (u − 1)KS is ample and
so by Kodaira Vanishing (Theorem 4.2) H i(vH + uKS) = 0 for i = 1,2. It follows
that P(v,u) ≥ 0.

Assume now that b is irrational. Number theory tells us that b can be approx-
imated by rational numbers of the form p/q, p and q arbitrarily large integers in
such a way that

p/q − 1/(3q) < b < p/q.

The polynomial P(kq, kp) is quadratic in k. If it is identically zero, P(v,u) must
be divisible by (vp − uq). Taking p and q sufficiently large we may assume that
this is not the case. For k = 1,2,3 the numbers v = kq and u = kp satisfy
(u − 1)/v < b and hence P(kq, kp) ≥ 0 for these three values of k. Since a quadric
has at most two zeroes, it follows that for at least one pair of positive integers (v,u)
with t0 := u/v > b we have dim H0(vH + uKS) > 0. So there is an effective Q-
divisor L := Ht0 =

∑
a jΓj , a j > 0. Now Ht0 is not nef. Since L is effective, it can

only be negative on the Γj . But then one can subtract off a rational multiple of KS

from Ht0 to get Hb and so b would be rational contradicting our assumption. �
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As an application we give a sketch of the classification theorem for algebraic
surfaces with κ = −∞. First, we prove that minimal surfaces with K not nef are
rational or ruled and hence have κ = −∞:

Proposition 6.2. A minimal algebraic surface with K not nef is either a ruled
surface or P2.

Proof : Clearing denominators we have a nef divisor

L = vH + uKS , b = u/v = sup{t ∈ R | Ht = H + tKS is nef }.
We have L · L ≥ 0 (see Coroll. 5.2). We conclude from Kleiman’s ampleness crite-
rion 5.1 that mL − KS is ample for all sufficiently large m. Serre duality (Theorem
4.3) implies that dim H2(mL) = dim H0(−(mL − KS)) = 0 and so by Riemann-
Roch 4.1

dim H0(mL) ≥ χ(mL) = χ(S) + mL · (mL − KS)/2.
We can distinguish two cases:
i) L · L > 0. Riemann-Roch then shows that dim H0(mL) grows like C · m2 and
hence the sections of a large multiple of L give a map f : S → S′ onto a surface S′

(2.4 ).
ii) L · L = 0. In this case an application of Lemma 5.3 shows that either L ≡ 0 or
L · H > 0 and from 0 = 1/u(L · L) = L · (H + bKS) we infer that L · KS < 0 and so
dim H0(mL) grows like a linear function of m and we get a map f : S → C onto a
curve C.

In the first case any irreducible curve D which L · D = 0 is an exceptional
curve of the first kind. Indeed, from the definition of L we see that KS · D < 0,
while the algebraic index theorem (Theorem 4.5) applied to L and D shows that
D · D < 0. In combination with the adjunction formula (1.1) this shows that D has
to be an exceptional curve of the first kind. By assumption these don’t exist and so
L · D > 0 for all curves D and L is ample, contradicting the fact that KS is not nef.
It follows that we are in the second case. If L ≡ 0 we see that −KS is ample and it
is a nice exercise to show that a minimal surface with −KS ample is the projective
plane.

In the second case we observe that f can also be given by the divisor L′ =

L− Lfixed so that |L′| does not have fixed components. Since L is nef and L · L = 0,
we infer that L′ · L = 0. Since |L′| moves, it must be nef and from L′ · L = 0 we
conclude that L′ · L′ = 0. But then |L′| cannot have fixed points and hence f is a
morphism. If F is a general fibre we must have L′ ·F = 0 and one easily concludes
from this that L · F = 0. So for any component D of F we have L · D = 0 and
hence KS ·D < 0. The adjunction formula shows that D is a smooth rational curve.
Taking the Stein factorization of f we see that S is a ruled surface. �

Conversely, we need to show that if K is nef, the Kodaira-dimension is not −∞.
First we recall (Cor. 5.2) that K · K ≥ 0. Riemann-Roch (plus Serre duality) for
mK reads:

dim H0(mK) + dim H0(−(m − 1)K) ≥ 1
2

m(m − 1)K · K + 1 − q + pg .
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Fix a very ample H . We distinguish two cases:
a) K · H > 0. Then H0(−(m − 1)K) = 0 for m ≥ 2 and so, we get

q = 0 =⇒ P2 > 0, K · K > 0 =⇒ κ = 2.

b) If K · H = 0 the algebraic index theorem implies that K · K ≤ 0 and hence
K ·K = 0 and the second part of the index theorem shows that K ≡ 0. In particular,
if q = 0 a multiple of K is trivial and so κ = 0.
This analysis shows that we only have to look at the cases with K · K = 0, q > 0.
Again, if pg > 0 we are done, so we assume that pg = 0. Noether’s formula now
gives b2 = 10 − 8q and so q = 1. Next, one needs to do a very detailed analysis of
the so called Albanese mapping S → C which in this case maps S onto an elliptic
curve with elliptic fibres. This is done in [Beau, Chapter VI]. The result is:

Theorem 6.3. Any algebraic surface with K nef, pg = 0, q = 1 is bielliptic and
has κ = 0.

This now completes the proof of the classification of algebraic surfaces with
κ = −∞, but it shows much more:

1. A surface if rational if and only q = 0 and P2 = 0 (Castelnuovo’s Rationality
Criterion).

2. A surface with K nef and K · K > 0 is of general type.

3. A minimal algebraic surface with κ = 0 and q = 1 is bielliptic.

I hope that this gives enough evidence of the powerfulness of Mori’s theory even
in the case of surfaces.



Chapter 3

Reider’s Method

7 Reider’s Theorem

For this entire section we refer to [Reider 1] for the details and references to liter-
ature.

Zero cycles Z and rank 2 vector bundles on surfaces S are intimately related.
A result due to Griffiths and Harris says that given a line bundle L = O(L) on S
and a zero cycle Z , there is a rank two vector bundle E with det(E) = L and a
section e of E vanishing precisely in Z if and only if Z is special with respect to
the adjoint system |KS + L |. This means that any divisor in this system passing
through a subcycle Z ′ of Z with deg Z ′ = deg Z − 1 passes automatically through
Z .

Examples 7.1. (i) Z = p is special if and only if it is a basepoint of the adjoint
system,
(ii) Z = p + q is special if and only if the adjoint system does not separate p from
q.

Let us compute the invariants of E. Since det(E) = Lwe find c1(E) · c1(E) =

L · L. For the second Chern class we get c2(E) = Z (indeed E has a section
vanishing exactly in Z). Recall Bogomolov’s deep theorem (cf. [?] for a short
proof) :

If c1(E) · c1(E) > 4c2(E)[S], i.e. if

L · L > 4 deg Z, (3.1)

the bundle E is unstable with respect to any ample line bundle H ,

i.e. there exists a locally free rank 1 subsheaf (’line bundle’) M of Ewith

c1(E)
2
· H ≤ M · H.

17
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This line bundle M fits into a ’destabilizing sequence’

0→ M → E→ E ⊗ IA → 0,

where E is another line bundle and IA is an ideal sheaf of a zero cycle (points with
multiplicity) (see [loc. cit.]. The inequality for M is equivalent to

(M − E) · H ≥ 0. (3.2)

Observe that for the Chern classes of E this sequence gives the following expres-
sions:

c1(E) = L = M + E, c2(E) = M · E + deg A ≥ M · E. (3.3)

Moreover (loc. cit.)
(M − E) · (M − E) > 0. (3.4)

In our situation Reider makes the following observation (not entirely obvious):

There is an effective divisor in |E | containing Z . (3.5)

Let us state Reider’s main application (see [Reider 1])

Theorem 7.2 (Reider’s Theorem). Let L = O(L) be a nef line bundle on an alge-
braic surface S.
(i) If L · L ≥ 5 and p is a base point of |KS + L |, there exists an effective divisor E
passing through p such that

eitherL · E = 0, E · E = −1

or L · E = 1, E · E = 0.

ii) If L · L ≥ 10 and p and q are not separated by the adjoint system for L, there is
an effective divisor E through p and q such that

either L · E = 0 and E · E = −1 or − 2

or L · E = 1 and E · E = −1 or 0

or L · E = 2 and E · E = 0

Sketch of proof. Observe that the inequalities for L · L imply (3.2). We take for E
the effective divisor whose existence is stated in (3.5).

We have to check the possible intersection numbers. Let us do this for (i).
Look at the plane in the Néron-Severi group N S(S) spanned by L = M + E and
M − E. Since L · L > 0, the index theorem implies that the intersection form on
this plane has signature (1,1) and hence

det
(
M · M M · E
M · E E · E

)
≤ 0.

So (M · M)(E · E) ≤ (M · E)2 ≤ 1 (by (3.3)) Now 2M = M − E + L and so
4M · M = (M − E) · (M − E) + L · L + 2(M − E) · L is positive because of (3.1),
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(3.2), (3.4) and the fact that L, being a nef divisor is in the closure of the ample
cone (Corollary 5.2). It follows that E · E ≤ 0. On the other hand, since L is nef
we get 0 ≤ L · E = M · E + E · E and so E · E ≥ −M · E ≥ −1. So either E · E = 0
(and then L · E = 1 or 0, but the last possibility is excluded by the algebraic index
theorem) or E · E = −1 and L · E = 0. �

8 An application: pluricanonical maps

We need the notion of C-isomorphism:

Definition 8.1. Let L be a line bundle on a surface S. We say that a fL is a
C-isomorphism if it is a birational morphism onto a surface with finitely many
rational double points, which is an isomorphism away from the inverse images of
these rational double points.

This notion arises naturally for surfaces of general type, because any curve with
K · C = 0 is a rational curve with self intersection −2 (a so called (−2)-curve) and
any maximal connected set of (−2)-curves is mapped onto a rational double point
by a pluricanonical map, if this map is a morphism.

The following result due to Reider gives an optimal description of pluri-canonical
mappings. The proof is substantially simpler than the previous proofs and has the
merit hat it treats all special cases with one method. One thing should be stressed:
apparently the Bombieri method of producing 1-connected divisors (a technical
notion- we don’t go into details) seems totally absent in this approach. However,
Catanese pointed out that the presence of (−2)-curves forces to use a clever com-
bination of Reider’s and Bombieri’s methods (see [Cat 3]).

Theorem 8.2. Let S be a surface of general type. Let fm = fmK be the m-th
pluricanonical map. We have:
i) fm is a C-isomorphism for m ≥ 5.
ii) f4 is a C-isomorphism except for K · K = 1.
iii) f3 is a morphism for K · K ≥ 2 and an embedding for K · K ≥ 3.
iv) f2 is a morphism for K · K ≥ 5 and a birational morphism for K · K ≥ 10
except when S has a genus two fibration.

We only give the proof that fm is a morphism for K ·K in the given range. This
proof is however typical for the sort of reasoning that is used.
We simply apply the previous theorem to L := (m − 1)K . One assumes that fm
is not a morphism. The inequality we need is (m − 1)2K · K ≥ 5. The con-
clusion is the existence of effective divisors E with K · E = 0, E · E = −1 or
(m − 1)K · E = 1, E · E = 0. The adjunction formula excludes both. This gives the
required contradiction.
The proof of the other assertions goes similarly, but there are technical complica-
tions due to the presence of −2-curves. See [Cat 3] for complete details.
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Another important application of Reider’s method is the study of the adjoint
mapping for very ample line bundles. It gives back and completes results previ-
ously obtained by Sommese and Van de Ven.



Chapter 4

Surface geography

9 Overview of surface geography

There are several restrictions on a pair (c2
1 ,c2) of positive natural numbers to occur

as a pair of Chern numbers for a minimal surface of general type (it is well known
that these numbers must be strictly positive [Troika, p.208–209]. In fact:

c2
1 + c2 is divisible by 12 (Noether condition)

c2
1 − 1/5c2 + 36/5 ≥ 0

c2
1 ≤ 3c2.

The first follows from Noether’s formula, the second is a consequence of Noether’s
inequality pg ≤ 1

2 c2
1 +2, while the third is the Bogomolov-Miyaoka-Yau inequality.

See [Troika, Chapter VII] for details and historical remarks. In fig. 9 one can see
the region in the (c2

1 ,c2)-plane given by these inequalities.
We shall use the self-evident terminology of Noether-line and BMY-line for the
borderlines. Note another interesting line: the line with c2

1 = 2c2 is the line with
signature 0. Above it surfaces have positive signature and below it the signature
is negative. Let us call these regions positive signature region, resp. negative
signature region. Surface geography consists of mapping out subregions where
surfaces have specific properties. There are the following geographic results:

Theorem 9.1. i) In the region

1
5
(c2 − 36) ≤ c2

1 < 3c2 − 1388

every Chern number satisfying the Noether condition can be realized by a minimal
surface.
ii) In the region given by (recall that χ = 1/12(c2

1 + c2))
88
179

c2 + 209.125χ2/3 < c2
1 <

4661
1726

c2 − 1353.26χ2/3

c2 > large constant ,

21
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Figure 4.1: The inhabitated region

we can realize all pairs (c2
1 ,c2) satisfying the Noether condition by a simply con-

nected surface.
A similar assertion holds without a further condition on c2 for the part of the neg-
ative signature region given by

1
5
(c2 − 36) ≤ c2

1 ≤ 2c2 −
3
4
χ2/3.

In particular all rational slopes c2
1/c2 ∈ [1/5,4661/1726) occur and can be real-

ized by simply connected surfaces (observe that 88/179 = 0.49.. and 4661/1726 =

2.70..).
iii) Surfaces on the Noether line and on the line c2

1 − 1/5c2 + 30/5 = 0 immediately
above it are all double covers of Hirzebruch surfaces and the possible branch-loci
are classified.
iv) All rational slopes c2/c2

1 ∈ [1/5,3] occur and can be realized by irregular sur-
faces.

A proof of (i) can be found in [Chen 1], where a slightly more precise statement
is proved. These results supersede earlier work by Persson [Per 1, Xiao 1, Chen 1].
For (ii) we refer to [Chen 1, Per 2]. Item (iii) is work of Horikawa and is reported
on in [Troika]. Item (iv) follows from (i) plus the fact that surfaces on the border-
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line c2
1 = 3c2 exist. There is a much simpler proof due to Sommese, which we will

give below.
Apart from these general results there are many scattered results for which

we refer the reader to [Per 2]. Below we shall review two spectacular but simple
constructions, one giving a surface on the BMY-line, the other giving a simply con-
nected surface with pg = 0 in which differential topologists have become interested
lately (Barlow’s surface).

10 Hirzebruch’s Example with c2
1 = 3c2

We refer to [BHH, Kap. 3] for details on what follows.
Start with k homogeneous linear forms l1, . . . , lk in three variables z0, z1, z2

defining k lines in P2 and consider the abelian field extension

K
(

n
√(l2/l1), . . . , n

√(lk/l1)
)
⊃ K := C(z1/z0, z2/z0).

The group of this extension is G := (Z/nZ)k−1 and it corresponds to a covering
S′ → P2 ramified in the k given lines. The surface S′ has singularities above
points where three or more of these lines meet. Blowing up P2 at these points we
get σ : P̃2 → P2 and we can form the covering

f : S → P̃2

with group G ramified in the proper transform of these curves. Then S is smooth.
If p is a point where r lines meet, there are nk−1−r isomorphic curves Cp over this
point in S. Each of these is mapped to the corresponding exceptional curve Ep in
P̃2 with degree nr−1. There are r branch points on Ep over each of which one has
nr−2 points. The Riemann-Hurwitz formula gives the Euler-number:

e(Cp) = nr−1(2 − r) + rnr−2.

Above each point of a line where no other lines intersect there are nk−1/n = nk−2

points. Above the points were only two of the lines meet there are exactly nk−3

points. So, if we let L be the union of the k lines, sing L be the singular locus of
L and

tr : = number of points where r lines meet

f1 :=
∑

rtr , f0 :=
∑

tr
we get

e(S′−sing S′)
=nk−1e(P2 − L) + nk−2e(L − sing L) + nk−3(t2)
=nk−1(3 − 2k +

∑
(r − 1)tr ) + nk−2(2k −

∑
rtr ) + nk−3t2,

e(S) =e(S′ − sing S′) +
∑
r ≥3

nk−1−r tr
(
nr−1(2 − r) + rnr−2

)
=nk−1(3 − 2k + f1 − f0) + 2nk−2(k − f1 + f0) + nk−3( f1 − t2).



24 CHAPTER 4. SURFACE GEOGRAPHY

We now specify to the following arrangement: take three distinct non-concurrent
lines l,m,n and add the lines through the three points l∩m, l∩n, m∩n and a fourth
point not on l ∩ m ∩ n. So we have t2 = 3, t3 = 4 and the other tr vanish. Observe
that the arrangement is essentially unique. We let n = 5 and we abuse notation by
letting S be the surface obtained by the preceding construction. We find

e(S) = 15 · 53.

To calculate K ·K we use the formula for the canonical divisor on S (H is a line on
P2):

K = f ∗
(
σ∗KP2 +

∑
Ep + 4/5(

∑
Ep + σ∗H − 3

∑
Ep)

)
= f ∗(σ∗(9/5H) − 3/5

∑
Ep).

and we get
K · K = 52(81 · 52 − 36 · 52) = 45 · 53.

Comparing the two numbers we see indeed that S is on the line c2
1 = 3c2.

Remark 10.1. i) Ishida [I] calculated the irregularity: q = 30.
ii) He also found 4 groups of order 52 which operate freely on S giving quotients
with

c2
1 = 3c2 = 225; q = 10,6,4,0

and a group of order 53 operating freely with quotient having invariants

c2
1 = 3c2 = 45; q = 2.

iii) With arrangements one can find at least two more examples on the borderline:

• L= the twelve lines in a Hesse pencil with c2
1 = 3c2 = 48 · 310,

• L= dual of the configuration of the 9 inflection points on a cubic and the
connecting lines with c2

1 = 3c2 = 333 · 56.

iv) There is an obvious fibration Y → Cp , which can be used to construct surfaces
with given slopes c2

1/3c2 in the next section.

11 Surfaces with given slope

The following theorem is due to Sommese, see [Sommese].

Theorem 11.1. Every rational point in [1/5,3] occurs as the slope of some irreg-
ular algebraic surface of general type.

Proof : We only consider the interval [2,3], the remaining interval can be treated
similarly. See e.g. [BHH, 156–157],
Let

s = c2
1/c2 (the Chern-slope) .
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The construction we use is based on the existence of a fibration S → C with con-
nected fibres F over a curve C of genus ≥ 1. Then S is irregular (pull back 1-forms
from the curve to the surface). If we pull back this fibration by a ramified covering
C ′ → C of degree d such that the ramification divisor on C ′ has degree ρ we get a
new irregular surface S′. Its Chern-slope is easily calculated:

s(S′) =
d · c2

1(S) − 2ρ · (e(F)
d · e(S) − ρ · e(F)

= s(S) + (2 − s(S)) · −ρ · e(F)
d · e(S) − ρ · e(F) .

If now g(C) ≥ 1 and s(S) ≥ 2 every slope between 2 and s(S) can be realized as
follows: take

C ′
α
−−→ C ′′

β
−−→ C

with α a double cover with 2y branchpoints and β an unramified cover of degree
x. Note these do exist! Now d = 2x and ρ = 2y and we find

s(S′) = s(S) + (2 − s(S)) · −y · e(F)
x · e(S) − y · e(F) ,

So if we are given the rational number p/q, 0 ≤ p < q we can take x = −(q−p)e(F)
and y = pe(S) and we see that the coefficient of 2 − s(S) is exactly p/q.
We apply this to Hirzebruch’s surface, which has a fibration over a curve of genus
6. �

12 Barlow’s simply connected surface

There is only one known example of a simply connected surface of general type
with pg = 0. It has been constructed by Barlow and recently has attracted the
attention of the differential-topologists. See [Barlow] for the construction of the
surface and [OV 2] for the relation with differential topology .
Let us outline the construction of this surface. The basic observation is as follows.

Suppose a finite group G acts on a simply connected variety X and let H := group
generated by {g ∈ G | g has a fixed point}, then π1(X/G) � G/H . In particular,

if G is generated by elements having a fixed point, X/G is simply connected.

We want to apply this to a simply connected non-singular surface X in a particularly
simple case, where each g ∈ G − {1} has a finite number t of fixed points with
isotropy group Z/2Z. The quotient X/G has t ordinary double points. We resolve
them and call the resulting surface S . If G has order n we easily find:

c2
1(S) = 1/n · c2

1(X)
χ(S) = 1/n · (χ(X) + 1/4t).

If X has no exceptional curves, KX is nef and one can easily show that KS then is
also nef and hence S must be minimal.
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Example 12.1. Suppose we have a minimal simply connected X with pg = 4, c2
1 =

10 which admits an action of the dihedral group D10 = 〈α, β〉 (α is an involution
and β has order 5) such that
1) β acts freely,
2) α has finite fixed locus then S is a simply connected surface with pg = 0, c2

1 = 1.

Indeed, D10 is generated by 5 conjugate involutions and so S is simply con-
nected. Now we form the quotient in two steps:

X → X/〈β〉→ X/D10.

The first map is a five-fold unramified covering and so is smooth with invariants
χ = 1, c2

1 = 2, q = 0 and it follows that pg = 0 and a fortiori this holds for S. Since
χ(S) > 0 as for any surface of general type, we find from the preceding formulas
that χ(X/D10) = 1 = 1

2 (1 + 1/4t) and hence t = 4 and c2
1(S) = 1.

To construct X Barlow proceeds as follows: look at the quintic surface Y in P4 with
homogeneous coordinates z0, . . . , z4 given by∑

j

z j = 0∑
j

z5
j − 5/4

∑
j

z2
j

∑
j

z3
j = 0.

This surface has an obvious action of the group A5 and there are 20 nodes on this
surface which is the A5-orbit of (2,2,2,−3 −

√
−7,−3 +

√
−7). This surface is the

canonical model of the Hilbert modular surface X for the 2-congruence subgroup
Γ of SL2(OK ), K = Q(√21). This surface X is known to be simply connected
and has the correct invariants. The group SL2(OK )/Γ is isomorphic to A5 and acts
on X . The surface X is the double cover of Y branched in the 20 nodes and the

covering involutionσ can be identified as the one coming from
(
ε 0
0 1

)
∈ GL where

ε = 55 + 12
√

21 is a positive unit in K . The involution commutes with the A5-
action and this explains the action on Y . Now take the dihedral group generated by
the 5-cycle in A5 and the involution (14)(23)σ. One checks easily that the 5-cycle
acts freely on Y and hence on X . The two-cycle fixes a line L := {(0, λ,−λ, µ,−µ) |
λ, µ ∈ C} on the surface and the set S consisting of the five intersection points of
the line z1− z4 = 0, z2− z3 = 0,

∑
z j = 0 with the surface Y . The line L splits on X

into two curves which are interchanged by the involution σ. These curves are fixed
by a := (14)(23) or by a · σ. In the first case the involution a · σ has fixed locus
contained in the finite set above S and in the second case this holds for a itself. A
closer inspection shows that a · σ has a finite fixed point set (but for our example
it is only necessary to know that some involution exists!).



Chapter 5

Topology of simply connected
algebraic surfaces

13 Severi’s question

A famous question posed by Severi (1954) is :

Is every algebraic surface homeomorphic to the pro-
jective plane biholomorphic to it?

Since pg is a topological invariant, one can pose the related question:

Is every surface with pg = q = 0 rational?

This question was already solved negatively by Castelnuovo in a 1896-paper [Cast]
in which he presented what is now called Castelnuovo’s Rationality Criterion (see
the end of Chapter 6: a surface is rational if and only if P2 = q = 0) plus –a
couple of properly elliptic non-rational surfaces with pg = q = 0. Also Enriques’
examples of Enriques surfaces were shown to belong to this class.
It is an amusing exercise to show that Castelnuovo’s Criterion is optimal in the
sense that any surface with P2 = q = 0, b2 = 1 must be isomorphic to the plane
[Troika, Chapter V, Theorem 1.1]. Unfortunately it is not clear a priori whether
the vanishing of P2 is a topological property or not and we need further technology
if we want to find an answer to Severi’s question. It turns out that Yau’s solution
to the Calabi Conjectures (1977) finally provided an affirmative answer to Severi’s
question. We refer to loc.cit. for details.

14 Topological classification

By Freedman’s fundamental work ([Freedman]) it follows that the oriented home-
omorphism type of a simply connected four-manifold having at least one smooth
structure is completely determined by the integral equivalence class of the uni-
modular intersection form on H2(S,Z). Intersection forms of simply connected

27
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algebraic surfaces are always indefinite with the only exception of P2. The positive
answer to Severi’s problem deals with this case (see the previous section) and so we
can assume that the form is indefinite. Such forms are uniquely classified by their
rank(= b2), their signature τ and their parity (a form is even if all self-intersections
are even and odd otherwise). See [Serre] for details. With the usual notation, any
such form is isometric to

p〈1〉 ⊕ q〈−1〉, τ = p − q (odd forms)

rpH ⊕ q(±E8), τ = ±8q (even forms).

There is an easy way of determining the parity by Wu’s formula [MS, p.132]:

The intersection is even precisely when K

is 2-divisible in in the Néron-Severi group.
(5.1)

Examples 14.1. 1. All surfaces with odd intersection form must be homeomorphic
to connected sums of copies of the projective plane and of the projective plane with
the orientation reversed.
2. Any K3-surface has even intersection form of signature −16 and since b2 = 22
the intersection form must be

L := H ⊕ H ⊕ H ⊕ ⊕(−E8) ⊕ −E8).
3. Any quadric has H as intersection form. Since any Hirzebruch surface Fn with
n odd is a deformation of a quadric [Troika, p.202.] H is the intersection form
also for those. All Fn with n odd are deformations of F1, i.e. of the projective
plane once blown up and hence diffeomorphic to to P2#P2 with intersection form
〈1〉 ⊕ 〈−1〉.
4. From the previous examples we see that the direct sum of 3a + b copies of H
and 2a copies of ±E8 can be realized as the connected sum of b quadrics and a
K3-surfaces or K3’s with reversed orientation.

Question: Are all simply connected oriented
differentiable 4-manifolds with even intersection
form oriented homeomorphic to connected sums of
quadrics and K3’s or K3’s with orientation reversed?

This would follow from

Conjecture 14.2 (The 11/8 Conjecture). If M is a simply connected oriented dif-
ferentiable four-manifold with even intersection form we have the inequality

b2 ≥
11
8
|τ |.

Indeed, for differentiable four-manifolds Rochlin’s theorem says that the sig-
nature for even forms is divisible by 16 and we can take a := |τ |/16 copies of a
K3-surface (if the signature is negative) or of a K3 with orientation reversed (if
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τ ≥ 0) and of b := 1/16(8b2 − 11|τ |) copies of a quadric. The fact that b is an
integer follows from the fact that the unimodular intersection form is isometric to a
direct sum of copies of H and ±E8 so that b2 is even. For almost complex surfaces
we have b2 = c2 − 2 and τ = 1/3(c2

1 − 2c2) and we find that the 11/8-conjecture in
this case boils down to




11c2
1 + 2c2 − 48(= 48b) ≥ 0 if τ ≤ 0

−11c2
1 + 46c2 − 48(= 48b) ≥ 0 if τ ≥ 0.

For algebraic surface the intersection form being even implies that the surface is
minimal and by the classification results (see Corollary 3.2) we have c2

1 ≥ 0 and
c2 ≥ 3 and so if the signature is negative the conjecture follows. If the signature
is positive, we need the far from trivial Bogomolov-Miyaoka-Yau inequality (see
chapter 4) to show that in this case the inequality holds. So we have

Any simply connected algebraic surface with even
intersection form is homeomorphic to a connected
sum of quadrics and K3’s or K3’s with orientation
reversed.

Let us go back to the surfaces Sk
pq from section 3. From the canonical bundle given

there we find that the intersection form is even if and only if k,p,q are all odd. The
other invariants show that

Sk
p,q

homeo
∼

1
2 (k+1)

# (K3-surface )
1
2 (k−1)

# (P1 × P1) if k,p,q all odd

Sk
p,q

homeo
∼

2k+1
# (P2) 10k+9

# P2 otherwise.

In particular, the Dolgachev surfaces S0
p,q are all homeomorphic to P2 blown up in

9 points.
5. As a final example, consider a question posed to me by Ronny Lee, Ron Stern
and Bob Gompf:

If we reverse the orientation of a (simply connected)
complex surface, does there exist a compatible com-
plex structure on the new manifold?

There are obvious examples where the answer is ’no’, like P2 and others, where
the answer is ’yes’, like P1 × P1 or P2 blown up in a point. To put this question
into perspective, we shall recall [Troika, p. 130] the criterion for an oriented four-
manifold to have an almost complex structure:

Theorem 14.3. An oriented four-manifold M admits an almost complex structure
with given c1 = h ∈ H2(M,Z) if and only if
i) h is equal to the second Stiefel- Whitney class in mod 2-cohomology,
ii) h2 = 3τ(M) + 2e(M).
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We look first at simply connected four-manifolds with odd intersection form,
i.e the connected sums of a projective planes and b planes with orientation re-
versed. A little number theory shows that almost complex structures are only pos-
sible if and only if a is odd and positive. This shows :

S :=
a
# (P2) b

# P2 as well as S have almost complex
structures if and only if both a and b are positive
and odd.

We now look at complex structures. From the classification (Corollary 3.2) we see
that 3a − b = c2

1 ≥ 0 and so a necessary condition for a positive answer to the
preceding question is

1/3 · b ≤ a ≤ b. (5.2)

In particular we see that the answer is no for the surfaces Sk
p,q with at least one

of k,p,q even. For surfaces of general type on the other hand the answer is often
’yes’ as we see from the following

Theorem 14.4. Let S be a simply connected complex surface.
i) If

c2
1 < c2

the surface S does not admit a complex structure.
ii) Assume that S has odd intersection form. Then S does not admit an almost
complex structure if e(S) − τ(S) . 0 mod 4. On the other hand, if e(S) − τ(S) =

20χ(S) − 2c2
1(S) is divisible by 4, i.e. if c2

1(S) is even and if moreover the Chern
numbers of S satisfy the inequalities

2935
1726

c2 + 1353.26(5c2 − c2
1)2/3 < c2

1 ≤3c2

c2 >large constant ,

or if we have

2c2 +
3
4
(5c2 − c2

1)2/3 ≤ c2
1 ≤ 3c2

(without further restrictions on c2), the oppositely-oriented surface S admits a com-
plex structure.

Proof : (i) For any S in the mentioned region, the surface S lies on the wrong side
of the BMY-line.
(ii) Since b must be odd (this follows from the observations about almost complex
structures) we have that e(S) − τ(S) = 2(b + 1) is divisible by four.
The potential new first Chern number equals −c2

1 + 4c2, while c2 remains un-
changed. We easily check that the stated inequalities just mean that the potential
new Chern numbers are in the range where we can apply Theorem 9.(ii) to conclude
existence of a simply connected complex surface with these new Chern numbers.
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The surfaces constructed by Chen all have odd intersection form and correspond to
the first region. Persson’s constructions give odd forms in the region

1
5
(c2 − 30) ≤ c2

1 ≤ 2c2 −
3
4
χ2/3,

which corresponds to the second region. These facts can be checked, using the fact
that the non-negligible singularities used by the aforementioned authors give rize
to odd forms (use (5.1)). We omit the (tedious) details. �

It is much harder to obtain results for surfaces of general type in the case of
even forms since there are not many surfaces known in the allowed region with
even intersection form, but clearly a small modification of the preceding argument
would give a positive answer to the preceding question if existence of such surfaces
would be established.
As to the existence of almost complex structures, it is not difficult to show:

If the 11/8-conjecture is true, any simply connected
oriented differentiable four-manifold with even in-
tersection form has an almost complex structure and
if we reverse the orientation, also the new oriented
manifold has an almost complex structure.

The inequalities from surface geography tells us that we have restrictions on the
pairs of numbers (a,b) with a = number of K3-’s (or reversed K3-’s) and b =

numbers of quadrics in the decomposition of such an almost complex surface in
order that it be complex. One finds:

b ≥
2
3

a − 1 (if τ ≤ 0),

b ≥ 6a (if τ ≤ 0).

As to ’special’ surfaces Sk
p,q with even form, this shows immediately that Sk

p,q

can have no complex structure. We already noticed that for a simply connected
surface S of general type with c2

1 < c2 the surface with orientation reversed has no
complex structure, but -as remarked previously-it is hard to get positive results in
the remaining region.

15 Some results on the differentiable structure

The most striking application of Donaldson-theory is probably to the h-cobordism
conjecture

If two simply connected differentiable manifolds are
h-cobordant they are diffeomorphic.

Smale’s work [Smale] shows that this is true for dimensions ≥ 5 and Freed-
man’s theorem implies that h-cobordant simply connected smooth four-manifolds
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are homeomorphic, so in dimension four one only needs to see whether a given
homeomorphism-class can contain different diffeomorphism types. Looking for
examples in our classification, we see that the Dolgachev surfaces S0

p,q have the
same topological structure as P2 blown up in 9 points. Donaldson showed [Don-
aldson] that this rational surface is not diffeomorphic to S0

2,3 and so the h-cobordism
conjecture is not true.
Several authors[FM 1, OV 1] showed that we get countably many distinct differen-
tiable structures when we let p and q vary while k = 0 and so there are infinitely

many differentiable structures on Sm := P2 m
# P2 when m = 9, a result extended to

any m ≥ 9 by Friedman and Morgan (see [FM 1]).
As to m ≤ 8 there is only one known simply connected surface of general type
homeomorphic to Sm , namely the Barlow surface (see Chapter IV). It has pg =

0, c2
1 = 1 and hence m = 8. This surface does not have the differentiable struc-

ture of S8: if we blow up Barlow’s surface once the resulting surface is neither
diffeomorphic to S9 nor to S0

p,q . See [OV 2, Ko].
Using the Donaldson polynomials plus some information on the monodromy-

group of big families of differentiable isomorphic surfaces Ebeling showed (see
[Ebe]) that complete intersection surfaces of general type which have pg even and
which are homeomorphic (e.g. with the same c2

1 and with K = a H a same parity
mod 2), but whose canonical class has different divisibility properties cannot be
diffeomorphic. An example of two such surfaces: multidegrees (10,7,7,6,3,3) in
P8 and (9,5,3,3,3,3,3,2,2) in P11. Here c2

1 = 22 · 39 · 5 · 72, K = 28H , resp. 22H .
Salvetti proved that given any natural number n there are n surfaces of general
type which are all homeomorphic, but mutually not diffeomorphic. See [Sal]. His
surfaces are not complete intersections, but repeated double covers of P2.

As to the other surfaces Sk
p,q with k ≥ 1, there is a nice result ([FM 1]:

Let k ≥ 1. If a surface Sk
p,q blown up in r points

is diffeomorphic to a surface Sk ′

p′,q′ blown up in r ′

points then r = r ′ and pq = p′q′.

This gives a negative answer to the differentiable analog of Kodaira’s question
(which has a positive answer because of Freedman’s results):

Is any surface with the same homotopy-type of a K3-
surface homeomorphic to a K3-surface?

Indeed, take p and q both odd, but > 1, then S1
p,q has the same topology as a K3-

surface, while the preceding theorem says that it cannot be diffeomorphic to the
genuine K3-surface S1

1,1. The K3-surfaces have κ = 0, while the other surfaces
S1
p,q have κ = 1. This gives evidence for one of the challenging conjectures that

remains in this field:

Conjecture 15.1. The Kodaira-dimension of an algebraic surface is a differentiable
invariant.
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