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Introduction

The theory of motives was created by Grothendieck in the mid-sixties, starting
from around 1964. In a letter to Serre dated August, 16 1964 Grothendieck men-
tioned for the first time the notion of “motives”; see [Col-Se, pages 173 and 275].
At that time this notion was still rather vague for him, but he was already begin-
ning to see a precise “yoga” for such a theory (see the letter cited above) and his
“motivation”(!) (or at least one of his motivations) must have been the following.

In the early sixties Grothendieck, with the help of Artin and Verdier, had devel-
oped étale cohomology theory. From that moment on there existed a cohomology
theory for every prime number � different from the characteristic p of the underly-
ing field. Moreover, in characteristic zero there exist also the classical Betti and de
Rham theory and for positive characteristic Grothendieck already had the outline
for the crystalline cohomology theory.

Hence there was an abundance of “good” (so-called Weil) cohomology theories!
But all these theories have similar properties, and in characteristic zero there even
are comparison theorems between them: the famous de Rham isomorphism theorem
between Betti and de Rham theory, and the Artin isomorphism between Betti and
étale cohomology.

There should be a deeper reason behind this! In order to explain and under-
stand this, Grothendieck envisioned a “universal” cohomology theory for algebraic
varieties: the theory of motives. Grothendieck expected that there should exist a
suitable Q-linear semisimple abelian tensor category with “realization” functors to
all Weil cohomology theories.1

The best way to see what Grothendieck had in mind is to quote his own words.
In section 16 (les motifs - ou la cœur dans la cœur) of the “En guise d’avant propos”
of his “Récoltes et Semailles” [Groth85], Grothendieck writes the following:

... Contrairement à ce qui se passait en topologie ordinaire, on se trouve donc placé
là devant une abondance déconcertante de théories cohomologiques différentes. On
avait l’impression très nette qu’en un sens, qui restait d’abord très flou, toutes ces
théories devaient ‘revenir au même’, qu’elles ‘donnaient les mêmes résultats’. C’est
pour parvenir à exprimer cette intuiton de ‘parenté’ entre théories cohomologiques
différentes que j’ai dégagé la notion de ‘motif’ associé à une variété algébrique. Par
ce terme j’entends suggérer qu’il s’agit du ‘motif commun’ (ou de la raison com-
mune) sous-jacent à cette multitude d’invariants cohomologiques différents associés
à la variété, à l’aide de la multitude de toutes les théories cohomologiques possi-
bles à priori. [...] . Ainsi, le motif associé à une variété algébrique constituerait

1(M.) I remember that during a private conversation in October or November 1964
Grothendieck told me that he was now developing a new theory that would finally explain the
(similar) behaviour of all the different cohomology theories.

vii



viii INTRODUCTION

l’invariant cohomologique ‘ultime’, ‘par excellence’, dont tous les autres (associés
aux différentes théories cohomologiques possibles) se déduiraient, comme autant
d’‘incarnations’ musicales, ou de ‘réalisations’ différentes [...].

For nice “elementary” introductions to the ideas and the concept of motives we
recommend the papers of Serre [Serre91], Mazur [Mazur] and the recent preprint
of Milne [Mil09].

Grothendieck has constructed what we now call the category of “pure motives”;
these are objects constructed from smooth, projective varieties by means of the
theory of algebraic cycles modulo a suitable equivalence relation (roughly speaking
motives are a kind of direct summands of algebraic varieties). The equivalence
relation Grothendieck had in mind was numerical equivalence (although his con-
struction works for every good equivalence relation). According to him [Groth69a,
page 198]:

the theory of motives is a systematic theory of the “arithmetic properties” of alge-
braic varieties as embodied in their group of classes for numerical equivalence

Grothendieck was well aware that finally one needs a more general theory; see
his letter to Illusie, reproduced in the appendix of [Jann94, p. 296]. He envisaged a
category of “mixed motives” attached to the category of all (i.e., arbitrary) varieties
defined over a field k, in the same way as in the complex case one needs not only
Hodge structures for smooth compact varieties but also mixed Hodge structures for
arbitrary complex varieties.

Such a theory of “mixed motives” has, up to now, not yet been constructed in
a satisfactory way, although important progress has been made on the one hand by
the construction of triangulated categories of motives by (independently) Hanamura
[Hana95, Hana04], Levine [Lev98] and Voevodsky [Maz-Vo-We, Voe00], and
on the other hand by Nori [Nori], who constructed a very original candidate for a
category of mixed motives (cf. also [Lev05, p. 462] and [Hub-MüS, Appendix]).

Returning to the category of pure motives: its construction is (contrary to some
widespread misunderstanding!) entirely unconditional and in fact – except for its
originality – surprisingly simple! However the question whether these motives have
the required good properties depends on conjectures for algebraic cycles; these are
the famous “standard conjectures” of Grothendieck formulated in [Groth69a], and
discussed also in the two papers of Kleiman [Klei68], [Klei94]. Partially these
conjectures center around very deep existence problems for algebraic cycles.

Although up to now very little progress has been made on these conjectures
(with one exception: a beautiful result by Jannsen [Jann92], see Lecture 3), the
“yoga of motives” has proved to be a very powerful and influential tool in the
development of algebraic geometry and number theory, especially in questions of
arithmetical algebraic geometry.

The influence of this yoga is nowadays formidable! To give only some examples:

— in his 1970 lecture [Del70] at the ICM congress in Nice, where he out-
lined his famous work on Hodge theory, Deligne already mentions the
inspiration from Grothendieck’s theory of motives; see also [Groth69b];

— in the papers of Deligne, Milne, Ogus and Shih in [Del-Mi-Og-Sh] the
influence of this yoga is evident;
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— in 1991 the AMS organized a three week conference on motives, resulting
in the appearance of two thick volumes of proceedings full of results and
ideas originating from motives [Jann-Kl-Se];

— the ideas behind the celebrated work of Voevodsky clearly stem from the
yoga of motives.

In fact we could make a very long list! 2

Grothendieck himself has – unfortunately – published only one paper on mo-
tives, namely [Groth69a]. But in 1967 he has given a series of lectures on his theory
at the IHES and – fortunately – some of the attendants of these lectures have re-
ported on this. In fact, these lectures are at the origin of the well-known paper
by Manin [Manin], of Demazure’s Bourbaki lecture [Dem] and also of Kleiman’s
paper [Klei70].3 4 5

This book deals mainly with pure motives, except for the last two chapters
where we have tried to give at least some ideas on relative motives and on further
developments in the direction of mixed motives. Also we concentrate only on the
geometric aspects of the theory. For the arithmetic aspects we suggest the beautiful
book by André [Andr].

Grothendieck was aiming for a theory built on numerical equivalence of alge-
braic cycles because, as he did foresee and as was later proved by Jannsen, this
– and only this – gives an abelian semisimple category. In the present book we
mainly work with motives modulo rational equivalence, so-called “Chow motives”,
the reason being that such motives not only yield information on the cohomology
of the underlying variety but also on the Chow groups themselves.

The structure of the book is as follows. We start with a short outline of
algebraic cycles and Chow groups because, as we mentioned earlier, these are at the
basis of the entire theory. To chapter 1 we have added two appendices; in the first
one we give a short survey of the main known results for divisors and algebraic cycles
of higher codimension, and in the second one we discuss a theorem on the relation
between algebraic and (smash) nilpotent equivalence obtained independently by
Voisin and Voevodsky (for the definition of these notions, see chapter 1). Then in
chapter 2 we describe Grothendieck’s construction of the category of pure motives
and some examples, in particular motives of curves. Here we see a striking fact: the
category of motives contains as a full subcategory the category of abelian varieties
up to isogeny!

In chapter 3 we discuss the standard conjectures followed by the treatment
of the celebrated theorem of Jannsen, which shows that the category of motives
modulo numerical equivalence is an abelian semisimple category. In chapters 4
and 5 we discuss the remarkable concept of “finite-dimensionality” for motives,

2in the introduction of “Récoltes et Semailles” [Groth85, Introduction (II), p. xviii]
Grothendieck states: “Et le ”yoga des motifs” auquel m’a conduit cette réalité longtemps ig-
norée est peut-être le plus puissant instrument de découverte que j’aie dégagé dans cette première
période de ma vie de mathématicien.”

3Manin [Manin, p. 444] states: “I learned from the theory of motives from lectures that
Grothendieck gave at IHES in the spring of 1967 ... This paper is no more than the fruit of
assiduous meditation on these beautiful ideas”

4See also footnote 1 in Serre’s paper [Serre91]
5There are also unpublished manuscripts of Grothendieck with further ideas on motives;

which –as we have been informed – have a rich content.



x INTRODUCTION

due independently to S.-I. Kimura and O’Sullivan. This idea is undoubtedly very
important. Kimura and O’Sullivan conjectured that every (Chow) motive is finite
dimensional, but for the moment this has only been proved for varieties that are
dominated by products of algebraic curves (for the precise statement see chapters 4
and 5); this class contains in particular all abelian varieties. In chapter 4 we treat
the definition of finite-dimensionality and the case of an algebraic curve. (The finite-
dimensionality of the motive of a curve basically goes back to a theorem of Šermenev
in 1971, but to avoid misunderstanding: Šermenev did not have the idea of finite-
dimensionality.) In chapter 5 we then discuss the surprising properties resulting
from finite-dimensionality; results mainly due to Kimura and O’Sullivan. These
results are obtained using representation theory of the symmetric group (partitions,
Young diagrams etc.). The next chapter, chapter 6, is on the construction of the
so-called Picard and Albanese motives, the distribution of the Chow groups over
these motives and on the motive of an algebraic surface. The results in chapter 6 are
true unconditionally, but in chapter 7 we discuss a set of conjectures on algebraic
cycles supplementing, but mainly independent of, the Standard Conjectures. We
first state the Bloch-Beilinson conjectures on the filtration on Chow groups, and
next the related conjectures by the first named author. We discuss a theorem of
Jannsen saying that these two sets of conjectures are equivalent, and we discuss
examples of varieties for which these conjectures – or part of them – can be proved
unconditionally, in particular we discuss the results in the case of the product of
two surfaces. (This is partly based on joint work of the first author with Kahn and
Pedrini.)

After these chapters, all on pure motives, we have added two chapters on further
developments. Chapter 8 deals with relative motives; here correspondences should
be replaced by relative correspondences, cohomology groups should be replaced by
(perverse) direct image sheaves, and the Künneth formula should be replaced by
the famous decomposition theorem of Beilinson, Bernstein, Deligne and Gabber.
Finally, in chapter 9 we report briefly on the developments in the direction of mixed
motives. First we present a construction due to Bittner (and Looijenga ) of the so-
called “motivic Euler characteristic”, then we discuss the “motivic weight complex”
of Gillet-Soulé (see also [Gu-Na]), and finally we give a very short presentation
of the construction of Voevodsky’s triangulated category of mixed motives. These
last two chapters are only intended to give some idea of these concepts and devel-
opments; for a thorough treatment of the material in these chapters we advise the
reader to consult the original paper of Corti-Hanamura [Cor-Ha00] for relative
motives and the books of André [Andr], Levine [Lev98] and Mazza-Voevodsky-
Weibel [Maz-Vo-We] for mixed motives.
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CHAPTER 1

Algebraic Cycles and Equivalence Relations

In this chapter k is an arbitrary field (possibly not algebraically closed) and
SmProj(k) denotes the category of smooth projective varieties over k. A variety is
a reduced scheme, not necessarily irreducible; indeed it is crucial to allow (finite)
disjoint unions of irreducible ones. If we writeXd, we are dealing with an irreducible
variety of dimension d.

Remark . The results in this Chapter are of course well known. They are col-
lected at this place for the reader’s convenience and, at the same time, to give us
the opportunity to introduce some notation we use in the remainder of this book.

We would like to mention the following sources where the reader can find further
details. For a general introduction to algebraic cycles, Chow groups and intersection
theory: see [Harts, Appendix A], [Voi03, Part III]. For a more elaborate study
we refer to [Ful], especially [Ful, Chapters 1, 6, 7, 8, 16]. An introduction to étale
cohomology can be found in [Harts, Appendix] or [Mil98], while [Mil80] provides
more details.

1.1. Algebraic Cycles

An algebraic cycle on a variety X is a formal finite integral linear combination
Z =

∑
nαZα of irreducible subvarieties Zα of X. If all the Zα have the same

codimension i we say that Z is a codimension i cycle. We introduce the abelian
group

Zi(X) = {codim i cycles on X} .

If we prefer to think in terms of dimension and X = Xd is pure dimensional, we
write Zd−i(X) = Zi(X). If, instead of integral linear combinations we work with
coefficients in a field F (mostly, we use F = Q), we write

Zi(X)F :=
{∑

rαZα | rα ∈ F, Zα a codim. i cycle
}
= Zi(X)⊗Z F .

Examples 1.1.1. (1) The group of codimension 1 cycles, the divisors, is
also written Div(X).

(2) The zero-cycles Zd(X) = Z0(X). These are finite formal sums Z =∑
α nαPα where Pα is an irreducible 0-dimensional k-variety. The de-

gree of Pα is just the degree of the field extension [k(Pα)/k] and deg(Z) =∑
nα deg(Pα).

(3) To any subscheme Y of X with irreducible components Yα of dimension
dα one can associate the class [Y ] =

∑
α nαYα ∈

∑
α Zdα

(X), where nα is
the length of the zero-dimensional Artinian ring OY,Yα

; see [Ful, 1.5].

1



2 1. ALGEBRAIC CYCLES AND EQUIVALENCE RELATIONS

We recall the following operations on cycles. There are three basic operations:
cartesian product, pushforward and intersection. The remaining ones can be de-
duced from these basic operations.

Cartesian product: The usual cartesian product of subvarieties can be
linearly extended to products of cycles.

Push forward: If f : X → Y is a morphism of k-varieties and Z ⊂ X is an
irreducible subvariety, one sets

deg(Z/f(Z)) =

{
[k(Z) : k((f(Z))] if dim f(Z) = dimZ

0 if dim f(Z) < dimZ

Intuitively, the number [k(Z) : k((f(Z))] gives the number of sheets of Z
over f(Z). Setting

f∗(Z) = deg(Z/f(Z))f(Z)

and extending linearly, one gets a homomorphism

f∗ : Zk(X) → Zk(Y ).

Intersection: Two subvarieties V and W of X with codimension say i and j
intersect each other in a union of subvarieties Zα, of (various) codimension
≥ i + j if X is smooth. See e.g. [Harts, p. 48]. We say that the
intersection is proper if equality holds for all Z = Zα. If this is the case,
the intersection number is defined by

i(V ·W ;Z) :=
∑
r

(−1)r�A(Tor
A
r (A/I(V ), A/I(W )), A = OX,Z

where I(V ) denotes the ideal of the variety V in the ring A. The inter-
section product incorporates these:

V ·W =
∑
α

i(V ·W ;Zα)Zα. (1)

See [Serre57, P. 144]. This coincides with the earlier definitions due to
Chevalley [Chev58], Weil [Weil46] and Samuel [Sam58].

Pull back: Let f : X → Y be a morphism in SmProj(k) and let Z ⊂ Y be
any subvariety. The graph of f is a subvariety Γf ⊂ X×Y and if it meets
X × Z properly, we set

f∗Z := [prX ]∗(Γf · (X × Z)),

where prX : X × Y → X is the projection.1

Using the notion of pull back, we obtain an equivalent definition of
the intersection product which is due to Weil [Weil46]:

V ·W = Δ∗
X(V ×W ), V,W ∈ Z(X)

ΔX : X ↪→ X ×X (the diagonal embedding).

}
(2)

1If f is flat the cycle f∗Z is nothing but the inverse image scheme f−1Z, which is always
defined; this definition can be extended linearly to cycles and yields a homomorphism f∗ : Zi(Y ) →
Zi(X). See [Ful, §1.7].
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Correspondences: A correspondence from X to Y is simply a cycle in
X × Y . A correspondence Z ∈ Zt(X × Y ) acts on cycles on X as follows:

Z(T ) = [prY ]∗(Z · (T × Y )) ∈ Zi+t−d(Y ), (3)

T ∈ Zi(X), d = dim(X),

whenever this is defined. If t = d the correspondence preserves the codi-
mension of the cycle and for this reason one calls t − d the degree of the
correspondence.

The transpose TZ of Z is the same cycle, but considered as a subvariety
of Y × X.2 The pull back operation f∗ is the special case for Z = TΓf

and the operation f∗ is the special case Z = Γf . Note that f∗ has degree
0 while f∗ has degree dim(Y )− dim(X).

The operations of intersections, pull back and action of correspondences are
not always defined. Therefore we search for a “good” equivalence relation on cycles
which ensures that these operations are defined on the equivalence classes. This is
the subject of the next section (§ 1.2).

1.2. Equivalence Relations

We shall use the shorthand “equivalence relation” for a family of equivalence
relations on the groups Z(X) :=

⊕
iZ

i(X) i.e., for every variety X we have on
every group Zi(X) an equivalence relation. Such an equivalence relation ∼ is called
adequate (or“good”) if restricted to the category SmProj(k) it has the following
properties [Sam58]:

R1: compatibility with grading and addition;
R2: compatibility with products: if Z ∼ 0 on X, then for all Y one has

Z × Y ∼ 0 in Z(X × Y );
R3: compatibility with intersection: if Z1 ∼ 0 and Z1 · Z2 is defined, then

Z1 · Z2 ∼ 0;
R4: compatibility with projections: if Z ∼ 0 on X × Y , then (prX)∗(Z)∼ 0

on X;
R5: moving lemma: given Z,W1, . . . ,W� ∈ Z(X) there exists Z ′ ∼Z such

that Z ′ ·Wj is defined for j = 1, . . . , �.

Having such a family of equivalence relations on the groups Zi(X), we put

Zi
∼(X) =

{
Z ∈ Zi(X) | Z ∼ 0

}
.

This is a subgroup of Zi(X) as follows from R1. If we now work with coefficients
in a field F , we take

Zi
∼(X)F = Zi

∼(X)⊗Z F.

This is a vector subspace of Zi(XF ). Now put

Ci
∼(X) := Zi(X)/Zi

∼(X), C∼(X) =
⊕

iC
i
∼(X),

Ci
∼(X)F = Ci

∼(X)⊗Z F, C∼(X)F = C∼(X)⊗Z F.

The axioms are set up such that the following result is a consequence [Sam58,
Prop. 6 and 7] :

2More precisely, TZ = τ∗Z where τ : X × Y → Y × X interchanges the factors. So, even if
X = Y these two cycles are different in general.
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Lemma 1.2.1. For any adequate equivalence relation ∼ on X ∈ SmProj(k) we
have

(1) C∼(X) is a ring with product induced from intersection of cycles;
(2) For any morphism f : X → Y in SmProj(k) the maps f∗ and f∗ induce

(well defined) homomorphisms f∗ : C∼(X) → C∼(Y ) and f∗ : C∼(X) →
C∼(Y ). The latter is a homomorphism of graded rings;

(3) a correspondence Z from X to Y of degree r induces Z∗ : Ci
∼(X) →

Ci+r
∼ (Y ) and equivalent correspondences induce the same Z∗.

For instance, the fact that f∗ respects intersections follows from formula (2):

f∗(V ·W ) = f∗Δ∗
Y (V ×W ) = Δ∗

X(f∗V × f∗W ) = f∗V · f∗W, V,W ∈ Z(X).

We now discuss the most important equivalence relations.

A. Rational Equivalence. This is a generalization of the well known notion
of linear equivalence for divisors. For the earliest, by now classical, results we refer
the reader to [Chow56, Sam56, Chev58].

Rational equivalence on any variety X can be defined as follows [Ful, Chapter
1]. To start, the divisor of a rational function f ∈ k(X) is defined as follows:

div(f) :=
∑
Y⊂X

ordY (f) · Y, Y of codim 1,

where the (order) homomorphism ordY : k(X)∗ → Z is defined as follows. The local
ring A = OX,Y is one dimensional and for f ∈ A one puts ordY (f) = �A(A/(f)),

with �A the length of an A-module. For f ∈ k(X)∗, write f =
f1
f2

and put ordY (f) =

ordY (f1)−ordY (f2). This is well-defined, which is easy to see, e.g. [Ful, Appendix
A].

It follows that the divisor div(f) for a function f ∈ K(Y )∗ on an irreducible
subvariety Y ⊂ X is a codimension 1 cycle on Y and hence, if Y is of codimension
i − 1 in X, div(f) ∈ Zi(X) and by definition Zi

rat(X) is the subgroup generated
by such cycles. In other words, for a codimension i-cycle one has Z ∼rat 0 if and
only if there is a finite collection of pairs (Yα, fα) of codimension (i− 1) irreducible
varieties and non-zero functions on them such that Z =

∑
div(fα). Equivalently,

if X(i) stands for the collection of irreducible codimension i subvarieties of X we
have

Zi
rat(X) = Im

⎧⎨⎩⊕Y ∈X(i−1)k(Y )∗
div−−→

⊕
Z∈X(i)

Z

⎫⎬⎭
The Chow groups are the cokernels of these maps:

CHi(X) := Zi(X)/Zi
rat(X) = Ci

rat(X)

CH(X) :=
⊕

iCH
i(X).

Example 1.2.2. For divisors (codimension one cycles), rational equivalence
indeed coincides with linear equivalence. The quotient of the group Div(X) by
the subgroup {div(f) | f ∈ k(X)×} (divisors linearly equivalent to 0) is the Picard
group Pic(X) if X is smooth.

If we work with coefficients in a field F we shall write

CHi(X)F = Ci
rat(X)F = Ci

rat(X)⊗Z F, CH(X)F =
⊕

iCH
i(X)F
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respectively. We stress at this point that the Chow groups CHi(X) are defined for
any variety X. But for smooth projective varieties we know more is true:

Proposition 1.2.3. On the category SmProj(k) rational equivalence is an ad-
equate equivalence relation. So, if X is smooth projective the direct sum CH(X) is
in fact a graded ring (and CH(X)F a graded F -algebra).

Let us make a few remarks on the proof. R1 is obvious and R2 and R3 are
easy. The proof of R4 follows from the more general

Proposition 1.2.4. Let f : X → Y be a proper morphism between varieties
(not necessarily smooth) and let Z be a cycle rationally equivalent to zero. Then
f∗Z ∼rat 0.

For a proof see [Ful, p. 12]. The idea here is as follows. If Z = div(ϕ) where ϕ
is a function on a subvariety of X, we may replace X by this subvariety and Y by
f(X) so that f is proper and surjective and Z a divisor of a function on X. If f is
equidimensional, one uses the norm (=the determinant of the linear map given by
multiplication with ϕ)

N : k(X) → k(Y ).

Indeed, one has f∗Z = f∗(div(ϕ)) = div(N(ϕ)). If f is not equidimensional,
f∗Z = 0. The general case can be reduced to this situation.

This method of proof can be used to give an alternative definition of rational
equivalence3 as follows:

Lemma 1.2.5. Suppose X is smooth and projective. Then Z ∈ Zi(X) is ra-
tionally equivalent to zero if and only if there exists a cycle W ∈ Zi(X × P1) and
a, b ∈ P1 such that, defining

W (t) := (prX)∗ (W · (X × t)) ,

we have W (a) = 0 and W (b) = Z.

Finally, about the moving lemma (R5). We sketch the proof of [Rob]. The
situation is as follows. We have X ∈ SmProj(k) such that X ↪→ PN , some fixed
projective space. We may assume that Z is a codimension i subvariety of X, that
� = 1 and that W = W1 is a subvariety of X of codimension j. If codim(W ∩Z) =
i + j the intersection is proper and the Lemma is trivially true by taking Z ′ = Z.
If not, put excess(W ∩Z) = codim(W ∩Z)− (i+ j) > 0. The proof consists of two
steps:

(1) If X = PN one shows that a generic linear transformation moves Z to a
cycle which intersects W properly.

(2) In the general case, take a “general” linear space L ⊂ PN of codimension
d+1. Consider the cone C(L,Z) on Z with L as vertex. Since L is general,
the intersection C(L,Z) · X is well defined and in fact, by construction,
one has

C(L,Z) ·X = Z + Z∗.

For general enough L one shows that excess(Z∗∩W ) <excess(Z∩W ). By
step (1), for a general linear transformation τ the intersection τ (C(L,Z) ·
X) ·W is defined and since

Z ∼rat τ (C(L,Z) ·X)− Z∗,

3This is the definition used by Chow and Samuel.
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one can proceed by induction on the excess.

We end this discussion on rational equivalence by stating the main properties of
Chow groups.

Theorem 1.2.6. (1) If X ∈ SmProj(k), then the Chow group CH(X) =⊕
CHq(X) is a graded commutative ring with respect to intersection prod-

uct;
(2) if f : X → Y be a morphism in SmProj(k), then f∗ : CH(Y ) → CH(X)

is a graded ring homomorphism, while f∗ :
⊕

CHq(X) →
⊕

CHq(Y ) is an
additive graded homorphism of degree dimY − dimX.

(3) If X,Y ∈ SmProj(k), then Z ∈ Correrat(X,Y ) induces an additive homo-
morphism Z∗ : CH(X) → CH(Y ) of degree e.

Suppose that, more generally, X, Y are arbitrary k–varieties. Then

(4) If i : Y ↪→ X is a closed embedding and j : U = X − Y ↪→ X, one has an
exact sequence

CHq(Y )
i∗−−→ CHq(X)

j∗−−→ CHq(U) → 0.

(5) The homotopy property holds: the projection prX : X ×An → X induces

an isomorphism pr∗X : CHi(X)
∼−→ CHi(X × An).

Proof : Properties (1) and (2) follow immediately from the fact that ∼rat is a
good equivalence relation (cf. Prop. 1.2.3) and (3) then follows from the preceding
formula (3). Property (4) is straightforward and for (5) see [Ful, Page 22]. �

Remark . In [Ful, Chapter 6] it is shown that one can define a refined inter-
section product on CH∗(X) without using the moving lemma (by deformation to
the normal cone). If X is smooth, this product satisfies all the good properties
mentioned above (cf. Theorem 1.2.6). The refined intersection product has the
advantage that we can keep control over the support of the intersection class; we
shall use this fact (without saying so) in Chapter 7. Moreover, in certain cases it
can be used to intersect cycles on singular varieties; this will be used in Chapter 8.

B. Algebraic Equivalence. Now we suppose that X is smooth projective.
For the definition of algebraic equivalence, we go back to the alternative definition
for rational equivalence as given in Lemma 1.2.5 and we replace P1 by any curve:

Definition 1.2.7 ([Weil54]). Z ∼alg 0 if there is a smooth irreducible curve C
and W ∈ Zi(C ×X) and two points a, b ∈ C such that W (a) = 0, W (b) = Z.
One puts

Zi
alg(X) :=

{
Z ∈ Zi(X) | Z ∼alg 0

}
CHi

alg(X) :=
Zi
alg(X)

Zi
rat(X)

⊂ CHi(X).

Remarks 1.2.8. (1) Instead of C we could have taken any smooth variety
V since, given a, b ∈ V there is always a smooth curve C ⊂ V passing
through a and b: take a sufficiently general linear section containing a and
b.

(2) We could also replace C by an abelian variety as in [Weil54, lemma 9
p.108].

(3) One clearly has Zi
rat(X) ⊂ Zi

alg(X) but in general the two are distinct:
take for X an elliptic curve and a, b two distinct points. Then Z = a− b
is not the divisor of a function, but Z is algebraically equivalent to zero.
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(4) The Chow group CHi(X) surjects onto

Zi(X)

Zi
alg(X)

=
CHi(X)

CHi
alg(X)

which is a countable group by the theory of Chow varieties [Chow-vW].

C. Smash Nilpotent Equivalence. Again, X is supposed to be smooth
projective. First some more notation. For a variety X and a cycle Z on X we set

Xn := X × · · · ×X︸ ︷︷ ︸
n

Zn := Z × · · · × Z︸ ︷︷ ︸
n

.

Definition 1.2.9 ([Voe00]). Z ∼⊗ 0 if and only if for some positive integer n
one has Zn ∼rat 0 on Xn.

Proposition 1.2.10. Smash-nilpotent equivalence is a good equivalence rela-
tion. In particular, Zi

⊗(X) :=
{
Z ∈ Zi(X) | Z ∼⊗ 0 ⊂ Zi(X)

}
is a subgroup of

Zi(X).

Proof : The required properties are straightforward to check. As an example, let us
verify that the set Zi

⊗(X) ⊂ Zi(X) is a subgroup. Take two cycles Z,Z ′ ∈ Zi
⊗(X)

and consider

(Z + Z ′)n =
∑

r+s=n

(
n

r

)
Zr × Z ′s (4)

inside CHin(X × · · · ×X︸ ︷︷ ︸
n

) (after a suitable reordering of the factors). If n 	 0 we

have that either the first or the second factor is rational equivalent to zero so that
also Zr × Z ′s ∼rat 0 and hence Z + Z ′ ∼⊗ 0. �

Corollary 1.2.11. Smash-nilpotence is preserved by correspondences.

An important result, due independently to Voevodsky and Voisin, is the fol-
lowing.

Theorem 1.2.12 ([Voe95, Voi96]). 4 One has Zi
alg(X)Q ⊂ Zi

⊗(X)Q.

We shall give a sketch of the proof in Appendix B.

D. Homological Equivalence. Let F be a field of characteristic 0 and let
GrVectF be the category of finite dimensional graded F -vector spaces.

Definition 1.2.13. A Weil-cohomology theory is a functor

H : SmProj(k)opp → GrVectF

which satisfies the following axioms5

(1) there exists a cup product ∪ : H(X)×H(X) → H(X) which is graded and
super-commutative , i.e. if a ∈ Hi(X), b ∈ Hj(X), then b∪a = (−1)ija∪b.;

4In [Voi96] the result is stated only for cycles on self-products X ×X
5This is the convention of [Klei94]. There are definitions that are less restrictive, see e.g.

[Klei68]. However, the classical Weil cohomology theories satisfy the properties given here. For
simplicity we omit Tate twists; see [DJ] for the precise version.
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(2) one has Poincaré duality:
there is a trace isomorphism Tr : H2d(Xd)

∼−→ F such that

Hi(Xd)×H2d−i(Xd)
∪−→ H2d(Xd)

Tr−−→ F

is a perfect pairing (in particular, H0(point) � F );
(3) the Künneth formula holds:

H(X)⊗H(Y )
(prX)∗⊗(prY )∗

−−−−−−−−−−→ H(X × Y ) (5)

is a graded isomorphism;
(4) there are cycle class maps

γX : CHi(X) → H2i(X) (6)

which are
• functorial in the sense that for f : X → Y in SmProj(k), one has
f∗◦γY = γX◦f∗ and f∗◦γX = γY ◦f∗;

• compatible with intersection product

γX(α · β) = γX(α) ∪ γX(β); (7)

• compatible with points P : this means that

Tr ◦γP = deg, (8)

i.e., the following diagram commutes:

CH0(P )
γP−−→ H0(P )⏐⏐�deg

⏐⏐�Tr

Z ↪→ F.

As a matter of notation, write

Ai(X) := Im(γX) = H2i
alg(X). (9)

(5) Weak Lefschetz holds: if i : Yd−1 ↪→ Xd is a smooth hyperplane section,
then

Hi(X)
i∗−−→ Hi(Y ) is

{
an isomorphism for i < d− 1

injective for i = d− 1.

(6) Hard Lefschetz holds: the Lefschetz-operator L(α) = α ∪ γX(Y ) induces
isomorphisms

Ld−i : Hd−i(X)
∼−→ Hd+i(X), 0 ≤ i ≤ d.

Examples 1.2.14 (Classical Weil cohomology theories).

(1) If char(k) = 0 and k ⊂ C one can take
(a) Hi

B(X), the Betti-cohomology, i.e. singular cohomology group
Hi(Xan) with Q-coefficients F = Q or C-coefficients (F = C). Here
Xan is the complex manifold underlying X;

(b) the classical De Rham cohomology HdR(Xan;C) (here F = C);
(c) the algebraic de Rham cohomology Hi

dR(X) := Hi(XZar,Ω
•
X/k) (with

F = k).
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That (a) gives a Weil cohomology is indeed classical: ordinary singular
cohomology satisfies all of the above requirements; the classical de Rham
theorem (for (b)), Grothendieck’s version in the algebraic setting (for (c)),
and the comparison theorems stated below (Remark 1.2.15) then imply
that (b) and (c) also satisfy the requirements.

(2) For a variety X defined over a field k one can take the étale cohomology
groups Hi

ét(Xk̄,Q�). Here Xk̄ = X ⊗ k̄, the variety considered over its al-
gebraic closure and � is any prime number different from the characteristic
of k. Note that we follow the common abuse of notation for Hi

ét(Xk̄,Q�)
(to be used throughout the book). For the reader’s convenience we shall
recall the definitions:

Hi
ét(Xk̄,Z�) := lim←−

n

Hi
ét(Xk̄,Z/�

nZ)

Hi
ét(Xk̄,Q�) := Hi

ét(Xk̄,Z�)⊗Z�
Q�.

Note that these groups (or to be precise: Z�–modules, resp. Q�–vector
spaces) should not be confused with the cohomology groups ofXk̄ with co-
efficients in the constant sheaf Z� (resp. Q�) because for étale cohomology
one must use torsion sheaves.

That H∗
ét(Xk̄,Q�) indeed gives a Weil cohomology is not trivial at all;

in particular the hard Lefschetz property is very difficult (see [Del80]).
Further details on étale cohomology can be found in [Mil80].

(3) For k perfect, one has crystalline cohomology Hi
crys(X/W (k))⊗K where

K is the field of fractions of the Witt ring W (k). Except for the hard
Lefschetz property, the proof that this is a Weil cohomology is a conse-
quence of the work of Berthelot [Ber]; the hard Lefschetz property has
been deduced by Katz and Messing [Katz-Me] from the validity of the
Weil conjectures (proven by Deligne [Del74b, Del80]). See the excellent
overview [Ill].

Remark 1.2.15. Some of these cohomology theories are compatible in the sense
that there are well-defined canonical isomorphisms as follows.
1) If k ⊂ C one has the de Rham theorem

HdR(X)⊗k C
∼−→ HdR(Xan;C)

∼−→ HB(X)⊗Z C.

See [Zar, Mumford, Appendix to Chap. VII].
2) If k = C one has the theorem of Artin [SGA4, XI, thm. 4.4., p. 75]:

Hét(X,Q�)
∼−→ HB(X)⊗Q Q�.

Fix now a Weil cohomology theory and use the cycle class map (6) to make the
following

Definition 1.2.16.

Z ∼hom 0 ⇐⇒ γX(Z) = 0.

(Note that this depends on the choice of a Weil cohomology theory6.).

6But if Conjecture D (1.2.19) would hold, then homological equivalence would be independent
of the choice
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E. Numerical equivalence.

Definition 1.2.17. Let Xd ∈ SmProj(k). For Z ∈ Zi(Xd) we put Z ∼num 0 if
for every W ∈ Zd−i(Xd) such that Z · W is defined (and hence a zero-cycle) we
have deg(Z ·W ) = 0.

The following lemma describes how numerical equivalence relates to other ad-
equate relations.

Lemma 1.2.18. We have

(i) Zi
alg(X) ⊂ Zi

hom(X)

(ii) Zi
⊗(X) ⊂ Zi

hom(X)

(iii) Zi
hom(X) ⊂ Zi

num(X).

Proof : Part (i) follows from the observation

(a)− (b)∼hom 0 =⇒ Z(a)− Z(b) = prX(Z · ((a)− (b))∼hom 0.

For part (ii), note that if Zn ∼ 0 then its cycle class

γXn(Zn) = γX(Z)⊗ · · · ⊗ γX(Z)︸ ︷︷ ︸
n

is zero in H2in(Xn), and hence γX(Z) = 0. Part (iii) follows from the compatibility
of the cycle class map with intersection products and points: for a zero-cycle Z
we have deg(Z) = Tr γX(Z) by property (8) of a Weil cohomology theory, hence
homological and numerical equivalence coincide for zero-cycles. If Z ∈ Zi

hom(X)
with i < d and W ∈ Zd−i(X) then

deg(Z ·W ) = Tr(γX(Z) ∪ γX(W )) = 0

by property (6). �
We have the fundamental

Conjecture 1.2.19 (Conjecture D(X)). Suppose k = k̄. Then

Zi
hom(X) = Zi

num(X).

This conjecture is known for divisors (i = 1) in arbitrary characteristic (theorem
of Matsusaka, see Appendix A); furthermore, in characteristic zero it is also known
for i = 2, for dimension 1, and for abelian varieties [Liebm].

Furthermore, one has:

Theorem 1.2.20 ([Klei68, thm. 3.5]). Suppose that k = k̄ (any characteris-
tic). Then

Nmi(X)Q := Ci
num(X)Q = [Zi(X)/Zi

num(X)]⊗Z Q

is a finite dimensional Q–vector space of dimension ≤ b2i(X) = dimQ�
H2i

ét (X).

In fact, we shall show this in chapter 3 (Lemma 3.2.2).
Another important conjecture is:

Conjecture 1.2.21 (Voevodsky’s Conjecture [Voe00]). Suppose that k = k̄
Then Zi

⊗(X) = Zi
num(X).

Note that this conjecture is independent of the choice of a Weil cohomology
theory, but it implies the standard conjecture D(X) for every Weil cohomology
theory since, by Lemma 1.2.18 (iii), we have

Zi
⊗(X) ⊂ Zi

hom(X) ⊂ Zi
num(X) ⊂ Zi(X).
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1.2.1. Summary: the Different Equivalence Relations for Smooth
Projective Varieties. It can be shown that rational equivalence is the finest good
equivalence relation [Sam58, Prop. 8], and numerical equivalence is the coarsest
one.

We have a chain of inclusions

Zi
rat(X) ⊂ Zi

alg(X) ⊂ Zi
hom(X) ⊆ Zi

num(X) � Zi(X).

The first inclusion can be strict (see Remark 1.2.8). If i > 1, we may have Zi
alg(X) �=

Zi
hom(X) as was shown by Griffiths [Griff69]; see also Appendix A, subsection A-

3.2. For Q–coefficients we have:

Zi
alg(X)Q ⊂ Zi

⊗(X)Q ⊆ Zi
hom(X)Q ⊆ Zi

num(X)Q

If k = k̄ the last two inclusions are expected to be equalities. In any case, the
following chain of inclusions of subgroups of the Chow group is a consequence:

CHi
alg(X) ⊂ CHi

hom(X) ⊆ CHi
num(X) � CHi(X).





Appendix A: Survey of Some of the Main Results
on Chow Groups

In this Appendix k is an algebraically closed field and and X ∈ SmProj(k).
From now on we shall use the word correspondence to mean correspondence

class and use the notation (11), (12) from Section 2.1.

A-1. Divisors

We have

CH1(X) = Div(X)/linear equivalence = Pic(X) ,

the Picard group. Moreover, this group is isomorphic to the group

H1
Zar(X,O×

X) = H1
ét(X,O×

X)

(see [Mil80, Thm. 4.9]) of isomorphism classes of line bundles through the isomor-
phism induced by the homomorphism D �→ OX(D).

Theorem. The group CH1
alg(X) is isomorphic to the group Pic0red(X)(k), the

reduced scheme associated to the component of the identity of the Picard scheme of
X. This is an abelian variety.

Classically, for k = C this goes back, in a less precise way, to Castelnuovo,
Picard and Painlevé [Zar, p. 104]. In the algebraic setting for arbitrary fields k and
in a much more precise fashion, this has been proved by Matsusaka [Mats52], Weil
(in 1954; see [La, Chapter IV]), Chow [Chow54], Chevalley [Chev58], Seshadri
[Sesh62]. It is now part of a much more general theory, the theory of the Picard
functor due to Grothendieck, [Groth62]. See also [Klei05] and [Bo-Lu-Ra].

Concerning numerical equivalence we have:

Theorem (Matsusaka’s Theorem [Mats57]). Divhom(X) = Divnum(X). In
fact, these groups coincide with

Divτ (X) :=
{
D ∈ CH1(X) | nD∼alg 0 for some n ∈ Z

}
.

And concerning algebraic equivalence:

Theorem. The Néron-Severi group

NS(X) := DivX/Divalg(X)

is a finitely generated abelian group.

Severi proved this for surfaces around 1908–09 for k = C (see e.g. [Zar, p.
107–112]) and Néron [Ner] in 1952 for any algebraically closed field.

13
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Remark . In case k = C the above theorems are consequences of the long ex-
act sequence in cohomology coming from the exponential sequence and GAGA
[Serre56]. For details, see e.g. [Griff-Ha, Mum74].

A-2. Classical Results on the Picard and Albanese Varieties

For proofs consult [La]; see also [Scholl, p. 174]).

(a) For X = Xd ∈ SmProj(k) there exist two abelian varieties

AX = AlbX and PX = (Pic0X)red

with the following universal properties :

(i) Albanese variety AX = AlbX : fixing a point x0 ∈ X, we have a morphism
albX : X → AlbX such that albX(x0) = 0 and such that albX is universal
for morphisms to abelian varieties, i.e., given a morphism f : X → B to an
abelian variety B with f(x0) = 0, there exists a (unique) homomorphism
of Abelian varieties f : AlbX → B that makes the following diagram
commute:

X

f ���
��

��
��

�
albX �� AlbX

∃f���
�
�
�

B.

(ii) Picard variety PX = (Pic0X)red, where PicX is the Picard scheme of X,
Pic0X is the connected component of the identity and the subscript “red”
means that we take the underlying reduced scheme (which is – in our
situation – an abelian variety). Fix moreover a point x0 ∈ X. Then there
exists a divisor class (the Poincaré-divisor class)

PX ∈ CH1(PX ×X) = Corr1−e(PX , X), e = dimPX

normalized by7

PX(0) = 0, TPX(x0) = 0

such that for the pair (PX ,PX) the following universal property holds:
given a pair (S,D) consisting of an irreducible variety S ∈ SmProj(k) and
a divisor class D ∈ CH1(S ×X) normalized by TD(x0) = 0 and such that
for some point s0 ∈ S the divisor D(s0) belongs to CH1

alg(X) (and hence

for all s ∈ S the divisor D(s) belongs to CH1
alg(X)), then there exists a

unique morphism λ : S → PX such that D = (λ × idX)∗(PX). So we in
fact have a bijection

Hom(S, PX)
∼−→
{
(S,D) | D ∈ CH1(S ×X), TD(x0) = 0,D(s) ∈ CH1

alg(X)
}

that sends λ : S → PX to the divisor class

D(λ) = (λ× idX)∗(PX).

Note that in particular, taking S = Spec k, we get

PX(k) = (Pic0X)red(k) = CH1
alg(X).

7Here one uses the action (Lemma 1.2.1) of the correspondence PX and its transpose on
zero-cycles which, in both cases produces divisors.
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(b) Divisorial correspondences. See [La, p. 153]. Given Xd and Ye in SmProj(k),
fix points eX ∈ X and eY ∈ Y . From the above we get the isomorphisms

Hom0
SmProj(k)(X,PY )

∼=←− HomAV(AX , PY )

∼=−−−−→
Φ

A :=

{
D ∈ CH1(X × Y )

D(eX) = 0, TD(eY ) = 0

}
where Hom0 stands for pointed morphisms (i.e, morphisms that send the base point
eX to the origin 0) and HomAV for morphisms of abelian varieties.

By definition, the subgroup of degenerate divisors on X × Y is the subgroup
generated by divisors D such that prX(D) �= X or prY (D) �= Y . A divisor D is
degenerate if and only if D = D1 × Y +X ×D2 with D1 (resp. D2) a divisor on X
(resp. Y ). Introduce the following notation:

CH1
≡(X × Y ) : the subgroup of CH1(X × Y ) of classes of degenerate divisors.

Claim. The natural homomorphism

Ψ : A → CH1(X × Y )/CH1
≡(X × Y )

induced by the inclusion A ↪→ CH1(X × Y ) is an isomorphism.

Proof : For the injectivity, note that if a divisor D = D1 × Y + X × D2 has the
property D(eX) = 0 and TD(eY ) = 0 it must be the zero-divisor.

For the surjectivity, note that if necessary we can always add some degenerate
divisor to a given divisor on X × Y so that for the resulting divisor D one has the
required normalizations D(eX) = 0 and TD(eY ) = 0 (simply subtract X×D(eX)+
TD(eY )× Y if necessary). �

Denoting the jacobian of the curve C by J(C) as a special case we find back
Weil’s Theorem:

Theorem A-2.1 (Weil’s Theorem [Weil48, thm 22, Chap. VI]).

HomAV(J(C), J(C ′))
∼−→

Ψ◦Φ
CH1(C × C ′)/CH1

≡(C × C ′).

Remark . This result goes back to italian geometry [Weil48, p. 78].

(c) The above constructions are functorial [Scholl, Prop.3.10, p. 175]. More pre-
cisely, if λ : X ′ → X and μ : Y ′ → Y are morphisms of varieties, then – with the
notations of (b) above – if β : AX → PY is a homomorphism of abelian varieties, we
have Φ(β◦ alb(λ)) = Φ(β)◦Γλ = Φ(β)◦λ∗ and Φ(pic(μ)◦β) = TΓμ◦Φ(β) = μ∗◦Φ(β).
The proof of these facts is easy. Also straightforward is the proof of the following
fact, which we shall use in Chapter 6. Let X, Y and C ∈ SmProj(k) be pointed
varieties with base points eX , eY and eC respectively and with C a curve. Let
f : AX → PC = J(C) and g : J(C) = AC → PY be homomorphisms, and let
D = Φ(f) and E = Φ(g) be the corresponding divisor classes from (b), normalized
in the above points. Then E◦D = Φ(g◦f).

(d) For later use we add

Proposition A-2.2. Let X,Y ∈ SmProj(k) and D a divisor on X × Y al-
gebraically equivalent to zero. Then for some integer m �= 0 we have mD ∈
CH1

≡(X × Y ).
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Proof : By assumption, D = D̃(a)− D̃(b) where D̃ ∈ CH1(C ×X × Y ), and where
C is a smooth projective curve and a, b points on C. Fix a point x0 ∈ X(k) and

let u be the generic point of C; then D̃(u) = prX×Y (D̃ · (u × X × Y )) gives a
homomorphism

ΦD̃(u) : AlbX → (Pic0Y )red, ΦD̃(u)(x) = D̃(u)(x− x0), x ∈ X.

Now ΦD̃(u) is defined over the field K = k(u) and hence so is the abelian subvariety

Bu :=
(
KerΦD̃(u)

)0
of AlbX . Since K is a primary extension of k (i.e. K ∩ k̄ = k)

the theorem of Chow [La, thm. 5 p. 26] implies that Bu is defined over k and
hence does not depend on u. Therefore(

KerΦD̃(u)

)0
=
(
KerΦD̃(a

)0
=
(
KerΦD̃(b)

)0
.

But then there is a positive integer m such that

mΦD̃(u) = mΦD̃(a) = mΦD̃(b).

Without loss of generality we can (because of our assertion) assume that D̃(a)(x0) =

D̃(b)(x0) and hence part (b) above and the Claim (previous page) applied to ΦmD :
AX → PY give mD ∈ CH1

≡(X × Y ). �

Remarks A-2.3. 1) Alternatively, if A and B are two abelian varieties, the
group HomAV (A,B) is a finitely generated free abelian group [Mum69, p. 164,
thm. 3], [La, p. 184, Cor. 2] and hence ΦD̃(u) does not depend on the parameter
u.
Very concretely we can see this by the following cohomological argument: without
loss of generality we may assume D(x0) = 0. Then D defines a homomorphism
ΦD : AX → PY , but this is zero as soon as it is zero on the �ν–torsion points. By
[Mil80, Cor. 4.18, p.131] the map on �ν–torsion points is given by a homomorphism

H2d−1
ét (Xk̄,Z/�

νZ) → H1
ét(Yk̄,Z/�

νZ),

which is induced by the Künneth-component D1,1 of the class

γ(D) ∈ H2
ét(Xk̄ × Yk̄,Z/�

νZ)

of D. This component vanishes since D is homologically equivalent to zero.
2) By Matsusaka’s theorem in § A-1 we have

CH1
alg(X × Y )

Q
= CH1

hom(X × Y )Q = CH1
num(X × Y )Q.

Hence Proposition A-2.2 also holds for D ∈ CH1
hom(X × Y ) or D ∈ CH1

num(X ×Y ).

A-3. Higher Codimension

Here the situation is drastically different as shown for zero cycles by a result
of Mumford [Mum69] and for cycles of codimension 2 on threefolds by Griffiths
[Griff69] as we explain now.
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A-3.1. Zero-cycles. Using the universality of the Albanese map albX : X →
AlbX (see § A-2) we get an intrinsic homomorphism

CHhom
0 (X) =

{Z ∈ Z0(X) | degZ = 0}
∼rat

albX−−−−−−−→ AlbX

and its kernel

T (X) := Ker
[
CHhom

0 (X)
albX−−−→ AlbX

]
(10)

is called the Albanese kernel. We have the fundamental result:

Theorem ([Mum69]). Let X be a surface defined over C and assume that
pg(X) := dimH0(X,Ω2

X) �= 0, then T (X) is infinite dimensional in the sense that
it cannot be parametrized by any algebraic variety.

This result has been extended by Bloch in 1971:

Theorem. Let X be an algebraic surface over an algebraically closed field. Put

H2
trans(X) := H2

ét(X)/H2
alg(X).

If H2
trans(X) �= 0 then T (X) �= 0; it is even infinite dimensional in the sense

that for no curve C there exists Z ∈ CH2(C × X) such that the homomorphism
J(C) → T (X), determined by (x− x0) �→ Z(x)− Z(x0)) is onto , where x0 ∈ C is
some fixed point.

See [Blo80, Blo-Sri] for details and further discussion. For instance, in
[Blo80] one finds a conjectural converse:

Conjecture A-3.1 (Bloch Conjecture).

H2
trans(X) = 0 =⇒ CHhom

0 (X)
∼−→ AlbX .

For the torsion points one has:

Theorem ([Roi, Blo79, Mil82]). Over an algebraically closed field k, one
has

CHhom
0 (X)tors

∼−→ AlbX(k)tors,

where the subscript “tors” denotes the torsion.

Indeed, Roitman proved the theorem already around 1970 (for torsion prime to
the characteristic) but this was published much later. Bloch gave a different proof
of this result, which was extended by Milne to include p-torsion (where p is the
characteristic of k).

A-3.2. Algebraic versus homological equivalence. Griffiths proved in
1969 the, at that time, surprising result that algebraic equivalence can be different
from homological equivalence in codimension ≥ 2:

Theorem ([Griff69]). For all i ≥ 1 set

Zi
τ (X) :=

{
Z ∈ Zi(X) | nZ ∼alg 0 for some n ∈ Z

}
.

There are smooth complex varieties X of dimension 3 with

Z2
τ (X)⊗Q �= Z2

hom(X)⊗Q.

This has been sharpened as follows:
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Theorem ([Clem, Voi92]). There exist smooth complex varieties X of di-
mension 3 for which Griff2(X)⊗Q is infinite dimensional. Here

Griffi(X) := Zi
hom(X)/Zi

alg(X) = CHi
hom(X)/CHi

alg(X).

A-3.3. Homological versus numerical equivalence.

Theorem ([Liebm]). Over C one has

(1) Homological and numerical equivalence coincide, besides in codimension 1
(mentioned already in section A-1) in codimension 2 and in dimension 1.

(2) On abelian varieties homological equivalence and numerical equivalence
coincide.



Appendix B: Proof of the Theorem of
Voisin–Voevodsky

In this Appendix we shall use the word correspondence to mean correspondence
class and use the notation (11), (12) from Section 2.1.

Our goal is to give proof of the following result.

Theorem B-1.2 ([Voe95], [Voi96, p. 267]). Let X be a smooth projective
variety defined over a field k. Then Zi

alg(X)Q ⊂ Zi
⊗(X)Q, i.e., if Z ∼alg 0 there

exists n > 0 such that Zn = 0 in CH∗(Xn)Q.

Proof : The proof proceeds in several steps. Note that since we take cycles
with rational coefficients, we can neglect torsion and work over an algebraically
closed field k.

Step 1. Reduction to the case of a smooth projective curve.
If Z ∼alg 0 there exist a smooth projective curve C, a correspondence Γ ∈

Corr(C,X) and two points a, b ∈ C(k) such that Z = Γ∗(a− b). Put Z0 = (a− b) ∈
A0(C). Since Z = Γ∗(Z0), we obtain Zn = (Γn)∗(Z

n
0 ). Hence it suffices to show

that Zn
0 = 0 on the n–fold product C × · · · × C. In fact we shall prove

(a− b)n = 0, for n ≥ g + 1, g = genus of C.

(Note that we reduced to a very special cycle on the n–fold product of the curve.)
As Zn

0 is invariant under the action of the symmetric group Sn, it belongs to

the subgroup CH0(C
n)Sn

Q
∼= CH0(S

nC)Q; cf. [Ful, Example 1.7.6].

Step 2. Let C be a smooth projective curve of genus g defined over k, e ∈ C(k) a
base point. On SnC, the n–fold symmetric product of C we use the notation

[x1, . . . , xn] = πn(x1, . . . , xn) ∈ SnC, πn : Cn → SnC the natural surjection.

Moreover, if we have repeated entries, we collect them together and write them as
follows

[a, · · · , a︸ ︷︷ ︸
k times

, . . . , b, · · · , b︸ ︷︷ ︸
� times

] = [ka, · · · , �b].

Let ϕn : SnC → J(C) the map defined by

ϕn[x1, · · · , xn] =
n∑

i=1

xi

where the point xi ∈ J(C) corresponds to the divisor (xi) − (e) of degree zero on
C. We claim that (ϕn)∗ : CH0(S

nC)
�−−−−→CH0(J(C)) for all n ≥ g.

19
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Proof : First take n = g. Then ϕg is a birational morphism and it is known [Ful,
Ex. 16.1.11, p. 312] that for X smooth and proper over k the group CH0(X) is a
birational invariant.8

Next, turning to n ≥ g, put r = n− g and consider the embedding ι : SgC →
SnC given by [x1, . . . , xg] �→ [x1, . . . , xg, re]. Consider the homomorphism

(ϕg)∗ = (ϕn)∗◦ι∗ : CH0(S
gC) → CH0(S

nC) → CH0(J(C)).

Since (ϕg)∗ is an isomorphism, ι∗ is injective. To show that (ϕn)∗ is an isomorphism
it thus suffices to show that ι∗ is also surjective. Let y ∈ SnC and put z = ϕn(y) ∈
J(C). There exists x ∈ SgC such that ϕg(x) = z. The points ι(x) and y belong to
the fiber ϕ−1

n (z), but since the fiber is a projective space the points are rationally
equivalent and ι∗(x) = y. �

Remark B-1.3. At this point, the result already follows from a theorem of
Bloch [Blo76]. Namely ϕg+1,∗(Z

g+1
0 ) = (ϕ1(a)− ϕ1(b))

∗(g+1) where ∗ denotes the
Pontryagin product of cycles on J(C). This product is zero in CH0(J(C)) by Bloch’s
theorem, hence also in CH0(S

g+1C) by Step 2. We proceed to give a more direct
proof. The first author would like to thank U. Jannsen and Srinivas for a very
helpful discussion on this topic.

Consider the correspondences

αn : SnC → Sn+1C, βn : Sn+1C → SnC

defined by

αn([x1, . . . , xn]) = [x1, . . . , xn, e]

βn([x1, . . . , xn+1]) =

n∑
k=0

∑
1≤i1<...<in−k≤n+1

(−1)k[xi1 , . . . , xin−k
, ke].

Here the summation convention is that for the index k = n there is only one
term (−1)n[ne]. Note that the first correspondence is a morphism; the second
correspondence appears in [Kimu-Vi, Def 1.8]. If no confusion arises we shall drop
the subscripts and put α = αn, β = βn.

Step 3. We have β◦α = idSnC .
Proof : We have (with the same convention in the summation as used in Step 2):

βα([x1, . . . , xn]) = β([x1, . . . , xn, e])

=
n∑

k=0

∑
1≤i1<...<in−k≤n

(−1)k[xi1 , . . . , xin−k
, ke]

+
n−1∑
k=0

∑
1≤i1<...<in−k−1≤n

(−1)k[xi1 , . . . , xin−k−1
, (k + 1)e].

We see that all the terms cancel, except the one with k = 0 in the first sum. This
gives the desired result. �

8For a birational f : X����Y between smooth and proper varieties over k we have TΓf ◦Γf =
idX+ a degenerate correspondence (which operates as zero on zero-cycles) and so f∗◦f∗ is the
identity on CH0(X) and hence f∗ is injective and f∗ surjective. Interchanging X and Y shows

that f∗ is an isomorphism
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Step 4. The maps α∗ : CH0(S
nC) → CH0(S

n+1C) and β∗ : CH0(S
n+1C) →

CH0(S
nC) are isomorphisms for all n ≥ g.

Proof : We have a commutative diagram

SnC
α−→ Sn+1C

ϕn

⏐⏐⏐� ⏐⏐⏐� ϕn+1

J(C) = J(C).

Hence (ϕn)∗ = (ϕn+1)∗◦α∗. So, by Step 2, we find that like the homomorphisms
(ϕn)∗ also α∗ is an isomorphism for all n ≥ g. As β∗◦α∗ = id by Step 3, and α∗ is
an isomorphism, it follows that β∗ is an isomorphism. �
Step 5. The zero-cycle Z0 = a− b satisfies βg∗(Z

g+1
0 ) = 0. This then finishes the

proof since by Step 4 the map βg∗ is an isomorphism.
Proof : Without loss of generality, we may choose e = a as base point. Applying
equation (4) from § 1.2 C with Z = e− b we find that in the Chow group of Cg+1

the following equality holds

Zg+1
0 = (b− e)g+1 =

g+1∑
k=0

(−1)k
(
g + 1

k

)
(bg−k+1 × ek).

This cycle being symmetric belongs to the Chow group of Sg+1C and there it can
be written as

g+1∑
k=0

(−1)k
(
g + 1

k

)
[(g − k + 1)b, ke] =

= [(g + 1)b)] +

g+1∑
k=1

(−1)k
(
g + 1

k

)
αg∗[(g − k + 1)b, (k − 1)e].

Using the result of Step 3 , namely, βg∗◦αg∗ = id, we obtain

βg∗(Z
g+1
0 ) = βg∗[(g + 1)b] +

g+1∑
k=1

(−1)k
(
g + 1

k

)
[(g − k + 1)b, (k − 1)e],

and the result follows since by the definition of βg (see above)

βg∗[(g + 1)b] =

g∑
�=0

(−1)�
(
g + 1

�+ 1

)
[(g − �)b, �e]

which cancels the second term in the right hand side of the above expression. �





CHAPTER 2

Motives: Construction and First Properties

In this chapter we describe Grothendieck’s construction (1964) of motives. As-
sumptions and notation are as in Chapter 1.

2.1. Correspondences

2.1.1. A correspondence from X to Y is a cycle on the product X × Y (see
Chapter 1). However we shall always be working with correspondence classes with
respect to a suitable adequate equivalence relation. Moreover we shall use rational
instead of integral coefficients. Therefore we introduce the following shorthand
notation

Corr(X,Y ) := CH(X × Y )⊗Q := CH(X × Y ;Q). (11)

We call the classes f ∈ Corr(X,Y ) themselves correspondences and we write f :
X → Y or sometimes X � Y (see [Ful, p. 305]). Recall that the transpose is
Tf : Y � X.

If we work with another adequate equivalence relation ∼, then we write as in
§ 1.2

f ∈ Corr∼(X,Y ) := C∼(X × Y ;Q).

2.1.2. Composition of correspondences. For f ∈ Corr∼(X,Y ) and g ∈
Corr∼(Y, Z) we define the composition g◦f ∈ Corr∼(X,Z) by the formula

g◦f := prXZ {(f × Z) · (X × g)}
where the intersection is in C∼(X × Y × Z) (always defined!). Composition gives
a map

Corr∼(X,Y )× Corr∼(Y, Z)) → Corr∼(X,Z)

and whenX = Y = Z this makes Corr∼(X,X) a ring (in general non-commutative!).

Definition 2.1.1. A projector for X is an element p ∈ Corr∼(X,X) for which
p◦p = p.

2.1.3. Degree of a correspondence. Let Xd and Y be (smooth and pro-
jective) varieties (also recall our convention from Chapter 1 that Xd means that X
is irreducible of dimension d). Put (see Chapter 1)

Corrr∼(Xd, Y ) := Cd+r
∼ (X × Y ;Q) (degree r correspondences). (12)

Note that Corr0∼(X,X) ⊂ Corr∼(X,X) is a subring and that if p is a projector, then
p has degree 0. Finally, observe that if φ : Xd → Ye is a morphism in the usual
sense, the graphs Γf ⊂ X × Y define

φ∗ := Γφ ∈ Corre−d
∼ (X,Y )

φ∗ := TΓφ ∈ Corr0∼(Y,X).

23
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2.1.4. Operation on cycle groups and cohomology. Any correspondence
f ∈ Corrr∼(X,Y ) induces homomorphisms (in fact a Q-linear maps of vector spaces)

f = f∗ : Ci
∼(X;Q) → Ci+r

∼ (Y ;Q)

Z �→ f∗(Z) := prY {f · (prX)∗(Z)} .
In other words:

Degree r correspondences send codim. i–cycles to codim. (i+ r)–cycles.

Note that f ∈ Corr0∼(X,Y ) respects the degree. Similarly, if f ∈ Corrr∼(X,Y ) for
an equivalence relation with Z∼(−) ⊆ Zhom(−) we have an operation on a Weil
cohomology

f∗ : Hi(X) → Hi+2r(Y )

α �→ f∗(α) := prY {γX×Y (f) ∪ pr∗X(α)} .

Remarks 2.1.2. (1) If φ : X → Y is a morphism of varieties then Γφ is
the usual operation φ∗ and TΓφ the usual φ∗.

(2) The above operation on cohomology indicates the significance of the con-
jectureD(X) stating that homological and numerical equivalence coincide,
because a correspondence f ∈ Corrnum(X,Y ) operates on cohomology only
if this conjecture is true.

2.1.5. We often use the important

Lemma 2.1.3 (Lieberman’s Lemma. [Ful, p. 306], [Klei70, p. 73]). Let f ∈
Corr∼(X,Y ), α ∈ Corr∼(X,X ′), β ∈ Corr∼(Y, Y

′), then (α × β)∗(f) = β◦f◦Tα (and
similar statements in “the other directions”). Note that the left hand side is the
operation of α × β on f while the right hand side is the composition of correspon-
dences.

X�

α

�
f Y�

β

X ′ � ��� Y ′

Proof : By definition

(α× β)∗(f) = (pXX′Y Y ′

X′Y ′ )∗((α× β) · (pXX′Y Y ′

XY )∗(f)),

where pXX′Y Y ′

X′Y ′ (resp. pXX′Y Y ′

XY ) denotes the projection from X ×X ′ × Y × Y ′ to
X ′ × Y ′ (resp. X × Y ). Using the isomorphism

X ×X ′ × Y × Y ′ ∼= X ′ ×X × Y × Y ′

we can rewrite this expression as

(α× β)∗(f) = (pX
′XY Y ′

X′Y ′ )∗((
Tα× β) · (X ′ × f × Y ′))

= (pX
′XY Y ′

X′Y ′ )∗((
Tα× Y × Y ′) · (X ′ ×X × β) · (X ′ × f × Y ′)).

We now rewrite the right hand side of this expression using the commutative dia-
gram

X ′ ×X × Y × Y ′

pX′XY Y ′
X′Y ′

��

p �� X ′ × Y × Y ′

pX′Y Y ′
X′Y ′�����

���
���

���
�

X ′ × Y ′
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where p = pX
′XY Y ′

X′Y Y ′ = pX
′XY

X′Y × idY ′ . We obtain

(α× β)∗(f) = (pX
′Y Y ′

X′Y ′ )∗[p∗{(Tα× Y × Y ′) · (X ′ ×X × β) · (X ′ × f × Y ′)}]
= (pX

′Y Y ′

X′Y ′ )∗[p∗{(Tα× Y × Y ′) · (X ′ × f × Y ′) · p∗(X ′ × β)}]

By the projection formula we have

p∗{(Tα×Y×Y ′)·(X ′×f×Y ′))·p∗(X ′×β)} = p∗{(Tα×Y×Y ′)·(X ′×f×Y ′)}·(X ′×β).

Since p = pX
′XY

X′Y × idY ′ , we have

p∗{(Tα× Y × Y ′) · (X ′ × f × Y ′)} = (f◦Tα)× Y ′.

Substituting this in the right hand side of the above expression, we obtain

(pX
′Y Y ′

X′Y ′ )∗[{(f◦Tα)× Y ′} · (X ′ × β)] = β◦f◦Tα.

So finally (α× β)∗(f) = β◦f◦Tα.
�

2.2. (Pure) Motives

For Grothendieck’s motivation we refer to the introduction. We want to stress
that the construction of motives is unconditional, i.e. free from conjectures,
and in fact is very simple. However, for the deeper properties we need the standard
conjectures, see Chapter 3.

2.2.1. Grothendieck’s Construction. Fix an adequate equivalence relation
∼. The construction of the category Mot∼(k) of motives with respect to ∼ proceeds
in several steps

SmProj(k)opp → C∼SmProj(k) → Moteff∼ (k) ↪→ Mot∼(k).

Step 1. Recall that SmProj(k) is the category of smooth projective varieties defined
over k and morphisms are the usual morphisms between varieties. If C is any cate-
gory, Copp denotes the category with the same objects as C but with the morphisms
reversed.
Step 2. C∼SmProj(k) has the same objects (smooth projective varieties) but the
morphisms are the degree zero correspondences and the composition is the compo-
sition of correspondences. Note that C∼SmProj(k) is an additive category.

Step 3. Moteff∼ (k) (category of effective motives). The objects are pairs (X, p) with
X ∈ SmProj(k), p a projector, and where the morphisms (X, p) → (Y, q) are of the
form f = q◦f ′◦p with f ′ a degree 0 correspondence:

HomMoteff∼
((X, p), (Y, q)) = q◦Corr0∼(X,Y )◦p.

Composition comes from composition of correspondences.

Remarks. (1) Note that f = q◦f ′◦p implies f = q◦f = f◦p: all subdia-
grams in

X�

p

�
f

�
f
���

�

��
�

Y�

q

X �
f Y

commute.
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(2) Moteff∼ (k) = (C∼SmProj(k))�, the pseudo-abelian (or Karoubian) com-
pletion. By definition, the pseudo-abelian completion C� of an additive
category C is such that the projectors from C have images and kernels
in the category C�; furthermore, the functor A �→ (A, id) (from C to its
completion) is universal for functors from C to pseudo-abelian categories.

One can show that projectors in C� have images and kernels in C. For
instance if M = (X, p, 0) ∈ Mot∼(k) then a projector q of M is an element
q = p◦q′◦p with q′ ∈ Corr0∼(X,X) such that q◦q = q and N = (X, q, 0) is
the image of q. Note that q = p◦q = q◦p, i.e., N is a constituent of M . So
is N ′ = Ker(q) = (X, p− q, 0), and we have M = N ⊕N ′. Hence in C� we
can split off kernels and images as direct summands.

Step 4 Final step: the motives. Objects are triples (X, p,m) with X ∈ SmProj(k),
p a projector, m ∈ Z. The morphisms are as follows

HomMot∼((X, p,m), (Y, q, n)) = q◦Corrn−m
∼ (X,Y )◦p

and composition of morphisms comes from composition of correspondences. Clearly
we have a faithful full embedding Moteff∼ ↪→ Mot∼. The enlargement is related to
Tate twists in cohomology as we shall see below. �
Two equivalence relations are particularly important:

(a) Rational equivalence (the finest equivalence relation). We write sometimes

CHM = Motrat
for these so-called Chow motives. This category is additive and pseudo-
abelian, but not abelian. See for example [Scholl, Cor. 3.5, p. 173 ].

(b) Numerical equivalence (the coarsest equivalence relation). We write some-
times

NM = Motnum
for the category of motives modulo numerical equivalence.1 This category
turns out to be abelian and semi-simple (Jannsen’s theorem, see Chap-
ter 3).

Returning to the general case, we have a contravariant functor

h∼ : SmProj(k) → Mot∼(k)
X �→ h∼(X) = (X,ΔX , 0)

f : X → Y �→ h∼(f) =
TΓf : h∼(Y ) → h∼(X)

that sends a smooth, projective variety X to its motive h∼(X) = (X,ΔX , 0). In
the special case ∼ = rational equivalence, one writes

ch(X) := hrat(X)

for the functor that sends X to its Chow motive hrat(X).

Remarks. (1) This construction gives the so-called contravariant pure
motives adapted to cohomology, i.e., aimed at giving a universal coho-
mology theory. The category Motopp∼ of covariant pure motives is aimed

1This is sometimes called the category of Grothendieck motives, since Grothendieck placed
special emphasis on this category; cf. [Groth69a, p. 198]
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towards homology; it is related to the covariant approach of Voevodsky,
as will be explained in Chapter 9.

(2) The previous construction shows that every variety can be seen as a mo-
tive. Intuitively, a (general) motive M = (X, p, 0) should be seen as a
“piece” of X that is “responsible” for a certain part of the geometric and
(or) arithmetic properties of X, see for instance example ii) below. To be
precise, (X, p, 0) is a direct summand of h∼(X); and by [Scholl, Prop.
1.12] for m > 0, (X, p,m) is a direct summand of

h∼(X × P1 × · · · × P1︸ ︷︷ ︸
m

).

Note that the same motive can be realized as a “piece” of different vari-
eties. See § 2.4 (v) below.

2.2.2. Categorical Aspects. A morphism f : (X, p) → (Y, q) of (effective)
motives is by definition of the form q◦f ′◦p, where f ′ is a correspondence of degree
zero from X to Y . This can be rephrased as follows. Consider the subgroup

Hom∗ ((X, p), (Y, q)) :=
{
f ∈ Corr0∼(X,Y ) | f◦p = q◦f

}
of the group Corr0∼(X,Y ). On this subgroup we define an equivalence relation
by declaring f ≈ 0 if q◦f = f◦p = 0. In particular, in Hom∗ ((X, p), (X, p)) we
have p ≈ idX . Then f ≈ q◦f ≈ q◦f◦p. Let [f ] be the equivalence class of f in
Hom∗ ((X, p), (Y, q)). Then [f ] = [q][f ][p] = [f ][p] = [q][f ] and one shows easily
that sending f = q◦f ′◦p to [f ] = [q◦f ′◦p] = [f ′] induces an isomorphism 2

HomMot∼ ((X, p), (Y, q)) ∼= Hom∗((X, p), (Y, q))/ ≈.

Two effective motives M = (X, p) and N = (Y, q) are isomorphic if one has two
degree zero correspondences f ′ : X → Y and g′ : Y → X such that for the
corresponding morphisms f = q◦f ′◦p and g = p◦g′◦q one has g◦f = p = idM and
f◦g = q = idN . In terms of f ′ and g′ this means p◦g′◦q◦f ′◦p = p and q◦f ′◦p◦g′◦q = q.
More generally, for two motives M = (X, p,m) and N = (Y, q, n) to be isomorphic,
one demands that instead the correspondences f ′, g′ have degree n−m and m−n
respectively, and such that the same relations as before hold.

2.3. Examples

For the moment we only give rather trivial examples.

(i) The motive of a point

1 := (Spec k, id, 0) = “h∼(point)”.

(ii) Assume Xd(k) �= ∅ (can always be achieved by enlarging k if necessary)3

and pick e ∈ X(k). Define

p0(X) := e×X, p2d(X) = X × e.

2The right-hand side was used as the original definition of the morphisms in Mot∼(k); see
[Manin, section 5, p. 453].

3In case X(k) = ∅ and if we insist on keeping k as ground field we can take a k-rational

positive 0–cycle A of degree n and take p0(X) = 1
n
A×X and p2d(X) = 1

n
X × A.
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These define two projectors which are orthogonal in the sense that
p0◦p2d = p2d◦p0 = 0. This then defines the two motives

h0
∼(X) = (X, p0(X), 0), h2d

∼ (X) = (X, p2d(X), 0).

We leave it as an exercise to see that h0(X) � 1 and that for all varietiesX
of dimension d the motives h2d(X) are mutually isomorphic. (Indication
[Scholl] : use the structural morphism X → Spec k and the morphism
Spec k → X given by the point e).

(iii) Direct sums of motives. Let M = (X, p,m) and N = (Y, q,m). Then one
can define a motive M ⊕N . Let us only give the definition in case m = n:

M ⊕N = (X � Y, p � q,m)

and refer to [Scholl, 1.14, p. 169] for the general case. Here � denotes
the disjoint union.

As an application, for any Xd ∈ SmProj(k), the correspondence
p+(X) := Δ − p0(X) − p2d(X) is a projector (since p0 and p2d are or-
thogonal) and if we put h+

∼(X) := (X, p+(X), 0) there is a direct sum
decomposition

h∼(X) = h0
∼(X)⊕ h+

∼(X)⊕ h2d
∼ (X).

(iv) Lefschetz motive and Tate motive The Lefschetz motive is

L∼ := (P1,P1 × e, 0) = h2
∼(P

1)

and the Tate motive is

T∼ := (Spec k, id, 1).

As an exercise, show that L∼ � (Spec k, id,−1) and h2d
∼ (X) �

(Spec k, id,−d).
(v) If M = (X, p, 0) is a motive, then 1 − p is also a projector and h∼(X) =

(X, p, 0)⊕ (X, 1− p, 0).
(vi) If φ : Xd → Yd is a generically finite morphism of degree m, then

φ∗◦φ∗ = Γφ◦TΓφ = m idY

and p := 1
mφ∗◦φ∗ is a projector on X. In fact we have (X, p, 0) � h∼(Y )

(check this!) and hence

h∼(X) � (X, p, 0)⊕ (X, 1− p, 0) � h∼(Y )⊕ (X, 1− p, 0).

(vii) More generally, let M = (X, p, 0) and N = (Y, q, 0) and assume that we
have two morphisms α : N → M and β : M → N such that β◦α = idN =
q. We leave it to the reader to check that p′ = α◦β is a projector on X
and on M , that N � (X, p′, 0) and hence that

M � N ⊕ (X, p− p′, 0).

2.4. Further Remarks and Properties

(i) Mot∼(k) is an additive, pseudo-abelian category, also sometimes called Q-
linear, pseudo-abelian, since the set HomMot∼(M,N) is a Q-vector space.
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(ii) The category Mot∼(k) is a tensor category:

Mot∼(k)×Mot∼(k)
⊗−→ Mot∼(k)

(X, p,m)⊗ (Y, q, n) := (X × Y, p× q,m+ n).

(iii) Tate twists. The Tate and Lefschetz motives are inverses:

L∼ ⊗T∼ � 1.

Moreover, h2d
∼ (Xd) � L⊗d

∼ and

(X, p,m) � (X, p, 0)(m) := (X, p, 0)⊗T⊗m
∼ .

(iv) The duality operator

Mot∼(k)
opp D−→ Mot∼(k)

M = (Xd, p,m) �→ D(M) := (Xd,
Tp, d−m)

is an involution: D(D(M)) = M . The functor

h∼
∗ : D◦h∼ : SmProj(k) → Mot∼(k)

opp

X �→ (X, id, d), d = dimX

}
(13)

is a covariant functor, which is adapted to homology rather than coho-
mology.

(v) The functor

hrat : SmProj(k) → Moteffrat(k)

is not conservative (injective on objects): We shall see below (Examples
2.8.1(1)) that any two Pm-bundles coming from vector bundles on the
same smooth projective variety have isomorphic motives.

2.5. Chow Groups and Cohomology Groups of Motives

(1) Chow groups. Recall (Chapter 1) that CHi(X)Q = Ci
rat(X;Q) =

CHi(X) ⊗ Q. For any projector p : X → X, for all i there are induced

maps p∗ : CHi(X)Q → CHi(X)Q and for the motive M = (X, p,m) one
defines

CHi(M) := Im p∗ ⊂ CHi+m(X)Q (the i–th Chow group of M). 4

Proposition 2.5.1. One has

CHi(M) � HomMotrat(k)(L
⊗i,M).

Proof : If M = (X, p,m) then

HomMot(rat)k(L
⊗i,M) = {f = p◦Γ | Γ ∈ CHi+m(X)},

and by Lieberman’s lemma p◦Γ = (idSpec k ×p)∗(Γ) = Im p∗ in CHi+m(X).
�

(2) Cycle groups. In the same way, for any M ∈ Mot∼ we can define
Ci

∼(M).

Remark . The formula of Proposition 2.5.1 holds for every adequate
equivalence relation: Ci

∼(M) = HomMot∼(k)(L
⊗i
∼ ,M).

4Of course it is actually a Q-vector space.
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(3) Cohomology groups. Let ∼ be an equivalence relation finer than (or
equal to) homological equivalence, i.e.

Z∼(−) ⊆ Zhom(−).

Then for the motive M = (X, p,m) the induced maps p∗ : Hi(X) →
Hi(X) are the ingredients to define the cohomology groups

Hi(M) := Im p∗ ⊂ Hi+2m(X).

Note that as special cases we have H((X, p0, 0)) = H0(X) and
H((X, p2d, 0)) = H2d(X).

In particular, in Motrat,Motalg,Mot⊗ and Mothom the motives have
cohomology groups, but not in Motnum, unless the standard conjecture
D(−) (homological equivalence = numerical equivalence) is true.

2.6. Relations Between the Various Categories of Motives

Let us summarize the relations between the various notions of motives by way
of a commutative diagram of functors:

CHM NM

SmPrVar
ch

�� Motrat ��

CHQ

��

Motalg �� Mot⊗ �� Mothom ��

H

��

Motnum

?D(−)
	
	

��	
	

(Chow groups) γ
�� GrVectF .

Here the subscript “hom” stands for a Weil cohomology theory with coefficients
in a field F of characteristic zero and γ is the cycle map. Again we stress that
Mothom depends on the choice of cohomology theory, but in characteristic zero
we get the same for each of the classical Weil cohomology theories (as treated in
Examples 1.2.14), thanks to the comparison theorems for Betti, De Rham and étale
cohomology. Also note that étale cohomology is always on X ×k k̄.

Again, note the fundamental importance of conjecture D(−).

2.7. Motives of Curves

In this section we - finally - encounter a non-trivial example of a motive. Let C
be a smooth, projective curve defined over a field k, which we assume for simplicity
to be algebraically closed. In this section we shall work in the category of integral
Chow motives.

Definition 2.7.1. The category CHMZ(k) of integral Chow motives is the
category of motives constructed using Chow groups with integer coefficients (not
Q-coefficients). The functor that associates to a smooth, projective variety over k
its integral Chow motive will be denoted chZ(−).

Fix a base point e ∈ C(k). The projectors p0(C) = e×C and p2(C) = C×e have
been introduced before, as well as p+(C) = Δ(C)− p0(C)− p2(C). We write now
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p1(C) := p+(C). So we have a so called (integral) Chow-Künneth decomposition
(See Chapter 6)

chZ(C) = ch0Z(C)⊕ ch1Z(C))⊕ ch2Z(C), chiZ(C) := (C, pi(C), 0). (14)

Fixing a Weil cohomology theory, for the cohomology of the rational motives we
have

H(ch0(C)) = H0(C), H(ch2(C)) = H2(C), =⇒ H(ch1(C)) = H1(C).

However ch1(C) carries much finer information. Indeed this motive is closely related
to the Jacobian variety, J(C) of C. This becomes clear from the following theorem
of Grothendieck (circa 1965), as explained in [Dem] which in fact is based on
“classical” results for abelian varieties.

Theorem 2.7.2. With the previous notation and assumptions we have:

(a) The only non-trivial Chow group of ch1Z(C) is

CH1(ch1Z(C)) = J(C)(k) = CH1
alg(C),

(b) Let C,C ′ be smooth projective curves, then

HomCHMZ
(ch1Z(C), ch1Z(C

′)) � HomAV(J(C), J(C ′)). (15)

(c) In the category of rational Chow motives Motrat = CHMQ we have that

the full subcategory M′ whose objects are direct factors of ch1(C), C some
(possibly reducible) smooth projective curve, is equivalent to the category
of abelian varieties up to isogeny. 5

Proof : (a) It is clear that ch1Z(C) only has a non-trivial first Chow group i.e. for
divisors. If a ∈ CH1(C), we have p1(a) = a − deg a · e, a divisor of degree 0 and
hence Im(p1) ⊂ CH1

alg(C) (numerical and algebraic equivalence coincide on curves).

But on CH1
alg(C) the projector p1 is an isomorphism.

(b) This is essentially a reformulation of a theorem of Weil for Jacobians (Appen-
dix A-2.1) as we now explain. From the definition of morphisms in CHMZ we obtain
a homomorphism

ψ1 : CH1(C × C ′) � HomCHMZ
(ch1(C), ch1(C ′))

upon setting ψ1(T ) = p1(C
′)◦T ◦p1(C), T ∈ CH1(C × C ′). It is easy to see that

the kernel is CH1
≡(C ×C ′) and therefore we get the isomorphism ψ in the diagram

below

CH1(C × C ′)

��

ψ1 �� �� HomCHMZ
(ch1(C), ch1(C ′))

CH1(C × C ′)/CH1
≡(C × C ′)

ψ

��



















Combining this with the theorem of Weil (Appendix A-2.1) we get the required
isomorphism

HomCHMZ
(ch1(C), ch1(C ′))

∼−→ HomAV(J(C), J(C ′)).

5Objects in this category are the abelian varieties (over a fixed field), and the morphisms are
given by Homisog(A,B) = HomAV(A,B)⊗ Q
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Consider the full subcategory M′′
Z of CHMZ of motives isomorphic to ch1Z(C) for

some smooth projective curve C, and let

F : M′′
Z → {category of Jacobians of curves}

be the functor defined by F (ch1Z(C)) = J(C). Since F is clearly essentially surjective
and is fully faithful by (15), F is an equivalence of categories. Passing to Q-
coefficients in the correspondences and taking Hom(J(C), J(C ′)) ⊗ Q we have an
equivalence

FQ : M′′
Q

∼−→ {category of Jacobians of curves} ⊗Q.

c) For this, Grothendieck again uses known theorems of abelian varieties, in
particular the Poincaré reducibility theorem [Mum74, Chap. IV §19, Thm. 1].
Next, let A be an abelian variety. Then there exists an algebraic curve C and a
surjection J(C) � A. By the reducibility theorem of Poincaré, we have J(C) =
A1+A2 with A1 and A2 two abelian subvarieties of J(C) with A1∩A2 a finite group
and A1 isogenous to A. Hence up to isogeny J(C) = A1 ⊕A2. In other words: the
category of abelian varieties up to isogeny is exactly the pseudo-abelian completion
of the category of Jacobians of curves (recall that to make the pseudo-abelian
completion one has to add images and kernels of projectors). On the other hand, in

the statement c) we clearly have6 (M′′)�Q = M′ . Therefore, using the universality
of the pseudo-abelian completion, one obtains the following commutative diagram
of functors, whence the desired equivalence F �:

M′′
Q

∼−−−−−−−−→
FQ

{category of Jacobians of curves} ⊗Q

�

⏐⏐⏐⏐⏐� �

⏐⏐⏐⏐⏐�
M′ = M′′�

Q

∼−−−−−−−−→
F �

{category of abelian varieties up to isogeny} .
�

Remarks 2.7.3. (a) From (c) it follows that Motrat contains the category
of abelian varieties up to isogeny as a full subcategory! It seems likely
that this insight must have been also one of the motivations that led
Grothendieck to his theory of motives.

(b) Parts (b) and (c) of the above theorem also hold in the categories Motalg,
Mot⊗, Mothom and Motnum but with Q-coefficients. Because of the nature
of the proof, it suffices to see this for part (b). Take first Motalg. We have
seen (Prop. A-2.2) that

CH1
alg(C × C ′)

Q
⊂CH1

≡(C × C ′)Q

so that we may set

C1
≡,alg(C × C ′)

Q
:= CH1

≡(C × C ′)Q/CH
1
alg(C × C ′)

Q

and then we get (see also the theorem of Weil7 in Appendix A-2):

HomAV(J(C), J(C ′))/isog.
∼−→ CH1(C × C ′)Q/CH

1
≡(C × C ′)Q

= C1
alg(C × C ′)

Q
/C1

≡,alg(C × C ′)
Q
.

6Recall the notation C� for the pseudo-abelian completion of a category C
7Since we use Q–coefficients in our case, in applying the theorem of Weil we have to work up

to isogeny.
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Hence the theorem of Weil also holds, up to isogeny, if we replace CH1(−)
by C1

alg(−). Now we can repeat the proof of (b) by replacing everywhere

CH1(−) by C1
alg(−). Since by the theorems of Matsusaka and of Voisin-

Voevodsky we have

CH1
alg(C × C ′)

Q
= CH1

⊗(C × C)
Q

= CH1
hom(C × C ′)Q = CH1

num(C × C ′)Q,

we get the same in Mot⊗, Mothom and Motnum.

2.8. Manin’s Identity Principle

How do we detect that a correspondence f from X to Y is trivial? For ho-
mological equivalence this is easy: if H(f) = 0, then f = 0 (use the Künneth
formula). However, if we work with rational equivalence it is not true that for
f ∈ Corrrat(X ×Y ) = CH(X ×Y ) we have f = 0 if the induced map f∗ : CH(X) →
CH(Y ) is the zero map (even if we test this for all field extensions K ⊃ k). For
instance, take X = Y an elliptic curve E and a, b, c, d ∈ E(k) four different points
in ‘general position’. Then {(a)− (b)}× {(c)− (d)} ∈ CH2(E ×E) is not zero, but
it acts as zero on the Chow groups of E (and similarly on CH(EK)).

However, if we require that f is zero for all T -valued points, instead of ordinary
points, then f = 0. Precisely, for T ∈ SmProj(k), put X(T ) := Corr(T,X) =
CH(X × T ;Q) and for f ∈ Corr(X,Y ) introduce the homomorphism

fT : X(T ) −→ Y (T ),

α �−→ fT (α) = f◦α.

With this notation we have

Theorem (Manin’s identity principle [Manin, §3, p. 450], [Ful, ex. 16.1.12]).
Let f, g ∈ Corr(X,Y ). Then the following are equivalent:

(1) f = g;
(2) fT = gT for all T ∈ SmProj(k);
(3) fX = gX .

In particular,

f is an isomorphism ⇐⇒ fT is an isomorphism for all T ⇐⇒ fX is an

isomorphism.

Proof : The implications 1) =⇒ 2) =⇒ 3) =⇒ 1) are trivial (take α = Δ(X)
for the last step). �

Remark . Although the proof is trivial, the principle is powerful indeed! The
reason is that by Lieberman’s lemma (Lemma 2.1.3) for α ∈ CH(T ×X) we have

fT (α) = f◦α = (idT ×f)∗(α)

so we have for f, g ∈ Corr(X,Y )

ch(X)
ch(f)=ch(g)
−−−−−−−−→ ch(Y ) ⇐⇒ CH(T×X)

(idT ×f)∗=(idT ×g)∗−−−−−−−−−−−−−−→ CH(T×Y ) ∀T. (16)

Hence f = g as correspondences if and only if f and g act in the same way on
Chow groups universally, i.e. after base change to the T -points and not merely on
the “usual” points.
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We illustrate the Manin principle with the following

Examples 2.8.1. (0) If ϕ : X → Y is a morphism of degree d, then Γϕ◦TΓϕ =
d. idY . We have seen this already in Example 2.3 (vi), but it also follows from the
identity principle [Manin, p. 450].
(1) (See [Manin, §7, p. 456], [Scholl, p. 171]) Let E be a locally free sheaf of
rank (m+1) on S ∈ SmProj(k) and let π : PS(E) → S be the associated projective
bundle and ξ the tautological line bundle. Then there is an isomorphism of motives
in Motrat

ch(PS(E))
∼−→
⊕m

i=0ch(S)(−i).

This can be seen as follows. There is a well known isomorphism for Chow groups

CH(PS(E))
∼−−−−−−→
λ

⊕m
i=0CH(S)[ξi]

and both λ and its inverse μ are given by correspondences. Moreover, this remains
true universally, i.e. after an arbitrary base change T → Spec k. Therefore, since

(idT ×μ)◦(idT ×λ) = id on CH(T × PS(E))

and similarly in the other direction, by (16) it follows that

ch(PS(E))
∼−−−−−−→
λ

⊕m
i=0ch(S)(−i)

and μ are isomorphisms in Motrat which are inverse to each other.
This gives the promised example of non-isomorphic varieties with the same motive:
S × Pm and PS(E) both give the same motive

⊕m
i=0ch(S)(−i) . Note that such

projective bundles are mutually birationally equivalent.
(2) As an another application Manin [loc. cit., § 9, p. 461, resp. p. 172] shows that
if Y = BlZX, the blow up of X along a smooth codimension (m+ 1) submanifold
Z, then

ch(Y ) = ch(X)⊕
⊕m

i=1ch(Z)(−i). (17)



CHAPTER 3

On Grothendieck’s Standard Conjectures

In this chapter k is an algebraically closed field and X is a smooth, projective variety

over k.

3.1. The Standard Conjectures

Up to now we have not used any conjectures; the construction of motives is very
simple. However, motives also should enjoy a number of “hoped for” properties. In
order to prove these, Grothendieck, around 1964 formulated a number of conjectures
which he called Standard Conjectures:

• the Künneth conjecture C(X);
• the conjectures of Lefschetz type B(X) and A(X,L);
• the conjecture of Hodge type Hdg(X)
• conjecture D(X), the equality of numerical and homological equivalence.

These conjectures are not independent of each other; for relations among them, see
section 3.1.4.

For k = C these conjectures would follow from a special case of the Hodge
conjecture.

The standard conjectures are discussed below, except the last one which has al-
ready been discussed in Chapter 1 (see 1.2.19). Together these imply the existence
of a “universal” cohomology theory given by Motnum(k). In particular, the latter
would have to be an abelian semi-simple category. That this is true is Jannsen’s
theorem [Jann92]. The standard conjectures would also imply the Weil conjec-
tures. The latter have been proven by Deligne [Del74b], who avoided the standard
conjectures.

To explain the standard conjectures, we fix a Weil cohomology theory H(X)
with F -coefficients, where F is a field of characteristic zero, e.g. Q or Q�. Recall
(property (6) of a Weil cohomology theory) that we have the cycle class map

CHi(X)Q
γX−−→ Im(γX) = Ai(X) ⊂ H2i(X). (18)

Elements z ∈ Ai(X) are called algebraic classes.

3.1.1. The Künneth conjecture. Let Δ(X) ⊂ X ×X be the diagonal and
consider its class

γX×X(Δ(X)) ∈ H2d(X ×X) =

2d⊕
i=0

H2d−i(X)⊗Hi(X),

where the last equality is the Künneth decomposition. We write

Δtopo
i ∈ H2d−i(X)⊗Hi(X)

35
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for the i-th Künneth component.

Conjecture C(X): the Künneth components Δtopo
i are algebraic, i.e. there

is a cycle class Δi ∈ CHd(X ×X)Q with γX×X(Δi) = Δtopo
i .

This conjecture is known (trivially) for varieties that admit an algebraic cell
decomposition: projective spaces, Grassmannians and flag varieties; cf. [Klei68,
Example 1.2.6]. It is trivial for curves. The conjecture is also known for surfaces
and abelian varieties. (In these cases it is deduced from conjecture B(X); see the
discussion in section 3.1.2, in particular Remarks 3.1.1 (2).) For X defined over a
finite field Katz and Messing [Katz-Me] proved it. In fact it is a consequence of
Deligne’s proof of the Weil conjectures.

Finally, note that if k = C, the conjecture C(X) follows from the Hodge con-
jecture for X.

3.1.2. Standard conjectures of Lefschetz type. Let Xd be a smooth va-
riety given with an explicit embedding into some projective space, and let Y be a
smooth hyperplane section. Let γX(Y ) ∈ A1(X) ⊂ H2(X) be its class and let

L : Hi(X) → Hi+2(X), α �→ α ∪ γX(Y )

be the Lefschetz operator. Its r-fold iteration is denoted Lr.
Recall that H being a Weil cohomology, we assume hard Lefschetz

Ld−i : Hi(X)
∼−→ H2d−i(X), 0 ≤ i ≤ d,

or, equivalently (putting j = d− i):

Lj : Hd−j(X)
∼−→ Hd+j(X), 0 ≤ j ≤ d.

Note that L (and hence every Lj) is given by an algebraic cycle

L = Δ(Y ) ∈ CHd+1(X ×X).

Using the hard Lefschetz property one can define a unique linear map Λ : Hi(X) →
Hi−2(X) (2 ≤ i ≤ 2d) in cohomology which makes the following diagrams commute.

i = d− j, 0 ≤ j ≤ d− 2:

Hd−j(X)

Λ

���
�
�

Lj

∼
�� Hd+j(X)

L

��
Hd−j−2(X) ∼

Lj+2
�� Hd+j+2(X)

i = d+ 1:

Hd−1(X)
L
∼

��
Hd+1(X)

Λ
		� � �

i = d+ j, 2 ≤ j ≤ d:

Hd−j+2(X)
Lj−2

∼
�� Hd+j−2(X)

Hd−j(X)

L





∼
Lj

�� Hd+j(X),

Λ



�
�
�
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and of course, we can iterate Λr = Λ ◦ · · · ◦︸ ︷︷ ︸
r times

Λ.

Remark . (1) Λ is almost an inverse of L. For instance, in the first diagram
Λ is an inverse on the image of L inside Hd−j(X).

(2) A topological correspondence is an element of H∗(X×X). The linear map
Λ : H∗(X) → H∗(X) can be viewed as an element of H∗(X)∨ ⊗H∗(X) �
H∗(X) ⊗ H∗(X) ⊂ H∗(X × X) (by Poincaré-duality and the Künneth
formula), and hence as a topological correspondence.

The standard conjecture of Lefschetz-type uses this last interpretation:

Conjecture B(X): the topological correspondence Λ is algebraic, i.e. Λ =

γX×X(Z) for some Z ∈ CHd−1(X ×X)Q.

If B(X) holds, then clearly also the iterates Λr are algebraic. Note that for
r = d − 1 the cycle class Λd−1 is indeed algebraic and given by a divisor class
[Klei68, Thm. 2A9.5].

Remarks 3.1.1. (1) For k = C the cycle Λ is Hodge, and hence B(X)
would follow from the Hodge conjecture. So this is an “old” conjecture,
but Grothendieck emphasized its special role for motives.

(2) For general algebraically closed fields there are equivalent statements and
several consequences. See [Klei68, Klei94]. we only mention:

• B(X) is independent of the projective embedding used to define L
and Λ;

• B(X) implies C(X).
• B(X) implies the following conjecture A(X,L). Consider the com-
mutative diagram

H2i(X)
Ld−2i

−−−→
∼

H2d−2i(X)�⏐ �⏐
Ai(X) ↪→ Ad−i(X)

where, as before (see (18)) Ai(X) = Im(γX) ⊂ H2i(X), i.e. those
cohomology classes which are algebraic. By hard Lefschetz the lower
map is injective.

Conjecture A(X,L): the lower map in the above diagram is an
isomorphism.
An equivalent formulation is the following.

Conjecture A(X,L)′: the cup product pairing

Ai(X)× Ad−i(X) → Q

is non-degenerate.
Note that the Ai(X) are Q-vector spaces and that due to the com-
patibility of cup-product and intersection the above pairing actually
takes values in Q.
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Current status: the conjecture B(X) is trivially true for projective space,
for Grassmannians and for curves. For surfaces it is classical (Grothen-
dieck, Kleiman; see [Klei68, Corollary 2A10]). For abelian varieties it is
due to Lieberman and Kleiman [loc. cit., Theorem 2A11].

3.1.3. Standard conjecture of Hodge type. By the Hard Lefschetz theo-
rem Ld−i(X) : Hi(X)

∼−→ H2d−i(X) if i ≤ d, but in general Ld−i+1(X) will have
a non-trivial kernel:

P i(X) := Ker(Ld−i+1 : Hi(X) → H2d−i+2(X)) (i-th primitive cohomology)

and we may speak of the primitive algebraic classes

Ai
prim(X) := Ai(X) ∩ P 2i(X).

Cup-product induces for i ≤ d/2 a pairing

Ai
prim(X)× Ai

prim(X) −−−−→ Q
(x, y) �−→ (−1)i Tr ◦(Ld−2i(x) ∪ y)

(19)

and we have

Conjecture Hdg(X)(=standard conjecture of Hodge type): the pairing
(19) is positive definite.

The current status is as follows:

(1) If char(k) = 0 conjecture Hdg(X) is true by Hodge theory: by the Lef-
schetz principle one may assume that k = C. Comparison of the coho-
mology theory with Betti-cohomology then shows the result in view of the
Hodge-Riemann bilinear relations.

(2) In arbitrary characteristic it is known to hold for surfaces [Segre],
[Groth58].

3.1.4. Consequences of and relations between the standard conjec-
tures. For a full discussion, see [Klei68, Klei94]. We mention a couple of conse-
quences having to do with conjecture D(X) 1.2.19:

(1) D(X) =⇒ A(X,L): by D(X) we have Ai(X) = Zi(X)/Zi
num(X) and the

pairing

Zi(X)/Zi
num(X)× Zd−i(X)/Zd−i

num(X) → Q

is non-degenerate by the definition of numerical equivalence.
(2) By [Klei94, Prop. 5.1], if Hdg(X) holds then D(X) ⇐⇒ A(X,L)

hence in particular, B(X) together with Hdg(X) imply D(X). So in
characteristic 0, since Hdg(X) holds, we have that B(X) for all X is
equivalent to D(X) for all X.

(3) Furthermore [Klei94, Cor. 4.2.]:

B(X) for all X ⇐⇒ A(X,L) for all X.

(4) B(X) together with Hdg(X) imply that Motnum is an abelian semi-simple
category. This consequence has been proved unconditionally in 1992
[Jann92]. We sketch his proof in § 3.2.

For the situation concerning divisors see § A-1 in Appendix A.
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3.2. Jannsen’s Theorem

We work over an algebraically closed field k and we let ∼ be any adequate
equivalence relation. We fix also a field F containing Q.

Theorem 3.2.1 (Jannsen (1991)). The following assertions are equivalent

(1) Mot := Mot∼ is an abelian semi-simple category;
(2) ∼ equals numerical equivalence;
(3) for all Xd ∈ SmProj(k) the F -algebra

Corr0∼(X,X)F = Corr0(X,X)⊗Q F

is a finite-dimensional semi-simple F -algebra.

Remarks. 1) This is undoubtedly the most important progress on motives after
Grothendieck, but we are still far away from the standard conjectures; in particular
D(X) is still not known.
2) An abelian category is semi-simple if every object is a finite direct sum of simple
objects, i.e. objects without non-trivial subobjects.

Proof :
(1) =⇒ (2) This goes by contradiction. Suppose that Mot is abelian and semi-
simple but Z∼(−) �= Znum(−). As we mentioned before (subsection 1.2.1) Z∼(−) ⊆
Znum(−) for every adequate equivalence relation. Suppose that there exists Z ∈
Zi
num(X) but Z �∈ Zi

∼(X). Then, writing pt = Spec k, there is a morphism f : 1 =

(pt, id, 0) → h∼(X)(i) = (X, id, i) in Mot given by f = Z ∈ Corri∼(pt, X) = Ci
∼(X)

and since Z �∈ Zi
∼(X) we have f �= 0. Since Mot is abelian and semi-simple,

there is a morphism g : h∼(X)(i) → 1 such that g◦f = idpt. Such g is given by
W ∈ Cd−i

∼ (X). Then g◦f = (pr13)∗(pr
∗
12(pt× Z) ∩ pr∗23(W × pt)) = #(Z ·W ) · pt,

where the intersection is on pt × X × pt = X and #(Z · W ) is the intersection
number on X. Since g◦f = idpt we have #(Z · W ) = 1. However, then Z is not
numerically equivalent to zero, a contradiction. Hence Z∼(−) = Znum(−).
(2) =⇒ (3) This is the main step, i.e. if ∼ equals numerical equivalence, then
Corr0∼(X,X)F is a finite dimensional and semi-simple algebra. Let X be a d-
dimensional smooth projective variety. Recall (formula (18) in section 3.1) that we
introduced the algebraic classes Ai(X) = Im(γi

X) ⊂ H2i(X) where H(−) is some
Weil cohomology with F -coefficients. For simplicity we take étale cohomology and
F = Q� with � �= p, the characteristic of k. Put now

Bi(X) := Ci
num(X)Q.

We have a surjection Ai(X) � Bi(X). We know that dimF Ai(X) is finite, but a
priori we cannot deduce from this anything about dimQ Ai(X). Nevertheless we do
have

Lemma 3.2.2 ([Klei68, Thm. 3.5]).

dimQ Bi(X) ≤ b2i(X) = dimH2i
ét (X,Q�) < ∞.

Proof of Lemma 3.2.2: Choose α1, . . . , αm∈Zd−i(X) whose classes inH2d−2i
ét (X,Q�)

form a maximal set of Q�-linearly independent elements in the image of the cycle
class map γX : Zd−i(X) → H2d−2i

ét (X,Q�). Clearly m ≤ b2d−2i(X) = b2i(X). For
any 0-cycle γ we set #(γ := deg(γ), Consider the linear map

λ : Zi(X) → Zm

β �→ (#(β · α1), . . . ,#(β · αm)).
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We claim that Kerλ = Zi
num(X). Clearly Zi

num(X) ⊂ Kerλ. Conversely, let
α ∈ Zd−i(X) and write γX(α) =

∑
νjγX(αj) with νj ∈ Q�. One has

#(β · α) = Tr (γX(α) ∪ γX(β)) =

=
∑
j

νj Tr (γX(β) ∪ γX(αj)) =

=
∑
j

νj ·#(β · αj)

by the compatibility of the cycle map with intersections and cup product. So if
β ∈ Ker(λ) it follows that #(β · α) = 0 for all α ∈ Zd−i(X), i.e. β ∈ Zi

num(X).
hence λ induces a injection Bi(X) ↪→ Qm which proves the claim. �

Lemma 3.2.3 (Key Lemma). The Q-algebra Bd(X ×X) is semi-simple.

Proof of the Key Lemma: First a couple of remarks from the theory of non-
commutative rings for which we refer to [Bourb, Livre 2 Chap 8] and [Pie]. If
F ⊃ Q and R is a finite dimensional F -algebra, then R is artinian and the Jacob-
son radical J(R) is the largest two-sided nilpotent ideal of R. It is the smallest
two-sided ideal I making R/I semi-simple [Bourb, p.66]. So one must show that
J(Bd(X×X)) = 0 and in fact, it suffices to prove this after base change to Q� since
J(R⊗F F1) = J(R)⊗F F1 for any overfield F1 of F [loc.cit., p.70]. For simplicity,
put A = Ad(X ×X)⊗QQ�, B = Bd(X ×X)⊗QQ� and J = J(B), J ′ = J(A). Note
that there is a surjection

Φ : A � B

and we need to show that J = 0. We claim that Φ(J ′) = J . To see this, note that
since Φ is surjective, Φ(J ′) is a two-sided nilpotent ideal in B and hence Φ(J ′) ⊂ J
[loc.cit., p. 69]. On the other hand A/J ′ is a semi-simple Q�–algebra and hence
so is its image B/Φ(J ′) [Pie, Corollary p. 42], which is the middle algebra in the
following sequence of surjections

A/J ′ � B/Φ(J ′) � B/J.

But J is the smallest ideal making the quotient B/J semi-simple. Hence J ⊂ Φ(J ′).
Next, since J = J(Cd

num(X ×X))⊗ F we can start with f ∈ J(Cd
num(X ×X))

which lifts to f ′ ∈ J ′ and hence f ′ is nilpotent in A. Now take any g̃ ∈ Zd(X ×X)
and let g ∈ A be its image. Now comes the crucial point: apply the Lefschetz trace
formula1 to f ′ and g:

Tr
(
f ′ ∪ Tg

)
=

2d∑
i=0

(−1)i TrHi(f ′◦g) (20)

where Tg is the transpose and f ′◦g operates on Hi
ét(X,Q�). Since f ′ ∈ J ′, also

f ′◦g ∈ J ′ since J ′ is a two-sided ideal. Hence f ′◦g is nilpotent and in particular all
traces are zero. So the right-hand side of (20) vanishes. But Tr

(
f ′ ∪ Tg

)
= #(f ·Tg)

on X × X and g̃ is arbitrary in Zd(X × X). So f = 0 in B(X × X) and hence
J = 0. �
(3) =⇒ (1).
This is rather formal and we don’t repeat the argument; it depends on the following
two lemmas [Jann92]:

1Since H(X) is a Weil cohomology theory, the Lefschetz trace formula is valid; cf. [Klei68,
1.3.6]
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Lemma 3.2.4. Condition (3) implies that for every M ∈ Mot∼ one has:

(1) dimEndMot∼(M) < ∞;
(2) EndMot∼(M) is a semi-simple F -algebra.

Lemma 3.2.5. If A is an F -linear pseudo-abelian category such that for every
M ∈ A its endomorphism algebra EndA(M) is a finite dimensional semi-simple
F -algebra, then A is an abelian semi-simple category.

�
Remarks. (1) The main ingredient of Jannsen’s proof is the Lefschetz

trace formula, which was known to Grothendieck.
(2) The crucial conjecture D(X) remains open!
(3) So it follows from Jannsen’s theorem that in general Motrat is not an

abelian semi-simple category. In fact it is not even abelian, see [Scholl,
Cor. 3.5, p. 173].





CHAPTER 4

Finite Dimensionality of Motives

4.1. Introduction

Start with a smooth projective variety X defined over an algebraically closed
field k. Recall that for divisors the Chow group CH1(X) = Pic(X) can be described

as follows. The subgroup CH1
hom(X) = CH1

alg(X) is an abelian variety, the Picard

variety Pic0red(X)(k) and the quotient CH1(X)/CH1
alg(X), the Néron-Severi group

is a finitely generated group.
However, for cycles in higher codimension the picture is entirely different. Con-

sider for instance the case of 0-cycles on a surface S. Recall from Chapter 1 Ap-
pendix A-3.1 that

CH2(S) ⊃ CH2
hom(S) = CH2

alg(S) = A0(S) ⊃ T (S),

where A0(S) are the degree 0 zero-cycles and where

T (S) = Ker [albS : A0(S) → Alb(S)] .

As mentioned in this appendix, the Albanese kernel T (S) is infinite dimensional
in some precise geometric sense if H2(S)trans �= 0. So it came as a surprise that
Kimura [Kimu] showed that CH2(S) still can be finite dimensional in a different
motivic sense.

4.2. Preliminaries on Group Representations

Let G be a finite group. The group ring R = Q[G] consists of formal linear
combinations r =

∑
g∈G r(g)g with rational coefficients r(g). If we replace these by

complex coefficients we get RC. There are h = (the number of conjugacy classes of
G) non-isomorphic irreducible representations Wj with characters χj , j = 1, . . . , h.
Consider

ej =
dimWj

‖G‖
∑
g∈G

χj(g) · g.

Then in RC we have (see e.g. [Ful-Ha, p. 17] or [Serre77, p. I-22]:

ei · ej =
{
0 if i �= j

ei if i = j.∑
i

ei = eG = 1R,

i.e. the ei are idempotents decomposing 1 and they are orthogonal in RC.
Let us apply this to the symmetric group Sn of permutations of n elements

σ =

(
1 2 · · · n

σ(1) σ(2) · · · σ(n)

)
.

43
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It is known (see e.g. [Ful-Ha, p. 46] or [Cu-Re, p. 47]) that the irreducible
representations of Sn correspond in a one to one manner to the partitions of n, i.e.
to collections of positive integers

λ = (λ1, . . . , λs), λ1 ≥ · · · ≥ λs

summing up to n. Let Wλ be the representation corresponding to λ. Then, using
λ as indices in the preceding formulas we get:

eλ =
dimWλ

‖G‖
∑
g∈G

χλ(g) · g (21)

eλ · eμ =

{
0 if λ �= μ

eλ if λ = μ.∑
μ

eμ = 1R

RC =
⊕
λ

Reλ, Reλ = Wλ ⊕ · · · ⊕Wλ︸ ︷︷ ︸
dimWλ times

Particular cases are:

(1) λ = (n) corresponds to the trivial representation σ(v) = v and

esym := e(n) =
1

n!

∑
σ∈Sn

σ.

(2) λ = (1, . . . , 1) corresponds to the alternating representation, i.e. σ(v) =
sgnσ · v and

ealt := e(1,...,1) =
1

n!

∑
σ∈Sn

sgn(σ) · σ.

4.3. Action of the Symmetric Group on Products

The action of the symmetric group Sn on Xn = X × · · · ×X︸ ︷︷ ︸
n times

is as follows:

Xn −→ Xn

(x1, . . . , xn) �→ (xσ(1), . . . , xσ(n)).

Let Γσ(X) be the graph of this map, i.e., the subvariety of Xn ×Xn consisting of
points of the form (x1, . . . , xn, xσ(1), . . . , xσ(n)).

More generally, for any r =
∑

σ r(σ)σ ∈ R we get a Q-correspondence Γr(X) ∈
Corr0∼(X

n) given by

Γr(X) =
∑

σ∈Sn

r(σ)[Γσ(X)].

Note that the product in R corresponds to composition of correspondences:

Γrs(X) = Γr(X)◦Γs(X).

Hence

dλ(X) := Γeλ(X) : Xn → Xn (22)

is a projector.
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The same story holds for motives M = (X, p,m) ∈ Mot∼ and their products

M⊗n = (X × · · · ×X︸ ︷︷ ︸
n times

, p× · · · × p︸ ︷︷ ︸
n times

, nm).

The group Sn operates through the first factor X × · · · ×X︸ ︷︷ ︸
n times

and if we abbreviate

p× · · · × p︸ ︷︷ ︸
n times

= p⊗n, a small calculation then shows

Γσ(M) := Γσ(X)◦p⊗n = p⊗n◦Γσ(X)

so that Γσ(M) is a morphism in Mot∼.
As for varieties, more generally any r =

∑
r(σ)σ ∈ R operates on M⊗n and

one has
Γr(M) :=

∑
σ r(σ)Γσ(M) ∈ HomMot∼(M

⊗n,M⊗n).

Let us now look at the projectors dλ(X) = Γeλ(X):

Lemma 4.3.1. Let M = (X, p,m) ∈ Mot∼. Then

(1) dλ(X)◦p⊗n = p⊗n◦dλ(X) is a projector for Xn;
(2) the dλ(X)◦p⊗n decompose p⊗n;
(3) dλ(X)◦p⊗n ⊥ dμ(X)◦p⊗n if λ �= μ.

Proof : This follows formally from Γr(M)◦Γs(M) = Γrs(M) and the fact that p⊗n

commutes with the Γr. �
Definition 4.3.2. Let M = (X, p,m) ∈ Mot∼ and λ a partition of n. Put

TλM := (Xn, dλ◦p⊗n, nm) ∈ Mot∼. (23)

In particular

Symn(M) := T(n)M = (Xn, dsym◦p⊗n, nm)∧n
(M) := T(1,...,n)M = (Xn, dalt◦p

⊗n, nm)

It follows immediately from the definitions that

CH(TλM) = Im(dλ) ⊂ CH(M⊗n)

and similarly for the cohomology groups. In particular therefore

CH(Symn(M)) = Im(dsym)⊂ CH(M⊗n)

CH(
∧n

M) = Im(dalt)⊂ CH(M⊗n).

Let H be a Weil cohomology theory. Recall from Definition 1.2.13 that H satisfies
the super-commutativity rule

b ∪ a = (−1)ija ∪ b, if a ∈ Hi(X), b ∈ Hj(X).

We shall write

Heven = H+(X) = ⊕H2i(X), Hodd(M) = H−(X) = ⊕H2i+1(X).

Proposition 4.3.3. Let M = (X, p, 0) ∈ Mot∼. Then

H(Symn(M)) =
⊕

i+j=n

SymiH+(M)⊗
∧jH−(M)

H(
∧nM) =

⊕
i+j=n

∧iH+(M)⊗ SymjH−(M).
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Proof : This follows from the Künneth formula and the super-commutativity rule.
For a proof of the first formula in the case M = ch(X) see [BanRol, Prop. 3.2.3]
(cf. also [Kimu, p. 181-182]). �

It implies the following basic result:

Corollary 4.3.4. (1) If H+(M) = 0 then H(Symn(M)) = ΛnH−(M)
and hence H(Symn(M)) = 0 if n > dimH(M).

(2) If H−(M) = 0 then H(
∧n

(M)) = ΛnH+(M) and hence H(
∧n

(M)) = 0
if n > dimH(M).

4.4. Dimension of Motives

Inspired by Corr. 4.3.4, for M = (X, p,m) ∈ Mot∼ Kimura and independently
O’Sullivan have introduced:

Definition 4.4.1. (1) M is evenly finite dimensional if
∧n

M = 0 for
some n > 0, i.e. dalt(X)◦p⊗n∼ 0 and dimM then is defined as the maxi-
mal number n for which

∧n(M) �= 0;
(2) M is oddly finite dimensional if Symn(M) = 0 for some n > 0 i.e.

dsym(X)◦p⊗n∼ 0 and dim(M) is defined as the maximal number n for
which Symn(M) �= 0;

(3) M is finite dimensional if M = M+ ⊕ M− with M+ evenly finite di-
mensional and M− oddly finite dimensional. In this case1 dim(M) =
dim(M+) + dim(M−).

Remarks. (1) Note that (X, p,m) is finite dimensional if and only if (X, p, 0)
is finite dimensional, and that both motives have the same dimension.

(2) We have Sn ⊂ Sn+1 and e
(n+1)
sym = r · e(n)sym for some suitable r ∈ R(Sn+1), and

similarly for ealt. For example, let n = 3, τ = (12), σ = (123), then

e(3)sym = (1 + σ + σ2)(1 + τ ) = (1 + σ + σ2)e(2)sym

e
(3)
alt = (1 + σ + σ2)(1− τ ) = (1 + σ + σ2)e

(2)
alt .

It follows that

p⊗(n+1)◦d(n+1)
sym (X) = p⊗(n+1)◦Γr◦(Γdn

sym
(X)× id)

= Γr◦(p(n) × p)◦(Γdn
sym

(X)× id)

and hence Symn(M) = 0 implies Symn+1(M) = 0 and similarly for
∧n

M .

Examples 4.4.2. 1 ∈ Mot∼ is evenly finite dimensional and its dimension is 1

because
∧2

1 = (Spec k × Spec k, id− id, 0) = 0. By part (1) of the above remark,
the Lefschetz motive L = (P1,P1 × e, 0) � (Spec k, id,−1) is also evenly finite
dimensional and dimL = 1. More generally, (Xd, p0, 0) and (Xd, p2d, 0) are evenly
finite dimensional and have dimension 1 for the same reason.

1A priori this depends on the decomposition, but we shall see later Prop. 5.3.3 that this is
well-defined
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4.5. The Sign Conjecture and Finite Dimensionality

We let ∼ = homological equivalence with respect to our chosen Weil cohomol-
ogy. We have

Conjecture 4.5.1. [Sign conjecture S(X)] The sum of all the even projec-

tors (Δtopo
2i )X as well as the sum of all the odd projectors (Δtopo

2i+1)X are algebraic,

i.e., there exist algebraic cycles Δ+ and Δ− such that

γX×X(Δ+) =
∑
i

(Δtopo
2i )X

γX×X(Δ−) =
∑
i

(Δtopo
2i+1)X .

Remark 4.5.2. The Künneth conjecture C(X) (see § 3.1.1) implies the sign
conjecture.

Lemma 4.5.3. If S(X) holds then hhom(X) has finite dimension (and also
h∼(X) whenever Zhom(X) ⊂ Z∼(X)).

Proof : Since the condition Zhom(X) ⊂ Z∼(X) implies the existence of a functor
Mothom → Mot∼ it suffices to prove this for homological equivalence. Write

(X, id, 0) = (X,Δ+, 0)︸ ︷︷ ︸
M+

⊕ (X,Δ−, 0)︸ ︷︷ ︸
M−

.

Also let dimH(M+) = dimH+(X) = n. Then dimH(
∧n+1M+) = 0. We claim

that the cycle class of d
(n+1)
alt (X)◦Δ

⊗(n+1)
+ is 0, i.e. vanishes in HomMothom

(M+,M−).
This claim follows from the fact that the cohomology functor

H : Moteffhom → GrVectF

is faithful. To see this, let M = (X, p, 0) and N = (Y, q, 0). Consider f ∈
HomMothom

(M,N) If H(f) = 0 then f operates trivially in cohomology and us-
ing the Künneth decomposition (formula (5) in § 1.2.D) this implies that f ∼hom 0,

i.e. f = 0 as a morphism in Moteffhom.
A similar argument applies to M−. �

4.6. Curves

Now we shall work with Chow motives, i.e. in Motrat. Recall (§ 2.7) that for
any curve C we have a decomposition

ch(C) = ch0(C) ⊕ ch1(C) ⊕ ch2(C)
‖ ‖ ‖

(C, p0 = e× C) (C, p1 = Δ− p0 − p2) (C, p2 = C × e)

Of course ch+(C) = ch0(C)⊕ch2(C) is evenly finite dimensional and has dimension

2. That ch−(C) = ch1(C) is oddly finite dimensional is also true:

Theorem 4.6.1 ([Serm, Kü93, Kimu]). The motive ch1(C) is oddly finite
dimensional of dimension 2g. Hence ch(C) itself is also finite dimensional.

Proof : First of all, H(Sym2g(ch1(C)) =
∧2g

H1(C) �= 0 so the dimension must be
≥ 2g. We show that Sym2g+1(ch1(C)) = 0.
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To do this we introduce some notation. Recall than p⊗n
1 is a cycle on Cn ×Cn

and we then put

αn := d(n)sym(C)◦p⊗n
1 =

(
1

n!

∑
σ∈Sn

Γσ

)
◦p⊗n

1 ∈ CHn(Cn × Cn).

Observe that Symn(ch1(C)) = (Cn, αn, 0) and hence the assertion we claim, namely
Sym2g+1(ch1(C)) = 0 just means that α2g+1 = 0.

To show the latter, we shall reduce it to vanishing of a suitable element on the
(2g+1)-fold symmetric product of C (see Step I below). This leads us to introduce
the n-fold symmetric product SnC := Cn/Sn which is a smooth variety (since
dimC = 1) with the natural projection

ϕn : Cn → SnC.

Then αn induces the correspondence

βn =
1

n!
· (ϕn)∗◦αn◦ϕ∗

n

=
1

n!
(ϕn × ϕn)∗αn ∈ CHn(SnC × SnC),

where we used the Lieberman identity (Lemma 2.1.3) for the last equality.
Step I. αn = 0 ⇐⇒ βn = 0 (and hence it suffices to prove that β2g+1 = 0).
This assertion follows from the following Lemma:

Lemma 4.6.2. For all positive integers n we have

(1) βn is a projector of SnC;
(2) αn = 1

n!ϕ
∗
n◦βn◦(ϕn)∗;

(3) Symn(ch1(C)) � (SnC, βn) where the morphisms 1
n! (ϕn)∗ and ϕ∗

n induce
isomorphisms of motives which are inverse to each other.

Proof of the Lemma: (1) and (2) are straightforward calculations using ϕ∗
n◦(ϕn)∗ =

n!
(

1
n!

∑
σ∈Sn

Γσ

)
= n!d

(n)
sym(C) plus the fact that αn is a projector.

(3) goes as follows. We use § 2.2.2. Note that Symn(ch1(C)) = (Cn, αn) and so we
must check whether the two morphisms of motives 1

n!βn◦ϕ∗
n◦αn and αn◦ϕ∗

n◦βn are
inverse isomorphisms. So we consider consider the two compositions

αn◦ϕ∗
n◦βn◦

1

n!
(ϕn)∗︸ ︷︷ ︸

αn

◦αn : Cn → Cn

and

βn◦
1

n!
(ϕn)∗◦αn◦ϕ∗

n︸ ︷︷ ︸
βn

◦βn : SnC → SnC.

Note that, βn and αn being projectors, the compositions as indicated evaluate to
αn, respectively βn, the identity morphisms of the respective motives.
Step II. The description of the Chow group of SnC if n > 2g − 2.
Under the assumption n > 2g−2, as is well known, the Abel-Jacobi map π : SnC →
J(C) is a projective fibre bundle with fibres of dimension m = n− g. Hence, if we
let ξn := O(1) be the tautological bundle for the projective fibre bundle one has
(see e.g. [Ful]):

CH(SnC)) � CH(J(C))[1, ξn, . . . , ξ
m
n ].



4.6. CURVES 49

More precisely, any β ∈ CHr(SnC) can be written

β = π∗(ar) + π∗(ar−1)ξn + · · ·+ π∗(ar−m)ξmn , with αj ∈ CHj(J(C)).

This relation make it possible to show the vanishing of β using the projection
formula for π and the fact that for dimension reasons π∗ξ

�
n = 0 when � < m

and = 1 when � = m. Indeed, suppose that by induction we have already shown
that ar−k = 0 for k = � + 1, . . . ,m. Then it follows that π∗(β · ξ�n) = 0 implies
ar−� = 0 as well. In other words, β vanishes if the direct images π∗(β · ξ�n) vanish
for � = 0, . . . ,m. So this becomes a calculation on J(C). Below we need a slightly
more involved variant of this idea.
Step III. Completion of the proof.
Consider now the two projections

pr1, pr2 : S2g+1C × S2g+1C → S2g+1C.

Then, because of Step II (with r = 2g + 1,m = g + 1), we can write

β2g+1 =
∑g+1

i,j=0(π◦pr1 × π◦pr2)
∗aij · pr∗1ξg+1−i · pr∗2ξg+1−j , ξ := ξ2g+1

aij ∈ CHi+j−1(J(C)× J(C))
.

As explained in Step II, the proof that β2g+1 = 0 can reduced to showing that for
0 ≤ i, j ≤ g + 1 one has:

aij = (π◦pr1 × π◦pr2)∗
(
pr∗1ξ

i · pr∗2ξj · β2g+1

)
= 0. (24)

This is clear for i = j = 0 since a0,0 ∈ CH−1(J(C) × J(C)) = 0.2 For the other
i, j we have either i > 0 or j > 0 (or both). Let us assume i > 0. Now apply the
projection formula for π × π. Then it suffices to show that

pr∗1ξ · β2g+1 = 0 on S2g+1C × S2g+1C.

For the remainder of the proof we set

ϕ = ϕ2g+1 : C2g+1 → S2g+1C

and recall that β2g+1 = 1
(2g+1)! (ϕ× ϕ)∗α2g+1 so that

pr∗1ξ · β2g+1 = pr∗1ξ ·
1

(2g + 1)!
(ϕ× ϕ)∗α2g+1. (25)

We now invoke a classical result. Fix e ∈ C and consider for all n > 0 the inclusion

Sn(C)
i−→ Sn+1C

(x1, . . . , xn) �→ (x1, . . . , xn, e).

Then, if n > 2g − 2, by [Schwar] one has ξn+1 = i∗[S
nC]. In particular, one has

pr∗1ξ = S2gC × e× S2g+1.

Applying the projection formula for ϕ× ϕ we thus get

pr∗1ξ · β2g+1 = (ϕ× ϕ)∗(ϕ× ϕ)∗
[
S2gC × e× S2g+1

]
· α2g+1

so that (25) becomes

pr∗1ξ · β2g+1 =
1

(2g + 1)!
(ϕ× ϕ)∗

[(∑
j

(C × · · · × e
↑

j-th factor

× · · · × C)× C2g+1
)]

· α2g+1

2We used that β2g+1 is a cycle of dimension (2g + 1), so this argument definitely does not

work for βn with n < 2g + 1
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Since α2g+1 comes from p1, by symmetry the term in the last line which is written
in the last parentheses is zero if [e × C2g × C2g+1] · σ(p1 × · · · × p1) = 0 for all
σ ∈ Sn which is the case since

(e× C) · p1 = (e× C) · (Δ(C)− e× C − C × e) = 0. �



CHAPTER 5

Properties of Finite Dimensional Motives

For this chapter the unpublished notes [Jann03] of a course of U. Jannsen in Tokyo

have been very helpful.

5.1. Sums and Tensor Products

Proposition 5.1.1. 1) Let M and N be evenly (oddly) finite dimensional mo-
tives. Then M ⊕N is evenly (oddly) finite dimensional. Conversely, if M ⊕N is
evenly (oddly) finite dimensional then M and N are evenly (oddly) dimensional.

2) If M and N are finite dimensional, then M ⊕N is finite dimensional; more-
over dim(M ⊕N) ≤ dimM + dimN .

Proof : We only look at the case of evenly finite dimensional motives. The equality∧n
(M ⊕N) =

⊕
r+s=n

∧r
M ⊗

∧s
N

shows that if
∧�+1M = 0 =

∧k+1N , then
∧k+�+1(M ⊕ N) = 0; conversely, if∧n

(M ⊕ N) = 0, then all the terms on the right hand side vanish and so, in
particular,

∧n
M =

∧n
N = 0. �

Remark . Conversely we shall see (Cor. 5.4.6) that if M ⊕N finite dimensional,
then both M and N are finite dimensional.

Tensor products are much more involved; one needs some more representation
theory of the symmetric group in addition to what we used in § 4.2. Below we recall
the results that we shall use; these can be found in [Ful-Ha] or [Cu-Re].

(i)

{
irred. repr. Wλ

of Sn

}
⇐⇒
1−1

{
partitions λ

of n

}
⇐⇒
1−1

{
Young diagrams

of weight n.

}
Here a partition λ = (λ1, . . . , λs) corresponds to a diagram with s rows of lengths
λ1, . . . λs. For instance λ = (4, 2, 1) corresponds to the diagram

(ii) A Young tableau is obtained from a Young diagram by putting the integers
1, . . . , n in the table. If you put them in this order starting on the left in the first
row, one gets the standard tableau. Here are two examples; the first is the standard
tableau.

1 2 3 4
5 6
7

7 1 3 6
2 4
5

51
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To a Young tableau T one associates two subgroups of the symmetric group

Rλ(T ) := {σ ∈ Sn | σ only permutes elements in each row}
Cλ(T ) := {σ ∈ Sn | σ only permutes elements in each column}

and three associated elements in the group ring

aλ(T ) :=
∑

σ∈Rλ(T )

σ

bλ(T ) :=
∑

σ∈Cλ(T )

sgn(σ)σ

cλ(T ) := aλ(T )bλ(T ) the Young symmetrizer of T.

Examples 5.1.2. 1) λ = (n). Then Rλ(T ) = Sn, Cλ(T ) = (id) and

cλ = aλ =
∑

σ∈Sn

σ = esym.

2) λ = (1, . . . , 1). Then Rλ(T ) = id, Cλ(T ) = Sn and

cλ = bλ =
∑

σ∈Sn

sgn(σ)σ = ealt.

Remark . Let V be a vector space. The symmetric group acts on V ⊗n by
permuting the factors. One can show that, regardless of the numbers filled in the
tableau, we have

Im(aλ) � Symλ1(V )⊗ · · · ⊗ Symλs(V )

and that

Im(bλ)) �
∧μ1V ⊗ · · · ⊗

∧μsV

where μ is the partition dual to λ that one gets upon changing rows and columns

of the associated Young diagram; cf. [Ful-Ha, p. 46]. For instance is dual

to .

Facts from group theory. See [Ful-Ha, p. 46] or [Cu-Re, Thm. 28.15, p. 197]:

(1) cλ(T )◦cλ(T ) = nλ(T )cλ(T ), nλ(T ) �= 0, in the group ring R = Q[Sn], i..e
cλ(T ) is almost an idempotent;

(2) Rcλ(T ) is a minimal left ideal in R, hence it is an irreducible R-module;
(3) Rcλ(T ) = Rcμ(T ) ⇐⇒ λ = μ, i.e. the ideal Rcλ(T ) only depends on the

partition and not on the tableau;
(4) ∑

T∈λ

Rcλ(T ) =
⊕

W⊕ dimWλ

λ ⊂ R,

i.e. Wλ, the irreducible representation corresponding to λ occurs precisely
dimWλ times;

(5) each of the orthogonal idempotents eλ (see (21) in Chapter 4) is a linear
combination of monomials in cλ(T ).
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Next, let us explain the crucial vanishing lemma. First, recall (cf. (22) in Chap-
ter 4) the following notation. If M = (X, p,m) ∈ Mot∼(k) and λ is a partition of
n we introduced (22) the correspondence dλ(M) := Γeλ(M), the correspondence
associated to eλ and the motive (23):

TλM := (Xn, dλ(M)◦p⊗n, nm).

Lemma 5.1.3 (Vanishing Lemma [Kimu, Thm. 5.9]). Let q ≥ n and λ =
(λ1, . . . , λs) a partition of q. Then

(1) if Symn+1(M) = 0 and λ1 > n, then TλM = 0;

(2) if
∧n+1M = 0 and λn+1 �= 0, then TλM = 0.

Proof : We only prove (2); the argument for (1) being similar. Rearranging the
numbering we can assume that

dual of T =

1 2 · · · · · · μ1

· · · ↑
λs...

↑
λn... ↑

λ2
↑
λ1

In other words: the tableau associated to the dual μ of the partition λ is the
standard tableau. In the above tableau the duality aspect has been illustrated: the
columns have length λ1, . . . , λs with s > n.

Now bλ,T : M⊗q → M⊗q and we have

Im(bλ,T ) =
∧μ1M ⊗ · · · ⊗

∧μsM.

Also λn+1 �= 0 hence μ1 > n and since
∧n+1M = 0 we have that bλ(M

⊗q) = 0 so
certainly cλ(M

⊗q) = 0. Since eλ = r · cλ for a certain r ∈ R, we get dλ(M
⊗q) =

TλM = 0. �

Theorem 5.1.4. If M and N are finite dimensional, then M ⊗ N is finite
dimensional. More precisely:

(1) If M,N are both evenly or oddly finite dimensional, then M ⊗N is evenly
finite dimensional;

(2) If M and N are finite dimensional of different parity, then M⊗N is oddly
finite dimensional.

Moreover, dim(M ⊗N) ≤ dimM · dimN .

Proof : By way of example we shall prove that if Symm+1(M) = Symn+1(N) = 0,

then
∧nm+1(M ⊗N) = 0. Write q = mn+ 1. Then

(M ⊗N)⊗q � M⊗q ⊗N⊗q⊕
λ,ν

dλM
⊗q ⊗ dνN

⊗q,

where λ and ν run independently through all partitions of q. We need to prove
dalt(M ⊗N)⊗q = 0, i.e.

d(1,··· ,1)

⎡⎣⊕
λ,ν

dλM
⊗q ⊗ dνN

⊗q = 0

⎤⎦ . (26)
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Since by [Ful-Ha, p. 61] one has

e(1,...,1) · eλ ⊗ eν =

{
0 unless ν = μ, the dual of λ

e(1,··· ,1) if ν = μ

to prove (26) it suffices to see that dλM
⊗q ⊗ dμN

⊗q = 0. Now, if λ1 ≥ m + 1,
then dλM

⊗q = 0 by the vanishing lemma (1). If λ1 ≤ m then λn+1 > 0 and hence
μ1 ≥ n+ 1 and then dμN

⊗q = 0, again by the vanishing lemma (1). �

Corollary 5.1.5. If h∼(X) and h∼(Y ) are finite dimensional, then so is
h∼(X × Y ). In particular, if C is a curve then ch(Cn) is finite dimensional for all
n.

5.2. Smash Nilpotence of Morphisms

This section is a digression and a preparation for § 5.3, but it is of substantial
interest itself.

Definition 5.2.1. A morphism f : M → N in Mot∼(k) is called smash-
nilpotent or tensor-nilpotent if for some integer n > 0 the cycle class

[Γf × · · · × Γf ] ∈ C∼(X × Y )nQ � C∼(X
n × Y n)Q

vanishes. In other words, f ∼⊗ 0 if for some n > 0 the class of the n-th exterior
product f⊗n in C∼(X

n × Y n)Q vanishes. If ∼ = ∼rat, this means that the as-

sociated correspondence Γf ∈ Corrrat(X × Y )Q is smash nilpotent in the sense of
Chapter 1.

Remarks 5.2.2. 1) If πi is the projection from X1 × · · · ×Xn × Y1 × · · · × Yn

onto the factor Xi × Yi the exterior product of the n morphisms fi : Xi → Yi,
i = 1, . . . , n can be explicitly given as

f1 ⊗ · · · ⊗ fn = π∗
1(f1) · . . . · π∗

n(fn) (27)

2) The notion of smash-nilpotence makes sense in any Q–linear tensor category.

Lemma 5.2.3. Let f, g : M → N be smash-nilpotent, then f + g and f − g are
smash-nilpotent.

Proof : The proof of Proposition 1.2.10 goes through with ∼rat replaced by ∼. �
The main result in this section is:

Theorem 5.2.4. Let f : M → M in Mot∼(k) be smash nilpotent of order n,
i.e. f⊗n = 0. Then fn = f◦ · · · ◦f︸ ︷︷ ︸

n times

= 0. In other words: smash nilpotence implies

nilpotence.

This, in turn, is implied by the following

Proposition 5.2.5. Let f : M → N in Mot∼(k) be smash nilpotent of order
n and let gi : N → M , i = 1, . . . , n − 1 be morphisms in Mot∼(k). Then the
composition f◦gn−1◦f◦ · · · ◦f◦g1◦f vanishes.

Sketch of proof. Let M = (X, p,−), N = (Y, g,−), and pull everything back to the
product (X×Y ×X)×· · ·× (X×Y ×X) in the obvious way. This gives the result.
For simplicity we illustrate the method by proving the following
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Lemma 5.2.6. Suppose we have varieties X1, X2, X3 and X4 and correspon-
dences Γ1 ∈ Corr∼(X1, X2)Q, Ω ∈ Corr∼(X2, X3)Q and Γ2 ∈ Corr∼(X3, X4)Q. If
Γ1 × Γ2 = 0, then the composition Γ2◦Ω◦Γ1 vanishes.

Proof : We denote by π134 : X1 ×X2 ×X3 ×X4 → X1 ×X3 ×X4 the projection
and likewise for π14 : X1×X3×X4 → X1×X4 and π13 : X1×X2×X3 → X1×X3.

Start out with the cycles

α = {(Γ1 ×X3) · (X1 × Ω)} ×X4 ∈ C∼(X1 ×X2 ×X3 ×X4)Q

β = X1 × Γ2 ∈ C∼(X1 ×X3 ×X4)Q.

Now π134 = π13 × idX4
and

α · π∗
134(β) = (Γ1 ×X3 ×X4) · (X1 × Ω×X4) · (X1 ×X2 × Γ2)

= (Γ1 × Γ2) · (X1 × Ω×X4)
= 0.

Apply the projection formula:

0 = (π134)∗(α · π∗
134(β)) = (π134)∗(α) · β

and note that

(π134)∗(α) = (π13)∗ {(Γ1 ×X3) · (X1 × Ω)} × idX4
(X4) = (Ω◦Γ1)×X4

and hence on X1 ×X3 ×X4 we have

{(Ω◦Γ1)×X4} · (X1 × Γ2) = 0

Finally, apply the projection formula for π14 to this cycle; on X1 ×X4 we then get

0 = (π14)∗ {(Ω◦Γ1 ×X4)·(X1 × Γ2} = Γ2◦Ω◦Γ1. �

5.3. Morphisms Between Finite Dimensional Motives

Proposition 5.3.1. Let M,N be two finite dimensional motives of different
parity and let f : M → N be a morphism between them. Then f is smash nilpotent.
More precisely, f⊗� = 0 if � > dimM · dimN .

Proof : Let λ, ν be two partitions of � and consider

M⊗� dλ−−→ M⊗� f⊗�

−−−→ N⊗� dν−−→ N⊗�. (28)

Since the dμ commute with correspondences the above map equals f⊗�◦dλ◦dν which
is automatically zero if λ �= ν. But since the dμ are idempotents by construction,
we get f⊗�◦dλ if λ = ν. Therefore it suffices to show that the map (28) vanishes
for � = nm + 1 also for λ = ν, where n = dimN , m = dimM . For simplicity,
consider the case where

∧m+1M = 0 and Symn+1(N) = 0. For the partition λ we
have λm+1 > 0 or λm+1 = 0. In the first case, by the vanishing lemma 5.1.3 (2) we
have TλM = 0. In the second case λ1 > n and by the vanishing lemma (1), one
has TλN = 0. �

Corollary 5.3.2. Suppose that M = (X, p,m) is evenly and oddly finite di-
mensional. Then M = 0.

Proof : It suffices to show this in the case M = (X, p, 0). Apply the previous
Proposition to p (it is the identity morphism of M). It follows that p must be
smash nilpotent and hence nilpotent. But then p = 0 since it is a projector, and so
the motive vanishes. �
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We shall now give the main application of Prop. 5.3.1.

Proposition 5.3.3. Let M = (X, p,m) be a finite dimensional motive. Then
its decomposition M = M+⊕M− into the odd and even parts is essentially unique,
i.e. for any other decomposition M = M ′

+ ⊕M ′
− into even and oddly finite dimen-

sional motives, one must have M+ � M ′
+ and M− � M ′

−. In particular, dimM is
well defined.

Indication of the proof: Write

p = p+ + p− = p′+ + p′−.

Note that p◦p± = p± = p±◦ and similarly for p′±. Now consider

(p− p′+)◦p+ : M+ → M ′
−.

By Prop. 5.3.1 this is smash nilpotent, but it goes from X to X and hence it
is nilpotent, say

[
(p− p′+)◦p+

]n
= 0. Now expanding, taking care of the non-

commutativity, we get

p+ = pn+ = polynomial(p+, p
′
+)︸ ︷︷ ︸

λ

p′+◦p+︸ ︷︷ ︸
μ

.

Since μ : M+ → M ′
+ and p+ = λ◦μ we must have λ : M ′

+ → M+. Since μ◦λ =
p+ = idM+

, by Chap. 2.§ 2.3 (viii) we then have

M ′
+ = M+ ⊕K,

where K = Ker(λ) is also evenly finite dimensional. For evenly finite dimensional
motives the dimension is well-defined. Hence dimM ′

+ = dimM + dimK, i.e.

dimM ′
+ ≥ dimM+.

But one can prove the opposite inequality in a similarly way so that we have in fact
equality and K = 0 so that M+ � M ′

+. �

5.4. Surjective Morphisms and Finite Dimensionality

Let us work with Chow motives for simplicity.

Definition 5.4.1 ([Kimu, Def. 6.5]). Let f : M → N be a morphism of
motives. Then f is called surjective if for all smooth projective varieties Z the
induced map

CH(M ⊗ ch(Z))Q → CH(N ⊗ ch(Z))Q

is surjective.

Example 5.4.2. Let φ : Xd → Ye be a dominant morphism and let
f = ch(φ) : ch(X) → ch(Y )(e− d) be the morphism between motives induced by
the closure in X × Y of the graph of φ. Then f is surjective. This applies in
particular if f is a birational dominant morphism. Replacing φ by φ× idZ we can
forget about Z and it suffices to show that f is surjective

To see this, assume first that φ is a generically finite morphism of degree r
(in particular d = e). Then we have morphisms of motives φ∗ and φ∗ for which
φ∗◦φ∗ = r id and hence φ∗ is onto.

The general case goes as follows. Construct a rational map s : Y → X which
is generically a multi-section of φ : X → Y . The closure X ′ ⊂ X of the image
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of Y under s thus lies generically finitely over Y , say φ′ = φ|X ′ → Y . For any
irreducible subvariety W ⊂ Y we have φ∗(X

′ · φ∗(W )) = rW .
Dominant rational maps are in general not surjective. Consider for example

the inverse φ : X����Y = BlP X of the blow up of a smooth projective variety X
in a point P . Then φ is not surjective because CH1(Y ) = CH1(X)⊕ ZE where E
is the exceptional variety – and E �⊂ Imφ∗.

Lemma 5.4.3 ([Kimu, Lemma 6.8]). Let f : M = (X, p,m) → N = (Y, q, n) be
a morphism of motives. The following conditions are equivalent:

(1) f is surjective;
(2) there exists a right inverse g : N → M , i.e. f◦g = idN .
(3) q = f◦s for some s ∈ Corr0(Y,X).

Proof : (2) =⇒ (1): consider

CH(N ⊗ ch(Z))
(g×idZ)∗−−−−−−→ CH(M ⊗ ch(Z))

(f×idZ)∗−−−−−−→ CH(N ⊗ ch(Z)).

Since f◦g = idN we get (f × idZ)∗◦(g × idZ)∗ = idM⊗Z on the Chow groups and
hence (f ⊗ idZ)∗ is a surjection.
(1) =⇒ (2): take Z = Y and Tq ∈ CH(Y × Y ). By Lieberman’s Lemma 2.1.3 we
have (q × idY )∗ idY = Tq and so Tq ∈ CH(N × Y ). So by assumption (1), there is
some r ∈ Corr0(X,Y ) for which

r◦Tf = (f × idY )∗r = Tq,

where the first equality follows again from Lieberman’s Lemma. Now take g :=
p◦Tr◦q. Clearly p◦g = g, and g◦q = q so that indeed g ∈ Hom(N,M), but also

idN = q = q2 = f◦Tr︸︷︷︸
q

◦q = f◦ p◦Tr◦q︸ ︷︷ ︸
g

(2) =⇒ (3) Take s = g.
(3) =⇒ (2): Take g = p◦s◦q. �

Theorem 5.4.4 ([Kimu, Prop. 6.9]). Let f : M → N be a surjective morphism
of motives. If M is finite dimensional, then so is N .

Proof : The easy case is when M is evenly finite dimensional or oddly finite dimen-
sional. In these cases it follows immediately from the above Lemma since by § 2.3.
(viii) M = N ⊕ K by surjectivity and M being evenly/oddly finite dimensional
implies the same for N and K.

The general case goes as follows: Write M = M+ ⊕ M−. One only needs to
show that N = N ′

+ ⊕N ′
− where M+ � N ′

+ and M− � N ′
−.

Write M = (X, p, 0) and N = (Y, q, 0) and consider f as a correspondence from

X to Y with f◦p = f = q◦f . By Lemma 5.4.3 there exists s ∈ Corr0(Y,X) for
which f◦s = q. Hence, since p = p+ + p− we get

q = q◦q = f◦s◦q

= f◦p◦s◦q

= f◦p+◦s◦q︸ ︷︷ ︸
q′+

+ f◦p−◦s◦q︸ ︷︷ ︸
q′−

which gives two correspondences

q′± = f◦p±◦s◦q : Y → Y. (29)
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We first claim that these are endomorphisms of the motive N , i.e. that q′±◦q = q′± =
q◦q′±. While we clearly have q′±◦q = q′±, the second equality requires verification:

q◦q′± = q◦f◦p±s◦q = f◦p◦p±◦s◦q = f◦p±◦s◦q = q′±,

While it is not clear that the q′± are projectors, we shall show that certain polyno-
mial expressions in q′± are indeed projectors. See the claims (1)–(4) below.

As a first step we show that the composition q′+◦q′− is nilpotent: we have

q′+◦q′− = f◦p+◦s◦q◦f◦p−◦s◦q.

By Prop. 5.3.1 p+◦s◦q◦f◦p− : M− → M+ is smash nilpotent and so, by Prop. 5.2.5,
the self-correspondence f◦p+◦s◦q◦f◦p−◦s◦q of Y is nilpotent, say of order k. So

0 = (q′+◦q′−)
k = (q′+◦(q − q′+))

k = (q′+ − q′
2
+)

k = q′
k
+◦q′

k
− (30)

We put

q+ := (q − (q′−)
k)k, q− := q − q+.

Observe that q◦q± = q± = q±◦q. We claim that the q± are the desired projectors.
We first make the following remark: expanding (q−t)k where q2 = q, an idempotent
as before, and t a self-correspondence of Y with q◦t = t = t◦q yields

(q − t)k = q − P (t)◦t =⇒ q − (q − t)k = P (t)◦t (31)

for some (universal) polynomial P (which, given q only depends on k). We claim:

(1) q± = q′
k
±◦r± with r+ := P k(q′+), r− := P (q′

k
−) self-correspondences of

Y ;

(2) q+◦q′k+ = q′k+;
(3) q± is an idempotent;
(4) q+◦q− = 0, q−◦q+ = 0.

To prove these claims, apply (31) with t = q′+ which yields q+ = (q−(q−q′+)
k)k =

P k(q′+)◦q
′k
+, which proves assertion (1) for q+. Applying it with t = q′−

k
shows (1)

for q−:

q− = q − q+ = q − (q − q′−
k
)k = P (q′

k
−)◦q

′k
−.

Next, again using (31) together with the nilpotency relation (30) yields

q+◦q′
k
+ = (q − P (q′

k
−)◦q

′k
−)◦q

′k
+ = q′

k
+,

which proves assertion (2) for q+. It now follows from (1) and (2) that q+ is an
idempotent:

q+◦q+ = q+◦q′
k
+◦r+ = q′

k
+◦r+ = q+.

Since we have q◦q′+ = q′+◦q = q′+ the definition of q+ implies that similar relations
hold for q+, i.e. q◦q+ = q+◦q = q+. Since q+ is an idempotent, it then follows that
q− = q − q+ is an idempotent as well. So (3) holds. Now (4) is immediate.

Finally, we show that M± surjects to (Y, q±) under f . Indeed, by (29) we have

q′± = f◦r′± with r′± = p±◦s◦q =⇒ q′
k
± = f◦t±, t± ∈ Corr0(Y,X)

and hence by assertion (1) we have likewise q± = f◦s±, s± ∈ Corr0(Y,X). This, by
Lemma 5.4.3, implies surjectivity under f . �

This theorem has important consequences:

Corollary 5.4.5. Let f : X → Y be a dominant morphism and suppose that
ch(X) is finite dimensional. Then ch(Y ) is finite dimensional.
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Proof : Using Example 5.4.2 this follows directly from Theorem 5.4.4. �

Corollary 5.4.6. If M ⊕N is finite dimensional, then so are M and N .

Proof : The projections M ⊕ N → M and M ⊕ N → N are surjective by
Lemma 5.4.3. Then apply Theorem 5.4.4. �

Since the Chow motive of a curve is finite dimensional (see § 4.6) this implies:

Corollary 5.4.7. The Chow motive of a variety morphically dominated by
a product of curves is finite dimensional. In particular this is true for an abelian
variety.

The last assertion follows since every abelian variety is dominated by the Ja-
cobian of a curve C, say of genus g which in turn is dominated by a self-product of
g times C.

An abstract consequence of the theorem is:

Corollary 5.4.8. Every motive which is a direct summand of some tensor
product of motives of curves is finite dimensional. These motives form a full tensor-
subcategory inside the category of Chow motives.

5.5. Finite Dimensionality and Nilpotence

Theorem 5.5.1. Let M = (X, p,m) and let f : M → M be a morphism of
Chow motives. Assume that M is either evenly finite-dimensional (

∧nM = 0) or
oddly finite-dimensional (Symn(M) = 0). We have

(a) There exists a nonzero polynomial G(T ) ∈ Q[T ] of degree n − 1 with
G(f) = 0.

(b) If f is numerically trivial, then f is nilpotent (more precisely, fn−1 = 0).

Remark . S. Kimura proved this in [Kimu] with n − 1 replaced by n. The
stronger form is due to U. Jannsen; see [Jann07, Theorem 6.4.3].

The proof uses two auxiliary results. The first results from a repeated appli-
cation of the projection formula to self correspondences of X, as in the proof of
Lemma 5.2.6:

Lemma 5.5.2. Let fi ∈ Corr(X,X), i = 1, . . . , n− 1. Then

fn−1◦ · · · ◦f1 = (p1n)∗
[
p∗12f1 · . . . · p∗n−1,nfn−1

]
,

where the fi are now considered as morphisms of Chow motives and where the pij
are the projections

pij : Xn → X ×X

(x1, . . . , xn) �→ (xi, xj).

The second result reads as follows; the proof is left to the reader:

Lemma 5.5.3. Let V,W,X, Y be varieties, f : V → X, g : W → Y two
morphisms and α ∈ CH(V ), β ∈ CH(W ). Consider the following diagram with the



60 5. PROPERTIES OF FINITE DIMENSIONAL MOTIVES

obvious projections

V ×W

pV

����
��
��
��
�

f×g

��

pW ���
��

��
��

��

V

f

��

W

g

��

X × Y
pX

����
��
��
��
�

pY

���
��

��
��

��

X Y

Then
(f × g)∗ (p

∗
V (α) · p∗W (β)) = p∗Xf∗(α) · p∗Y g∗(β).

We now turn to the proof of Theorem 5.5.1: By applying a Tate twist, we
may assume that M = (X, p, 0). We give the proof in the case M is evenly finite-
dimensional, i.e.,

∧nM = 0. This means that

dalt◦(p× . . .× p) =
∑

σ∈Sn

sgn(σ)Γσ(X)◦(p× . . .× p) = 0.

Let pij : X
2n → X ×X be the projection to the i-th and j-th factor. As

p× . . .× p = p∗1,n+1(p) · p∗2,n+2(p) · . . . · p∗n,2n(p)
we obtain ∑

σ∈Sn

sgn(σ)p∗1,n+σ(1)(p). . . . p
∗
n,n+σ(n)(p) = 0. (32)

Let f be an endomorphism of the motive M , i.e., f ∈ Corr0(X,X) and f◦p = p◦f =
f . Following Jannsen [loc.cit.], we consider the expression∑

σ∈Sn
sgn(σ)(p1,n+1)∗(p

∗
1,n+σ(1)(p) · . . . · p∗n,n+σ(n)(p)·

·p∗n+2,2(f) · . . . · p∗2n,n(f))

}
(33)

which vanishes by (32). We shall rewrite this expression as a polynomial in f of
degree n − 1 using Lemmas 5.5.2 and 5.5.3. Let us look at the summand corre-
sponding to a permutation σ ∈ Sn. Write σ = σ1◦σ′ in which σ1 is a cycle in which
1 occurs and σ′ is the product of the remaining cycles free from 1. Lets s be the
length of the orbit of σ1, i.e.

orbit(σ1) =
{
1, σ(1), . . . , σs−1(1)

}
.

Rearranging the factors of (33) we find that the summand corresponding to σ is of
the form

sgn(σ)(p1,n+1)∗(α · β)
where

α = p∗1,n+σ(1)(p) · p∗n+σ(1),σ(1)(f) · p∗σ(1),n+σ2(1)(p) · p∗n+σ2(1),σ2(1)(f) · . . .
. . . · p∗n+σs−2(1),σs−1(1)(p) · p∗n+σs−1(1),σs−1(1)(f) · p∗σs−1(1),n+1(p)

and β is the intersection product of the remaining factors p∗i,n+σ(i)(p) or p
∗
n+i,i(f)

with i /∈ orbit1(σ).
Write X2n = V ×W with V the product of the 2s copies of X at the places i

or n + i with i ∈ orbit1(σ) and W the product of the remaining 2n − 2s copies of
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X. By construction α = p∗V α
′ and β = p∗Wβ′. Moreover β′ is a zero-cycle on W .

Using Lemmas 5.5.2 and 5.5.3 (applied to p1,n+1 : V → X ×X and the morphism
W → Spec k) we can rewrite the summand corresponding to σ as

sgn(σ) deg(β′)(p◦f)s−1◦p = sgn(σ) deg(β′)fs−1

since p◦f = f◦p = f . If s = n, i.e., σ is an n-cycle, the corresponding summand is
(−1)n−1fn−1. For s < n we obtain monomials in f of lower degree. Hence there
exists a polynomial G(T ) ∈ Q[T ] with leading term (−1)n−1(n−1)!Tn−1 such that
G(f) = 0. This proves part (a).

For part (b), note that if f is numerically equivalent to zero, the zero-cycle β′

is numerically equivalent to zero for all σ of order less than n. Hence in this case
only the leading term of the polynomial G survives, and we obtain fn−1 = 0.

Remarks. 1) In order to see what is going on in the proof of a), the reader is
invited to write it out for n = 3.
2) With a bit more work, one can relate the polynomial G(T ) to the characteristic
polynomial of f on H∗(M); see [Jann07, Theorem 6.4.12].

5.6. Applications and Conjectures

Consider the functors

Motrat(k) → Mothom(k) → Motnum(k)
M = (X, p,m) �→ Mhom = (X, phom,m) �→ Mnum = (X, pnum,m)

(34)

The forgetful functor Motrat(k) → Mothom(k) is not faithful, i.e.

HomMotrat(k)(M,N) → HomMothom(k)(Mhom, Nhom)

is not injective in general, as is shown by the following example.

Example 5.6.1. A cycle Z ∈ Zi(X) of codimension i defines a correspondence

Z ∈ Corri(pt, X) and hence a morphism 1 = (pt, id, 0) → hrat(X)(i) = (X, id, i) in
Motrat(k) and a morphism f : L⊗i → ch(X). If Z is homologically equivalent to
zero but not rationally equivalent to zero, then f �= 0 but fhom = 0.

Definition 5.6.2. Let M be a Chow motive, and let Mhom be the image of
M under homological equivalence. The Chow motive M is a phantom motive if
M �= 0, but Mhom = 0 in Mothom(k). (Equivalently, M is a phantom motive if
M �= 0 but H(M) = 0.)

Although the functor Motrat(k) → Mothom(k) is not faithful, one expects that
phantom motives do not exist. This is the case if M is finite dimensional:

Theorem 5.6.3. Let M = (X, p,m) be a finite dimensional Chow motive.
Suppose that p is numerically trivial. Then M = 0, i.e. p = 0.

Proof : We have a decomposition M = M+ ⊕M− with projectors idM± = p± and
p± = p±◦p. By assumption idM± is numerically trivial. Hence, by Theorem 5.5.1,
they are nilpotent and hence trivial. �

Corollary 5.6.4. Suppose that M = (X, p,m) is a finite dimensional Chow
motive. Then M is not a phantom motive.

Proof : If the projector p is homologically trivial, it is numerically trivial. �
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Corollary 5.6.5. For a finite dimensional motive M , we have dimM =
dimH(M).

Proof : It suffices to see this if M is evenly or oddly finite dimensional. For M
evenly finite dimensional, the argument goes as follows. From Cor. 4.3.4 it follows
that dimM ≥ dimH(M) = dimH+(M). Set n = dimM . Then

∧n
M �= 0. Hence,

by the previous corollary, H(
∧nM) �= 0. But H+(

∧nM) =
∧nH+(M) since M

is evenly finite dimensional (again by Cor. 4.3.4) so dimH(M) ≥ n = dimM and
hence we have equality. �

Consider the ideal

JM = Ker{EndMotrat(k)(M) → EndMotnum(k)(Mnum)}.
Finite-dimensionality implies that the ideal JM is a nil-ideal, i.e., every f ∈ JM is
nilpotent:

Corollary 5.6.6. Let M be a finite dimensional motive. An endomorphism
f of M which is numerically (or cohomologically) trivial is nilpotent. (Moreover,
the order of nilpotency is uniformly bounded.)

Proof : Decompose M = M+ ⊕ M−; let p± the projectors to M± so that idM =
p+ + p− and we have a decomposition

f = (p+ + p−)◦f◦(p+ + p−)

= f+ + f− + fmix, f+ = p+◦f◦p+, f− = p−◦f◦p−, fmix = p+◦f◦p−,

so that f± are endomorphisms of M± while fmix is a morphism which does not
preserve parity and hence, by Prop. 5.3.1 and Lemma 5.2.3, is smash nilpotent,
say of order R (with R independent of f). So, by Prop. 5.2.5, if we expand out
fn, we get a sum of monomials in which fmix does not appear more than R times.
The powers of fmix are separated by powers of f+ of f− and so a typical surviving
monomial reads

fk1
± ◦f �1

mix
◦fk2

± ◦f �2
mix

◦ · · · ◦f �r
mix

◦f
kr+1

± (35)

where
r ≤ �1 + · · · �r ≤ R− 1.

On the other hand, by Theorem 5.5.1, the assumption that f and hence f± is
numerically trivial implies that they are nilpotent, say fS

± = 0 and this implies that
if n ≥ SR, at least one kj must be ≥ S and so (35) vanishes in this case. Indeed,
if all kj ≤ S − 1, we would have

n =
r+1∑
j=1

kj +
r∑

j=1

�j ≤ (r + 1)(S − 1) + (R− 1) ≤ R(S − 1) +R− 1 = RS − 1.

Summarizing, for n ≥ RS we have fn = 0. �
Corollary 5.6.7. If M is a finite dimensional Chow motive, then the ideal

JM is nilpotent.

Proof : By Corollary 5.6.6 JM is a nil-ideal and the order of nilpotency is uniformly
bounded. Hence, by a theorem of Nagata-Higman [Andr-Ka-O’S, 7.2.8] the ideal
JM is nilpotent. �

Conjecture 5.6.8 (Conjecture of Kimura-O’Sullivan). Every Chow mo-
tive is finite dimensional.
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This is related to two further conjectures:

Conjecture 5.6.9 (Conjectures N(M) and N ′(M)). The ideal JM is nilpo-
tent, respectively a nil-ideal.
In particular, taking M = ch(X) we have the Conjecture N(X): the ideal

J(X) = Ker{Corr0rat(X,X) → Corr0num(X,X)}
is nilpotent.

Indeed, by Corollary 5.6.4 and Corollary 5.6.7 we have:

Conjecture of Kimura-O’Sullivan =⇒ Conjecture N(M)
and the absence of phantom motives.

Recall Voevodsky’s conjecture 1.2.21, stating that any f : M → M which is nu-
merically trivial is smash nilpotent and hence nilpotent (Theorem 5.2.4). Hence:

Voevodsky’s Conjecture =⇒ Conjecture N ′(M).

One can in fact show that Voevodsky’s conjecture implies the Kimura-O’Sullivan
Conjecture, which is a priori stronger than N ′(M). To explain this, we need a weak
version of the standard conjecture C(X) which states that the Künneth projectors
are algebraic. Recall from § 4.5 that the sign conjecture S(X) states that the
combined sum π+

X of all the even Künneth components and the combined sum π−
X

of all the odd Künneth components are algebraic.
The crucial results are as follows.

Lemma 5.6.10 ([Jann07, Lemma 6.4.1]). Let M ∈ Motrat(k) and suppose that
JM is a nil-ideal, i.e. every f ∈ JM is nilpotent. Let Mnum be the image of M in
Motnum(k), as in (34). Then we have

(1) If Mnum = 0, then M = 0;
(2) Any idempotent in End(Mnum) can be lifted to an idempotent in End(M),

and any two such liftings are conjugate by a unit of End(M) lying above
the identity of End(M̄).

(3) If the image of f ∈ End(M) in End(Mnum) is invertible, then so is f .

Proof : For (1), note that If idM maps to zero in End(Mnum) it is nilpotent, hence
zero.

Properties (2) and (3) hold for any surjection A � Ā = A/I where A is a (not
necessarily commutative) ring with unit, and I is a (two-sided) nil-ideal. We shall
prove them in this general setting.

For (3), it suffices to assume that the element a = 1 − j ∈ A maps to 1 ∈ Ā.
But then j is nilpotent, say jr+1 = 0 and thus 1 + j + · · ·+ jr is an inverse for a.
As for (2), if e is idempotent in Ā and a is any lift in A, then (a − a2)N = 0 for
some N > 0, and it follows easily (i.e see the properties (1)–(4) in the proof of
Theorem 5.4.4) that ẽ = (1− (1− a)N )N is an idempotent lifting e. If e and e′ are
idempotents of A lying above e, then u = e′e + (1 − e′)(1 − e) lies above 1 ∈ Ā.
Thus u is invertible, and the equality e′u = e′e = ue shows that e′ = ueu−1. �

Proposition 5.6.11 ([Jann07, Cor. 6.4.9]). Let X be a smooth projective va-
riety. Then the following statements are equivalent:

(1) the Chow motive ch(X) is finite-dimensional.
(2) S(X) holds, and N(Xn) holds for all n ≥ 1.
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(3) S(X) holds, and N ′(Xn) holds for all n ≥ 1.

Proof : Write M = ch(X) = M+ ⊕M−. Then H(M+) (resp. H(M−)) is the even
(resp. odd) degree part of the cohomology H(M)). Therefore, modulo homological
equivalence, p± = πX

± . and so (1) implies S(X). By Corollary 5.6.7 (1) implies
that JM is nilpotent, i.e. N(X) holds. Since (1) also implies finite-dimensionality
of h(Xn) = h(X)⊗n, for all n ≥ 1, (1) implies (2).
(2) ⇒ (3) is trivial.
(3) ⇒ (1): If S(X) holds, the π±

X are algebraic projectors and if N ′(X) holds these
lift to orthogonal projectors π̃+ and π̃− with π̃+ + π̃− = id (using Lemma 5.6.10,
lift π+ to a projector π̃+ and let π̃− = id−π̃+). Let M± = (X, π̃±, 0). Then

M = M+⊕M−, and for b± = dimH(M±) one has
∧b++1

M+= 0 =Symb−+1(M−)
modulo homological equivalence, and hence also modulo numerical equivalence. By
Lemma 5.6.10 (1) and N ′(Xn), for n = b+ + 1 and n = b− + 1, one concludes that
this vanishing also holds modulo rational equivalence, i.e., we obtain (1). �

Now we can show:

Proposition 5.6.12. Voevodsky’s Conjecture implies the conjecture of Kimura-
O’Sullivan.

Proof : Recall that Voevodsky’s conjecture implies the standard conjecture D(X)
(postulating ∼hom = ∼num) (see the lines after the statement of Voevodsky’s Con-
jecture 1.2.21). By the discussion in § 3.1.4 we have D(X) =⇒ A(X,L) and if this
holds for all smooth projective X, it implies B(X). But B(X) =⇒ C(X) and so
in particular S(X) holds for all X ∈ SmProj(k). Moreover, Voevodsky’s conjecture
implies conjecture N ′(X) (see the previous page). Hence also N ′(X) holds for all
X ∈ SmProj(k) and ch(X) is finite dimensional by Prop. 5.6.11. �

We conclude this chapter by mentioning two further important consequences
of finite dimensionality. The relevance of these results will be clarified in the next
two chapters where also some auxiliary results will be explained.

Let us first recall (§ A-3):

Bloch Conjecture for surfaces: H2(S)trans = 0 =⇒ T (S) = 0

Here S is a smooth projective surface defined over an algebraically closed field k.
The assumption H2(S)trans = 0 means that all of H2(S) comes from algebraic
cycles (so, if k = C this is equivalent to pg = 0). Recall (see formula (10)) also that

T (X) := Ker
[
CHhom

0 (X)
albX−−−→ Alb(X)

]
.

Proposition 5.6.13. The Bloch Conjecture holds if ch(S) is finite dimensional.

Proof : In § 6.3.2 we shall see that we can unconditionally construct a Chow
motive t2(S) = (S, p, 0) which is a direct summand of ch(S) with the following two
properties:

• its cohomology is H2(S)trans;
• its Chow group is T (S)⊗Q.

Since ch(S) is assumed to be finite dimensional, by Cor. 5.4.6 any direct summand
is. In particular t2(S) is finite dimensional. But by assumption its cohomology
H2(S)trans is trivial from which it easily follows that p is homologically equivalent
to zero and hence by Theorem 5.5.1 the projector p is nilpotent and therefore p = 0.
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It follows that t2(S) = 0 an hence its Chow group T (S) ⊗ Q is trivial. It follows
that T (S) can only be torsion. However, Roitman’s theorem [Roi] states that the
albanese map is an isomorphism on the torsion points of T (S) and so T (S) = 0.1 �

1See [Kimu, prop. 7.6 and Cor. 7.7] for another proof which does not use the existence of
t2(S).





CHAPTER 6

Chow-Künneth Decomposition; the Picard and
Albanese Motive

In this Chapter —as before — k is a field and SmProj(k) is the category of
smooth projective varieties defined over k, Motrat(k) the category of Chow-motives
over k and for X,Y ∈ SmProj(k) the k-correspondences from X to Y with rational
coefficients are denoted by Corr(X,Y ).
We choose, once and for all, a Weil-cohomology theory H(−), for instance étale
cohomology Hét(Xk̄,Q�) where � �= char(k).1

6.1. The Künneth and the Chow-Künneth Decomposition

6.1.1. Künneth Conjecture. Recall from § 3.1.1 that if X=Xd and Δ(X)⊂
X ×X the diagonal of X then

γX×X(Δ(X)) =

2d∑
i=0

Δtopo
i (X) ∈ H2d(X ×X) =

2d⊕
i=0

H2d−i(X)⊗Hi(X).

Recall the notation for the topological cycle class Δtopo
i ∈ H2d−i(X)⊗Hi(X), the

i–th Künneth component of the diagonal. Using the isomorphism

H2d−i(X)⊗Hi(X) ∼= Hi(X)∨ ⊗Hi(X) ∼= Hom(Hi(X), Hi(X))

induced by Poincaré duality, we can view Δtopo
i as a mapH∗(X) → H∗(X) that acts

as the identity on Hi(X) and as zero on the other cohomology groups. Then (see
§ 3.1.1) the Künneth conjecture C(X) is the assumption that there exist algebraic

cycles Δi ∈ CHd(X ×X) such that γX×X(Δi) = Δtopo
i (i = 0, . . . , 2d).

6.1.2. Main Definitions.

Definition 6.1.1. Let X = Xd ∈ SmProj(k). We say that X admits a
Chow-Künneth decomposition (C-K decomposition for short) if there exist pi(X) ∈
CHd(X ×X)Q = Corr0(X,X) for 0 ≤ i ≤ 2d such that

(1)
∑2d

i=0 pi(X) = Δ(X)

(2) pi(X)◦pj(X) =

{
0 j �= i

pi(X) j = i

(3) γX×X(pi(X)) = Δtopo
i .

Remarks. (1) So the pi(X) are projectors, orthogonal to each other, lifting
the Künneth components and they are idempotents in Corr(X,X).

1We like to stress however that the constructions below are independent of the choice of the
Weil cohomology theory (see Remark 6.2.2 3).

67
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(2) If such projectors pi(X) exist, we put chi(X) = (X, pi(X), 0). We then
have a decomposition

ch(X) =
⊕2d

i=0ch
i(X)

and call chi(X) the i–th Chow-Künneth motive of X.
(3) If X admits a k–rational point 2 e ∈ X(k), take p0(X) = e × X and

p2d(X) = X × e. These are projectors, orthogonal to each other, lifting

Δtopo
0 and Δtopo

2d respectively. They are the obvious candidates for the
trivial part of the Chow-Künneth decomposition.

6.1.3. Chow-Künneth Conjecture. The following Conjecture is due to the
first author [Mur93, Part I].

Conjecture 6.1.2 (Conjecture CK(X)). Every smooth projective variety ad-
mits a Chow-Künneth decomposition.

Example 6.1.3. Let C be a smooth, projective curve that has a k–rational
point e ∈ C(k). Take p0(C) = e×C, p2(C) = C × e and p1(C) = Δ(C)− p0(C)−
p2(C). These projectors give a Chow-Künneth decomposition

ch(C) = ch0(C)⊕ ch1(C)⊕ ch2(C)

with chi(C) = (C, pi(C), 0) (i = 0, 1, 2.) See § 2.7.

Remarks. (1) Clearly the Chow-Künneth conjecture CK(X) implies the
Künneth conjecture C(X).

(2) We expect that the projectors can be chosen such that

p2d−i(X) = Tpi(X).

If this is the case, we say that the C-K decomposition is self-dual.

The Kimura-O’Sullivan Conjecture 5.6.8 has an important consequence:

Proposition 6.1.4. If X has finite dimensional Chow motive, the Künneth
conjecture C(X) implies the Chow-Künneth conjecture CK(X).

Proof : By Prop. 5.6.11 if ch(X) is finite dimensional we know that conjecture
N(X) (5.6.9) is true. Now [Jann94, Lemma 5.4] states that N(X) together with
C(X) implies CK(X).

6.1.4. Further Remarks. The Künneth components Δtopo
i (X) are unique,

but the projectors pi(X) are not unique as cycle classes! For instance, on a curve
C the pi(C) depend on the choice of a k–rational point e ∈ C(k). However we

expect (conjecturally) that the Chow-Künneth motives chi(X) are unique up to a
so called natural isomorphism:

Definition 6.1.5. A morphism f : M = (X, p, 0) → M ′ = (X, p′, 0) of motives
is a natural isomorphism if it is an isomorphism and f is induced by the identity
on the underlying variety X, i.e., if f = p′◦p. In this case we say that M and M ′

are naturally isomorphic. Note that if p◦p′◦p = p and p′◦p◦p′ = p′, then f = p′◦p
and g = p◦p′ are natural isomorphisms which are moreover inverse to each other.

2If X does not admit a k–rational point we take a k-rational positive 0-cycle A, of degree n
say, and we put p0(X) = 1

n
(A×X) and p2d(X) = 1

n
(X × A).
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For instance, if in ch0(X) = (X, p0 = e×X, 0) we take another k–rational point
e′ and p′0 = e′ ×X then we have indeed (as one checks immediately) p0◦p′0◦p0 = p0
and p′0◦p0◦p′0 = p′0, and the same result holds for p2d = X × e and p′2d = X × e′.
Moreover if X is a curve and we put p1 = id−p0 − p2, p

′
1 = id−p′0 − p′2 then we

also have p1◦p′1◦p1 = p1 and p′1◦p1◦p′1 = p′1.
We shall see that the conjectures stated in Chapter 7 imply that if M and

M ′ in Motrat(k) are as above and p = p′ modulo homological equivalence (i.e.,
with obvious notation Mhom = M ′

hom) then M and M ′ are naturally isomorphic in
Motrat(k) via f = p′◦p : M → M ′ and g = p◦p′ : M ′ → M ; see Corollary 7.5.8.

6.1.5. Examples Where CK(X) is Known. 3

(1) Curves (trivial; see 6.1.3)
(2) Surfaces ([Mur90], see § 6.3 below)
(3) Note that if X and Y both admit a C-K decomposition, then CK(X×Y )

is true since one can take (see also § 7.4.1)

pi(X × Y ) =
∑

r+s=i

pr(X)× ps(Y )

and we have

ch(X × Y ) =
⊕

i(
⊕

r+s=ich
r(X)⊗ chs(Y )).

Hence CK(X) is true for products of curves and surfaces.
(4) Conjecture CK(X) holds for abelian varieties. This result is already im-

plicit (but not formulated in the context of C-K decompositions) in a
paper by Shermenev [Serm]. For more modern proofs (for an abelian
scheme A over a base scheme S) see [Den-Mu, Kü93]. These mod-
ern proofs are based on the theory of the so-called Fourier transform on
abelian varieties developed by Mukai and Beauville [Muk, Beau83].

(5) Uniruled threefolds [Ang-MüS98]. Also for threefolds satisfying certain
conditions on the transcendental part of H2(X) ([Ang-MüS00], and re-
cently [MüS-Sa]).

(6) Elliptic modular varieties (certain Kuga-Satake varieties): [Gor-Ha-Mu].

For the following two examples, the projectors pi(X) can be constructed because
there is transcendental cohomology only in the middle dimension (see Appendix C).

(8) Complete intersections in projective space.
(9) Calabi-Yau threefolds.

6.1.6. Open Question. Conjecture C(X) is known for varieties defined over
a finite field Fq ([Katz-Me], the result is obtained using Deligne’s proof of the
Riemann-Weil conjecture). However, to our knowledge CK(X) is not known for
X defined over a finite field. In fact the Δi(X) are given by polynomials in the
powers of the Frobenius with rational coefficients. These polynomials give the
Künneth components for homological equivalence (loc. cit., see also [Lev08, p.
210]). Are the pi(X) given by the same polynomials?

3This is not an exhaustive list of all known examples.
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6.2. Picard and Albanese Motives

Let X = Xd ∈ SmProj(k), and let e ∈ X(k) be a k–rational point.4 We have
the two projectors p0(X) = e ×X and p2d(X) = X × e (see Chapter 2 § 2.3(iii)),
orthogonal to each other. It is possible to construct two more projectors p1(X) and
p2d−1(X) which lift the corresponding Künneth components.

Theorem 6.2.1 ([Mur90]). Let X = Xd ∈ SmProj(k) (any d > 0). There

exist p1(X) and p2d−1(X) in CHd(X ×X)Q with the following properties.

(i) p1(X) and p2d−1(X) are projectors, orthogonal to each other and orthog-
onal to p0(X) and p2d(X). The projectors p1(X) and p2d−1(X) lift the

Künneth components Δtopo
1 and Δtopo

2d−1 and satisfy the relation Tp1(X) =
p2d−1(X).

(ii) Let ch1(X) = (X, p1(X), 0) ∈ Motrat(k). Then

Hi(ch1(X)) =

{
0 i �= 1

H1(X) i = 1

CHi(ch1(X)) =

{
0 i �= 1

(Pic0X)red(k)Q i = 1

where PicX is the Picard scheme of X, Pic0X the connected component of
the identity and (Pic0X)red the underlying reduced scheme, i.e., the classical
Picard variety PX of X. (So we take the group of k–rational points on
the Picard variety and tensor this group with Q.)

More precisely, p1(X) acts as the identity on H1(X) and on the Pi-
card variety PX = (Pic0X)red. Hence p1(X) also acts as the identity on
CH1

alg(X)Q.

(iii) Let ch2d−1(X) = (X, p2d−1(X), 0). Then

Hi(ch2d−1(X)) =

{
0 i �= 2d− 1

H2d−1(X) i = 2d− 1

CHi(ch2d−1(X)) =

{
0 i �= d

AlbX(k)Q i = d

where AlbX is the Albanese variety AX of X. More precisely, p2d−1(X)
acts as the identity on H2d−1(X) and on the Albanese variety AlbX .

Remarks 6.2.2. (1) The above statements about the actions of p1(X) and
p2d−1(X) remain true after an arbitrary base extension K of k. This
follows from the proof of the theorem (see below) and it depends on the
fact that the Picard and Albanese variety are already defined over the
same field of definition as the variety X, i.e., over k.

(2) Because of the properties (ii) and (iii) we call ch1(X) the Picard motive

of X and ch2d−1(X) the Albanese motive.
(3) A priori (ii) and (iii) seem, as far as the cohomology is concerned, to

depend on the choice of the Weil cohomology. However in fact we need
only the independence of H1

ét(Xk̄,Q�), � �= p), which gives by duality

also the independence of H2d−1
ét (Xk̄,Q�). The required independence is

a consequence of the fact [Mil80, p. Prop. 4.11] that H1
ét(Xk̄,Z/�

ν) �

4See footnote 2.
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PX(X)[�ν ], the group of torsion points of order �ν inside the reduced
Picard scheme.

Proof of Theorem 6.2.1. (see also [Mur90] and [Scholl, p. 176])
First we give the idea of the proof.Let LX be the Lefschetz operator of X

and ΛX the lambda operator (see § 3.1.2). The standard conjecture B(X) predicts
that ΛX is algebraic. This is not yet known, but the iterated operator

Λd−1
X = ΛX◦ΛX◦ . . . ◦ΛX

is algebraic and is a divisor class [Klei68] The proof of the existence of p1(X) and
p2d−1(X) is an algebraic refinement of this result that uses the theory of the Picard
and Albanese variety as recalled in Appendix A-2. This may not seem apparent
at first sight; see however Remarks 6.2.5 (1), in which we explain that Λd−1

X is
identified with the correspondence induced by the isogeny β constructed below.
This isogeny in turn is used to construct the two projectors p1 and p2d−1.

We now proceed to the actual proof.
(a) Construction of p1(X) and p2d−1(X). We have fixed a point eX ∈ Xd ⊂ PN .
Consider the family H(t) (t = (t1, . . . , tr) ∈ T , a linear space) of hyperplanes
through eX and the family of curves (linear curve sections)

C(t) = X ∩H(t1) ∩ . . . ∩H(td−1)
i(t)
↪→ X.

Take a fixed smooth curve

C = C(t0)
i
↪→ X, t0 ∈ T (k).

Such a curve C is a typical curve (in Weil’s terminology courbe typique [Weil54,
p. 118](=Collected Papers, Vol 2, p. 150), i.e. C is a linear section of X and all
points of C are smooth, both on X as well as on C. From such a curve we get
morphisms of abelian varieties

pic(i) : PX → J(C), alb(i) : AlbC → AlbX .

In the sequel we shall write

i∗ = pic(i), and i∗ = alb(i)

by abuse of notation. Using the identification PC = AlbC we obtain the morphism

α = i∗◦i∗ : PX → AlbX .

Lemma 6.2.3. The morphism α : PX → AlbX satisfies the following properties.

(1) α is an isogeny of abelian varieties;
(2) α does not depend on the choice of the point t0 used to construct the curve

C = C(t0);
(3) α̂ = α.

Proof : We start with part (1). Since (Pic0X)red and AlbX have the same dimen-
sion, it suffices to show that Ker(α) is finite. By [Weil54, Thm. 7, Cor. 1, p.
127](=Collected Papers, vol. 2, p. 159), since C is a typical curve, the morphism
i∗ : PX → J(C) = PC has finite kernel. Let P ′

X be the image of i∗ in J(C) and
consider the canonical factorization

PX
i1−−→ P ′

X

j−→ J(C).
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Since i1 is an isogeny, to see that α = i∗◦i∗, where i∗ = alb(i), has finite kernel it
suffices to show that i∗◦j has finite kernel. Now

i∗ : J(C) = Ĵ(C) → AlbX = AX

is the dual of i∗ and hence i∗ = î∗ = ı̂1◦ĵ with ı̂1 again an isogeny. So, finally, it
suffices to show that

ĵ◦j : P ′
X → J(C) � Ĵ(C) → P̂ ′

X

has finite kernel.
Now recall that the identification of the jacobian with its dual is obtained via

the theta-divisor Θ:

ϕθ : J(C)
�−→ Ĵ(C)

x �→ [Θx −Θ],

where Θx is the translate of the the theta-divisor by x and [Θx − Θ] is the linear
equivalence class of the divisor Θx − Θ. Now, quite generally, if λ : A → B is a

homomorphism of abelian varieties, then λ̂ : B̂ → Â is given by λ∗(D) for a divisor
class D on B algebraically equivalent to zero [La, second half of p.124]; so in our
case ĵ(D) = j∗(D) = D · P ′

X . Therefore, ĵ◦j is given as follows: starting with
y ∈ P ′

X and setting x = j(y), one has

(ĵ◦j)(y) = (Θx −Θ) · P ′
X = (Ey − E) = ϕE(y),

where E = Θ · P ′
X . Since Θ is ample on J(C), also E is ample on P ′

X . It now
follows that Ker(ĵ◦j) = KerϕE is finite upon applying the following general fact
about abelian varieties [La, p. 85] or [Mum74, App I, p.57–58]: if A is an abelian
variety and E is a divisor class on A the homomorphism ϕE has finite kernel if and
only if E is ample.

Next we turn to the proof of part (2) of the Lemma. The map α does not
depend on the choice of t0 in the construction of C since by a result of Chow (see
[La, Thm. 5, p. 26]) there is no continuous family α(t) : (Pic0X)red → AlbX of
homomorphisms, and so α(t) is defined over k itself and hence α(t) = α(t0).

5

Part (3) of the Lemma follows formally:

α̂ = î∗◦i∗ = î∗◦î∗ = i∗◦i∗ = α. �

Remarks. (1) An alternative proof of part (1) of the Lemma is obtained
via �–adic cohomology � �= char(k) and hard Lefschetz as follows. Hard
Lefschetz states that we have an isomorphism

Ld−1
X : H1

ét(Xk,Q�)
∼−→ H2d−1

ét (Xk,Q�).

Now recall that for the �n–torsion points of the Picard variety we have
([Mil80, Cor. 4.18, p.131])

PX [�n]
�−→ H1

ét(Xk̄,Z/�
nZ). (36)

Passing to the limit of this directed system, we get

T�(PX)
∼−→ H1

ét(Xk̄,Z�)

5In order to check that Chow’s theorem applies we need to observe that k(t) is primary
extension of k since k(t) ∩ k̄ = k.
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where T�(PX) = lim←−
n

PX [�n] is the �–adic Tate group of PX (and recall the

definition of H1
ét(Xk̄,Z�) from Chapter 1, Ex. 1.2.14 (2) ). Similarly we

have

T�(AX)
∼−→ H2d−1

ét (Xk̄,Z�).

Therefore hard Lefschetz translates into an isomorphism

Ld−1
X : T�(PX)⊗Z�

Q�
∼−→ T�(AX)⊗Z�

Q�

and since Ld−1
X corresponds to our homomorphism α : PX → AX it fol-

lows that (Kerα)0 = 0, where the superscript 0 denotes the connected
component of the identity. Hence α has finite kernel and is an isogeny.

(2) By Poincaré reducibility [La, Thm. 6, p. 28], [Mum74, Thm. 1, p. 160]
we have J(C) � P ′

X + (Ker ĵ)0.
(3) By Chow’s theory of the Picard variety [La, Ch. 7, Thm. 12, p. 223] we

have for a general linear curve section i(t) : C(t) ↪→ X that (Pic0X)red is
the k(t)/k-trace of the family J(C(t)) and then

J(C(t)) � i(t)∗(Pic0X)red +Ker i(t)0∗.

Corollary 6.2.4. (1) There exists an isogeny β : AlbX → PX such that
α◦β = m. idAlbX

for some integer m;

(2) β = β̂;
(3) β◦α = m. idPX

.

Proof : Immediate from the theory of abelian varieties [La, p. 29]. �

Remarks 6.2.5. (1) The isogeny β induces the iterate Λd−1
X of the lambda

operator.
(2) As we have seen in Appendix A-2 (b), β determines a divisor classD(β) :=

Φ(β) ∈ CH1(X × X) = Corr1−d(X,X) normalized by D(β)(e) = 0 and
TD(β)(e) = 0. The relation β = β̂ implies that D(β) = TD(β).

Now define

p1(X) :=
1

m
D(β)◦Γi◦

TΓi.

By abuse of notation we shall also write

p1(X) =
1

m
D(β)◦i∗◦i∗.

To be precise i∗ = TΓi is a degree 0 correspondence from X to C, i∗ = Γi a
correspondence from C to X of degree d− 1 so that p1(X) is a self-correspondence
of X of degree 0 as it should be. Introduce also the degree 0 correspondence D(β)C
of C to X figuring as the first half of the decomposition of p1(X):

p1(X) =
1

m
D(β)◦i∗︸ ︷︷ ︸
D(β)C

◦i∗. (37)

Informally, p1(X) is the restriction of 1
mD(β) to C×X, viewed as a cycle on X×X.

Also note that D(β)C ∈ CH1(C ×X)Q.

Lemma 6.2.6. The correspondence p1(X) is a projector on X.
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Proof : It suffices to show that

1

m
D(β)◦i∗◦i∗◦D(β)◦i∗ = D(β)◦i∗.

This is a relation between divisor classes on C × X. This translates, via the
isomorphism Φ−1 from Appendix A, section A-2 (b), in a relation between homo-
morphisms of abelian varieties from J(C) to PX . More precisely, the divisor class
D(β)◦i∗on the right hand side corresponds to β◦ alb(i) : J(C) → PX . On the left
hand side, consider first the divisor class i∗◦D(β)◦i∗ ∈ CH1(C×C). By A-2 (c) this
corresponds to the homomorphism

pic(i)◦β◦ alb(i) : J(C) → AX → PX → J(C).

Combining this with the divisor class 1
mD(β)◦i∗ and using the fact mentioned at

the end of A-2 (c) we obtain on the left hand side the homomorphism

1

m
β◦ alb(i)◦pic(i)◦β◦ alb(i) : J(C) → PX .

Therefore in order to prove the relation of divisor classes stated above, we have to
prove the following relation of homomorphisms from J(C) to PX :

1

m
β◦ alb(i)◦pic(i)◦β◦ alb(i) = β◦ alb(i),

but since alb(i)◦pic(i)◦β = α◦β = m. idAlbX
this is true. �

Note for later:

p1(X) can be supported by a cycle on C ×X. (38)

Finally, put p2d−1(X) = Tp1(X). Clearly this is again a projector on X. This
finishes part (i) of the theorem, except for the assertions on orthogonality (which
will be proved later) and the lifting of the Künneth components, see below.
(b) Properties of ch1(X) = (X, p1(X), 0). We now turn to the proof of part (ii)
of the theorem. First we look at the action of p1(X) on the Chow groups. This
action factors in the following way:

CHp(X)
i∗−−→ CHp(C)

i∗−−→ CHp+d−1(X)
D(β)∗−−−−→ CHp(X).

For Z ∈ CHp(X) with p > 1 we immediately get p1,∗(Z) = 0 since i∗Z = 0. For
p = 0 we must look at p1,∗[X] = n[X], n ∈ Z. Composing with the homomorphism

e∗ : CH0(X) → CH0(X) (evaluation at e) and using Remark 6.2.5 (2), we obtain
n = 0 since TD(β)∗(e) = 0.

Finally we turn to the case p = 1. For every D ∈ CH1(X) we get p1(X)∗(D) =
D(β)C(C · D), and this divisor is algebraically equivalent to zero because of the
normalization D(β)(e) = 0 (recall that by construction e ∈ X lies on the curve C!).
Hence p1(X)∗(D) ∈ CH1

alg(X). Now an element D ∈ CH1
alg(X) corresponds to a

point a ∈ PX = Pic0X(k), and p1(X) maps D to 1
mD(β)◦i∗◦i∗(D) which corresponds

to the point 1
mβ◦α(a) = a on the Picard variety PX since β◦α = m. idPX

, hence

p1(X) acts as the identity on PX and on CH1
alg(X).

Remark 6.2.7. We are working with Chow groups with Q–coefficients, but we
could have done the construction of p1(X) and p2d−1(X) using CH∗(X × X)[ 1m ],
where m is the integer appearing via the isogenies α and β in the identity α◦β =
m. idAlbX . Note that the integerm is independent of the choice of a Weil cohomology
theory and also the action of p1(X) on PX (resp. the action of p2d−1(X) on AlbX)
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is independent of the choice of the cohomology theory. Hence p1(X) and p2d−1(X)
act on CH∗(X ×X)[ 1m ] and H∗

ét(Xk,Z/�
νZ) provided that we choose a prime � �= p

such that (�,m) = 1.

Next we turn to the cohomology. For the action on Hj(X) with j > 2 we get
zero, since i∗ acts as zero. For j = 2, let σ ∈ H2(X). Then we have p1(X)∗(σ) =
D(β)C(i

∗(σ)) and i∗(σ) ∈ H2(C). Now either i∗(σ) = 0 or i∗(σ) = γC(D) withD ∈
CH1(C)Q. However in the latter case we have already seen above that D(β)C(D) ∈
CH1

alg(X)Q since D(β)C(e) = 0, hence its cohomology class is zero.

(c) Properties of ch2d−1(X) = (X, p2d−1(X), 0). Since p2d−1(X) = Tp1(X), the
assertions in part (iii) of the theorem follow from those of (i) as far as cohomology
is concerned.

So consider the action of p2d−1(X) on the Chow groups. Since by (38) the cycle
p1(X) can be supported on C ×X, where C is the linear curve section, it follows
that p2d−1(X) can be supported on X ×C and hence (p2d−1(X))∗(Z) is supported

on C for every Z ∈ CHj(X)Q. Consequently, p2d−1(X) acts as zero on CHj(X)Q if

j /∈ {d−1, d}. For Z ∈ CHd−1(X)Q we get (p2d−1(X))∗(Z) = n(Z) · [C], so we must
show n(Z) = 0. This is again done by evaluation at e, using the normalization
TD(β)(e) = 0.

Finally let Z ∈ CHd(X)Q and put Z ′ := (p2d−1(X))∗Z. Since p2d−1(X) is
orthogonal to p2d(X) it follows that

(p2d(X))∗(Z
′) = (p2d(X)∗◦p2d−1(X))∗(Z) = 0

on the one hand, but equals (p2d(X))∗(Z
′) = deg(Z ′) ·Z ′ on the other hand so that

degZ ′ = 0. Therefore it suffices to consider zero cycles of degree zero.
Since p1(X) operates as the identity on (Pic0X)red, also p2d−1(X) operates as

the identity on AlbX . Hence Ker(p2d−1(X))|CHd(X)Q is contained in the Albanese
kernel

T (X)Q = Ker{CHd
hom(X)Q → AlbX}.

To show that T (X)Q = Ker(p2d−1(X)) note that by Remark 6.2.5 (2)

p2d−1(X) = Tp1(X) =
1

m
i∗i

∗TD(β) =
1

m
i∗i

∗D(β) = i∗◦TD(β)C .

By using the commutative diagram (where for simplicity of notation we omit to
write the subscripts which indicate tensoring with Q)

CHd
hom(X)

p2d−1(X) ��
TD(β)C




















albX

��

CHd
hom(X)

albX

��

CH1
hom(C)

∼=albC

��

i∗

�������������

J(C)
alb(i∗)

����
���

���
���

AlbX
id=alb(p2d−1(X)) ��

alb(TD(β)C)
�������������

AlbX .

it follows that Ker(p2d−1(X)) = Ker(albX).
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Remark 6.2.8. Note that the essential part in the above proof is our knowl-
edge of the situation on curves; the proof boils down to the isomorphism albC :
CH1

hom(C)
∼−→ J(C).

(d) Orthogonality. This is the only part of Theorem 6.2.1 that remains to be
proved. We leave it to the reader to show that p1(X) and p2d−1(X) are orthogonal
to both p0 and p2d (see for instance [Scholl, p. 176-177]).

Lemma 6.2.9. If d ≥ 2 then p2d−1(X)◦p1(X) = 0.

Proof : We have

p2d−1(X)◦p1(X) =
1

m2
i∗◦i∗◦TD(β)◦D(β)◦i∗◦i∗.

If d > 2 then TD(β)◦D(β) ∈ Corr2−2d(X,X) = CH2−d(X ×X) vanishes. If d = 2
then TD(β)◦D(β) = n[X × X] for some integer n. By evaluation at e we obtain
n = 0, since D(β)(e) = 0. �

Lemma 6.2.10. If d > 2 then p1(X)◦p2d−1(X) = 0.

Proof : We have

p1(X)◦p2d−1(X) =
1

m2
D(β)◦i∗◦i∗◦i∗◦i∗◦TD(β).

Note that

i∗◦i∗ = p13,∗((
TΓi ×X) · (X × Γi)) = Δ(C) ⊂ X ×X.

Hence

i∗◦i∗◦i∗◦i∗ = p13,∗{(Δ(C)×X) · (X ×Δ(C))}
vanishes if d > 2 for dimension reasons (in fact the intersection product (Δ(C) ×
X) · (X ×Δ(C)) is zero). �
End of the Proof: the case d = 2 (Surfaces)

In the case of a surfaceX = S we have p3(S)◦p1(S) = 0 but we can not conclude
that p1(S)◦p3(S) = 0. Indeed, let us calculate p1(S)◦p3(S) using

i∗◦i∗◦i∗◦i∗ = Δ(A),

where A = C · C is a zero–cycle on S. If we write A =
∑

i ai, we find that

p1(S)◦p3(S) =
1

m2

∑
i

TD(β)(ai)×D(β)(ai)

is a sum of terms, each of which is a product of two divisors (and each of these
divisors is algebraically equivalent to zero on S).

So, we need to correct the p1(S) and p3(S) for d = 2. Let us denote (for d = 2
only!) the previously constructed projectors by p1(S)

old and p3(S)
old, and define6

p1(S)
new = p1(S)

old − 1
2p1(S)

old◦p3(S)
old

p3(S)
new = p3(S)

old − 1
2p1(S)

old◦p3(S)
old

}
. (39)

Then these new correspondences satisfy all the requirements of the theorem (the
orthogonality is checked formally using the relation p3(S)

old◦p1(S)
old = 0.)

6Following a suggestion of Scholl, we take the above correction of both p1(S) and p3(S) with
a factor 1

2
in order to keep the relation p3(S) = Tp1(S).
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Remark 6.2.11. The motives (S, pold1 (S), 0) and ch1(S) = (S, p1(S)
new, 0) are

naturally isomorphic (see Definition 6.1.5), as the morphisms

f = p1(S)
new◦p1(S)

old : (S, pold1 (S), 0) → ch1(S)

and

g = p1(S)
old◦p1(S)

new : ch1(S) → (S, pold1 (S), 0)

are inverse to each other. (One checks this by an easy computation using the
identity p3(S)

old◦p1(S)
old = 0.) Taking the transpose, we get the same result for

ch3(S) and (S, p3(S)
old, 0).

6.2.1. On the Uniqueness of the Picard and Albanese Motives. The
construction of ch1(X) and ch2d−1(X) depends on choices, like the choice of the
polarization, the choice of the linear curve section i : C ↪→ X and in fact upon
the entire method of construction. The projectors pi themselves are certainly not
unique, as is already clear in the case of curves where the pi depend on the choice
of a point e ∈ X. However the first author conjectures that the chi(X) are unique
up to natural isomorphism in Motrat(k) (recall here Definition 6.1.5). This is true
in the case of curves (see subsection 6.1.4), and in general it would follow from the
conjectures stated in the next Chapter 7; see Cor. 7.5.8.

In fact we have unconditionally that the motives ch1(X) and ch2d−1(X) are
unique up to isomorphism due to the following theorem.

Theorem 6.2.12. The Picard motive ch1(X) = (X, p1(X), 0) from Theorem
6.2.1 is isomorphic to a direct summand of the motive ch1(C) = (C, p1(C), 0),
where C is the linear section of X used in the construction of p1(X). It has finite
dimension in the sense of Kimura–O’Sullivan. Moreover in Motrat(k) the motive
ch1(X) is isomorphic to the motive that corresponds to the Picard variety PX of
X under the equivalence of Theorem 2.7.2 (c). Hence ch1(X) is unique up to
isomorphism in Motrat(k).

A similar result holds for the Albanese motive ch2d−1(X) = (X, p2d−1(X), 0)
and the Albanese variety AX .

Proof : By Remark 6.2.11 (which holds in any dimension) we may work with
pold1 (X), which we shall simply denote by p1(X). By (37) we have

p1(X) = D(β)C◦i∗ = p1(X)◦D(β)C◦(p0(C) + p1(C) + p2(C))◦i∗◦p1(X).

Using the normalisations D(β)(e) = 0 and TD(β)(e) = 0 from Remark 6.2.5 (2), it
is straightforward to check thatD(β)C◦p0(C) = 0 and D(β)C◦p2(C) = 0. Therefore
we have p1(X) = f◦g with

f = p1(X)◦D(β)C◦p1(C) : ch1(C) → ch1(X)

g = p1(C)◦i∗◦p1(X) : ch1(X) → ch1(C).

Hence we can apply 2.3 (vii), and we obtain that π = g◦f is a projector, ch1(X) �
(C, π, 0) and

ch1(C) � ch1(X)⊕ (C, p1(C)− g◦f, 0).

Hence ch1(X) has finite dimension in the sense of Kimura–O’Sullivan by Theorem
4.6.1 and Corollary 5.4.6.

Now turning to the relation with Theorem 2.7.2, we shall use the same notation
as there. Consider F �(π). This is a projector in the category of abelian varieties
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up to isogeny. Using the normalizations of the divisor class β from Remark 6.2.5
(2), a straightforward calculation shows that F �(π) = p where

p =
1

m
pic(i)◦β◦ alb(i) : J(C) → J(C).

The image of this projector in the category of abelian varieties up to isogeny is, by
the definition of p and by Lemma 6.2.3, isogenous with the Picard variety PX of X.
Therefore PX corresponds to the motive (C, π, 0) in the category M′ from Theorem
2.7.2, and above we have seen that (C, π, 0) is isomorphic to ch1(X) in Motrat(k).
As the Picard variety is unique up to isomorphism by its universal property (stated
in Appendix A-2), the corresponding motive in M′ is unique up to isomorphism.

The assertion for ch2d−1(X) follows by taking the transpose of the above rela-
tions.

�
In the full subcategory Motrat,fin(k) ⊂ Motrat(k) of Chow motives that are finite

dimensional in the sense of Kimura–O’Sullivan we have the following result.

Theorem 6.2.13 ([Kimu-Mur, Thm. 3.7]). Let X = Xd be a smooth, pro-

jective variety, and let ch1(X) = (X, p1(X), 0) be the Picard motive as constructed
above. Let N = (X, q, 0) ∈ Motrat,fin(k) be such that q is a lifting in CH∗(X ×X)Q
of the first Künneth component. Then q◦p1(X) : ch1(X) → N and p1(X)◦q : N →
ch1(X) are inverse isomorphisms in Motrat(k). A similar statement holds for the
Albanese motive.

The main ingredients of the proof are

(1) the fact that ch1(X) ∈ Motrat,fin(k);
(2) the results by S.–I. Kimura on motives in Motrat,fin(k) and morphisms

f ∈ CH∗(X ×X)Q that are numerically equivalent to zero;
(3) a reduction of the question whether the above morphisms in Motrat(k)

are isomorphisms to the same question in Mothom(k) (where it is clearly
true).

6.3. The Case of Surfaces

Theorem 6.3.1 ([Mur90]). Let S be a smooth, projective, irreducible surface
defined over k with a rational point e ∈ S(k). Then S has a Chow–Künneth de-
composition.

Proof : By the previous results we have projectors p0(S), p1(S), p3(S) and p4(S)
orthogonal to each other. Define p2(S) = Δ(S) − p0(S) − p1(S) − p3(S) − p4(S).
Then p2(S) is a projector, orthogonal to the other ones. Clearly this gives a Chow–
Künneth decomposition. �

6.3.1. Distribution of the Chow Groups over the Chow–Künneth Mo-
tives. Put chi(S) = (S, pi, 0) (i = 0, . . . , 4). By Theorem 6.2.1 (ii) and (iii) we have

Hi(chj(S)) =

{
0 j �= i

Hi(S) j = i.

It follows from the previous results (Theorem 6.2.1) that the Chow groups CHj(S)Q
are distributed over the chi(S) as follows:
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M ch0(S) ch1(S) ch2(S) ch3(S) ch4(S)

CH0(M) CH0(S)Q 0 0 0 0

CH1(M) 0 Pic0S(k)Q NS(S)Q 0 0

CH2(M) 0 0 T (S)(k)Q AlbS(k)Q Nm(S)Q

where as before Pic0S is the Picard variety, AlbS the Albanese variety, NS(S) =
CH1(S)/CH1

alg(S) is the Néron–Severi group, T (S) = Ker{CH2
alg(S) → AlbS} is the

Albanese kernel and

Nm(S) = CH2(S)/CH2
num(S) = CH2(S))/CH2

alg(S).

Hence Nm(S)Q = Q; moreover the above table remains valid after a base extension
K ⊃ k.

6.3.2. Refined Chow–Künneth Decomposition [Kahn-M-P].

Proposition 6.3.2. At the cost of a finite algebraic field extension (which we
shall neglect in the sequel) we can split p2(S) uniquely into

p2(S) = p2(S)
alg + p2(S)

trans,

orthogonal to each other and to the other pi(S) and such that the distribution of
the Chow groups and their cohomology is as in the following table.

M ch2alg(S) ch2trans(S)

H2(M) H2
alg(S) H2

transS

CH0(M) 0 0

CH1(M) NS(S)Q 0

CH2(M) 0 T (S)(k)Q

This splitting leads to a unique splitting of Chow motives7

ch2(S) = ch2alg(S)⊕ ch2trans(S).

We have ch2alg(S) � L⊕ · · · ⊕ L︸ ︷︷ ︸
ρ summands

with ρ the Picard number of S.

Proof : Recall that H2(S) = H2
alg(S) ⊕ H2

trans(S), where H2
alg(S) = NS(S) ⊗Q F

(F is the coefficient field of the Weil cohomology theory) and H2
trans(S) is the

orthogonal complement of H2
alg(S) in H2(S) with respect to the cup product (or

equivalently, the quotient of H2(S) by H2
alg(S)). Now take an orthogonal basis of

divisor classes Di (i = 1, . . . , ρ).8 Moreover we take theDi such that p1(X)(Di) = 0
for all i; this is always possible, by replacing Di–if necessary–by Di − p1(X)(Di).
(This operation does not change its class in NS(S)Q since p1(X)(Di) ∈ CH1

alg(S)Q.)
Now take

palg2 (S) =

ρ∑
i=1

1

#(Di.Di)
Di ×Di.

Then palg2 is a projector, orthogonal to p0, p1, p3 and p4, and we have

palg2
◦p2 = p2◦palg2 = palg2 ,

7Note that ch2trans(S) is sometimes denoted by t2(S).
8It is at this stage that we possibly need to extend the original base field k.
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i.e., palg2 is a constituent of p2. Finally put ptrans2 = p2− palg2 . Clearly ptrans2 is again
a projector, orthogonal to pi (i �= 2) and

ptrans2 ◦p2 = p2◦ptrans2 = ptrans2 ,

i.e., ptrans2 is also a constituent of p2 and is the ”complement” of palg2 . Put ch2alg(S) =

(S, palg2 , 0) and ch2trans(S) = (S, ptr2 , 0). Then

ch2(S) = ch2alg(S)⊕ ch2trans(S).

One easily checks that each summand(
S,

1

#(Di.Di)
Di ×Di, 0

)
is isomorphic to the Lefschetz motive L and hence ch2alg(S) is a direct sum of ρ
Lefschetz motives. �

Remark . Note that ch2trans(S) is the ”mysterious” part of ch2(S) that is ”re-
sponsible” for the transcendental cohomology H2

trans(S) and for the Albanese kernel
T (S). (And if we would have constructed motives with Z[ 1m ]–coefficients, then also
for the part of the Brauer group prime to m, see [Zar, Appendix by Mumford to
Chap.VI, p. 152].)

It is immediately clear that if ch2trans(S) = 0 then H2(S)trans = 0 and
T (S)(K) = 0 for every field extension K ⊃ k (use Remark 6.2.2 after Theorem
6.2.1). The question whether conversely H2(S)trans = 0 implies ch2trans(S) = 0
is the famous conjecture of Bloch [Blo80, Lecture 1 and Appendix to Lecture 1],
which is still open. One can ask the easier question

T (S)(K) = 0 for all fields K ⊃ k
?

=⇒ ch2trans(S) = 0.

This is indeed true, as we shall see later in Chapter 7 (see Cor. 7.6.8). For the
moment we only prove that its cohomology vanishes.

To do this, let us first introduce the notion of degenerate degree 0 correspon-
dences9 (see [Ful, p. 309, Ex. 16.1.2(b)]) from Xd to Yd as the subgroup

CHd
≡(X × Y ) ⊂ CHd(X × Y ) (40)

generated by correspondences Γ for which prX(Γ) �= X or prY (Γ) �= Y (or both).
Next, we prove the following auxiliary result, which goes back (although formu-

lated in a somewhat different way) to Bloch [Blo79] and Bloch-Srinivas [Blo-Sri].

Proposition 6.3.3. Let Xd be a smooth, projective, irreducible variety defined
over k. As before, let T (X) = Ker{CHd

hom(X) → AlbX} denote the Albanese
kernel. Assume that T (X)(K) = 0 for all fields K ⊃ k. Then the diagonal Δ(X)
is a degenerate correspondence.

Proof : Let ξ be the generic point of X over k, and let e ∈ X(k) be a k–rational
point (we assume for simplicity that such a point exists). Consider the cycle (ξ)−
(e) ∈ CHd(XK), K = k(ξ). Apply p2d−1(X) and write

α = p2d−1(X)∗((ξ)− (e)) ∈ CHd
hom(XK).

9This notion is analogous to the notion of degenerate divisors on products (cf. Appendix
A-2).
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Note that the cycle α is supported on C ⊂ X, where C is the curve used in the
construction of p1(X) and p2d−1(X), because p2d−1(X) is supported on X × C.
Now consider the zero–cycle

ζ = (ξ)− (e)− α = (ξ)− (e)− p2d−1(X)((ξ)− (e)).

This cycle is is defined over K = k(ξ) and is clearly in Ker(p2d−1(X)), hence by
Theorem 6.2.1 (see also the part of the proof just above Remark 6.2.8), it also lies
in the Albanese kernel T (X)(K). By our assumption its class (still denoted by ζ)

is zero in CHd(XK).
We now consider this cycle ζ = (ξ) − (e) − α as a zero-cycle on the generic

fiber Xξ(� XK) of the projection map pr1 : X ×X → X, and we take its k-Zariski
closure in X ×X (i.e., we ”spread out” the cycle ζ in X ×X). We obtain the cycle

Z = Δ−X × e−A

in CHd(X ×X), with A a cycle supported on X × C. Since the restriction of Z to
the generic fiber is zero, and since

CHd(XK) = lim−→
U

CHd(U ×X)

with k-Zariski open sets U ⊂ X, we get

Z = Γ1 ∈ CHd(X ×X)

with Γ1 ∈ CHd(X×X) a cycle supported on Y ×X for some k-Zariski closed subset
Y � X. Hence we have the desired result

Δ = Γ1 + Γ2

with Γ2 = A+X × e. �
Finally, we reach our aim:

Corollary 6.3.4. Let X be a smooth surface. Assume that T (X)(K) = 0 for
all fields K ⊃ k. Then H2

trans(X) = 0.

Proof : (outline) Since Γ1 and Γ2 are degenerate, they act trivially on H2
trans(X) by

[Blo80, Appendix to Lect. 1, Lemma 1.A.5]. But the diagonal acts as the identity,
hence H2

trans(X) = 0. �





Appendix C: Chow-Künneth Decomposition in a
Special Case

Proposition. Suppose that X = Xd ∈ SmProj(k) is a smooth projective vari-
ety such that Hi(X) is algebraic for all i �= d. Then X admits a self-dual Chow-
Künneth decomposition. This applies in particular to smooth hypersurfaces, and,
more generally, complete intersections.

This depends on the following easy lemma, which follows directly from the
definition of the composition of correspondences.

Lemma. Let X = Xd ∈ SmProj(k), and let Zi ∈ CHri(X) (i = 1, 2, 3, 4) be
algebraic cycles. Consider the correspondences Z1×Z2 and Z3×Z4 in Corr(X,X).
Then

(Z3 × Z4)◦(Z1 × Z2) = #(Z2·Z3)(Z1 × Z4)

where #(Z2.Z3) denotes the intersection number.

Proof : (of the Proposition) For i = 2p even and i < d, choose a basis e�i (� =
1, . . . , bi(X)) for Hi(X), with bi(X) the i-th Betti number of X, and a dual basis
ê�i for H2d−i(X). By construction we have

ei� ∪ êmj =

{
0 (i, �) �= (j,m)
1 (i, �) = (j,m).

By assumption there exists algebraic cyclesEi
� ∈ CHp(X)Q (resp. Êi

� ∈ CHd−p(X)Q)
such that

γ(Ei
�) = ei�, γ(Êi

�) = êi�.

Now consider the elements

pi� = Ei
� × Êi

�, qi� = Êi
� × Ei

�

in CHd(X × X)Q. The above lemma shows that the pi� and qi� are mutually
orthogonal projectors.

For i = 2p, i < d put

pi =
∑
�

pi�, p2d−i =
∑
�

qi�

and for i odd, i �= d, put pi = 0. Finally put

pd = Δ(X)−
∑
i �=d

pi.

Then these are projectors that lift the corresponding Künneth components and that
give the required Chow-Künneth decomposition. �
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CHAPTER 7

On the Conjectural Bloch-Beilinson Filtration

Introduction

This Chapter partly deals with conjectures (presented in sections 7.1 and 7.2),
but also with a number of unconditional results related to these conjectures that
will be discussed in sections 7.3, 7.4, 7.5 and 7.6.

7.1. Bloch-Beilinson Filtration

Bloch in his 1979 Duke lectures [Blo80] and – independently – Beilinson [Beil]

conjectured that there exists a descending filtration on the Chow groups CHi(X)Q;
this still conjectural filtration is nowadays called the Bloch-Beilinson filtration.
More precisely, based upon the aforementioned paper of Beilinson on height pair-
ings [Beil, 5.10]), Uwe Jannsen listed the following properties required for such a
filtration [Jann94].

Bloch-Beilinson conjectures (version 1). Consider the category SmVar(k)
of smooth, projective varieties defined over a field k. Given X ∈ SmVar(k) and

j ≥ 0, there exists conjecturally a descending filtration F •
BB on CHj(X)Q with the

following properties:

a) F 0
BBCH

j(X)Q = CHj(X)Q, F
1
BBCH

j(X)Q = CHj
hom(X)Q (resp. F 1

BB =

CHj
num(X)Q);

b) F r
BBCH

i(X)Q ·F s
BBCH

j(X)Q ⊆ F r+s
BB CHi+j(X)Q, where we recall that “·”

denotes the intersection product of the cycle classes;
c) F •

BB is respected by f∗ and f∗ for a morphism f : X → Y ;
d) assuming the Künneth conjecture from § 3.1.1 and § 6.1.1, i.e., assuming

that the Künneth components Δtopo
i of the diagonal Δ(X) are algebraic,

we require that Δi operates on GrνBB CHj(X)Q as δi,2j−ν . id.

e) F j+1
BB CHj(X)Q = 0.

Remarks. (i) The precise meaning of part d) is as follows. By prop-
erties b) and c) the filtration F •

BB is respected by the action of cor-

respondences, and by a) the induced action on GrνBB CHj(X)Q factors
through homological (resp. numerical) equivalence. Part d) then means

that GrνBB CHj(X)Q depends only on the homological motive h2j−ν
hom (X) =

(X,Δ2j−ν , 0) (resp. on the numerical motive h2j−ν
num (X)).

(ii) Part e) is sometimes replaced by the weaker requirement

e’) FN
BBCH

j(X)Q = 0 for N 	 0.
However Jannsen [Jann94, p. 258, Lemma 2.3] showed that if the stan-
dard conjecture B(X) is true then e’) implies e).
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Beilinson based the above conjectures on the – still conjectural – existence of
a category MM(k) of mixed motives, i.e., a category of motives for all varieties
(not necessarily smooth, neither complete) which should be abelian (but not
semisimple!).

In fact there is the following more precise version of the Bloch-Beilinson con-
jectures [Jann94, p. 259]:
Bloch-Beilinson conjectures (version 2): Conjectures a), b), c) and e) as in
version 1 above, but d) is replaced by

d+) There exists an abelian category MM(k) of mixed motives over k con-
taining the category Mothom(k) (resp. Motnum(k)) as a full subcategory
and a functorial isomorphism

GrνBB CHj(X)Q ∼= ExtνMM(k)(1, h
2j−ν(X)(j)) (41)

where 1 = (Spec k, id, 0) in Mothom(k) (resp. Motnum(k)).

Formula (41) is the famous Beilinson formula. For its (conjectural) “conse-
quences”, see [loc. cit., sections 2 and 3].

7.2. Another Set of Conjectures

The following set of conjectures, due to the first author, stems from around
1990; it was published in 1993 in [Mur93] but already distributed and discussed
at the Seattle conference in 1991 [Jann94, section 5].

In the following, X is a smooth, projective variety defined over a field k. For
simplicty we assume that X has a k-rational point e ∈ X(k). Furthermore we
assume that we have chosen a Weil cohomology theory (for instance, H∗(X) =
H∗

ét(Xk,Q�) with � �= char(k)). Finally we denote by K an arbitrary extension field
of k.

7.2.1. Conjecture I(X) (=Conjecture A in [Mur93]). This is the Chow-
Künneth conjecture CK(X) from § 6.1.1: X has a Chow-Künneth decomposition
defined over k. Recall that this means that there exist correspondences pi(X) ∈
Corr0(X,X) = CHd(X ×X)Q for 0 ≤ i ≤ 2d that are mutually orthogonal projec-
tors, lifting the Künneth components of the diagonal and summing up to Δ(X) ∈
CHd(X ×X)Q.

Assuming this, the projectors pi = pi(X) operate on each of the Chow groups

CHj(X)Q, and in fact on CHj(XK)Q for every extension field K ⊃ k (j = 0, . . . , d).

7.2.2. Conjecture II(X) or “Vanishing conjecture” (=Conjecture B
in [loc. cit]). For every j (0 ≤ j ≤ d) the projectors p2d, p2d−1, . . . , p2j+1 and

p0, p1, . . . , pj−1 operate as zero on CHj(XK)Q for every K ⊇ k.

Consequences. Assuming conjectures I(X) and II(X) we have the following filtra-

tion on CHj(X)Q (or more generally on CHj(XK)Q):
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Define

F 0CHj(X)Q = CHj(X)Q

F 1CHj(X)Q = Ker(p2j)

F 2CHj(X)Q = Ker(p2j) ∩Ker(p2j−1)

...

F νCHj(X)Q = Ker(p2j) ∩ . . . ∩Ker(p2j−ν+1). (42)

This is clearly a descending filtration on CHj(X)Q.

Remark . As before, put chi(X) = (X, pi, 0). Since the projectors form a mu-
tually orthogonal set, we have for k �= � that Im pk ⊂ Ker p� and so, abbreviating
F ∗ for F ∗CHj(X)Q, we have (fixing j):

GrνF CHj(X)Q =
F ν

F ν ∩Ker(p2j−ν)
= Im(p2j−ν |F ν)

= Im(p2j−ν) = CHj(ch2j−ν(X)),

F νCHj(X)Q =
⊕

ν≤μ≤jCH
j(ch2j−μ(X)).

}
(43)

Lemma 7.2.1. Assuming conjectures I(X) and II(X), we have

(i) F j+1CHj(X)Q = 0;

(ii) F 1CHj(X)Q ⊆ CHj
hom(X)Q.

Proof : Assuming II, part (i) is immediate from the definitions since
∑2d

i=0 pi =
Δ(X) = idX ; part (ii) follows from the commutative diagram (where γX denotes
the cycle class map)

CHj(X)Q
p2j−−→ CHj(X)Q⏐⏐�γX

⏐⏐�γX

H2j(X)
Δtopo

2j−−−−→ H2j(X)

since p2j (mod homological equiv.) = Δtopo
2j operates as the identity onH2j(X). �

7.2.3. Conjecture III(X) (=Conjecture D in [loc. cit.]) We have

F 1CHj(XK)Q = CHj
hom(XK)Q

for every field extension K ⊃ k.

Remark . This seems to be the most difficult one of the conjectures, because it
relates the “geometric” theory of cycles to the “cohomological” theory.

7.2.4. Conjecture IV(X) (=Conjecture C in [loc.cit.]) The filtration F •

defined above is independent of the ambiguity in the choice of the projectors pi.

Remarks. (1) Conjecture IV may seem difficult, since there is – as we
have seen – a lot of ambiguity in the choice of the projectors pi. However
it is based on the “philosophy” that – in spite of this ambiguity – the
motives chi(X) = (X, pi, 0) should be unique up to (natural) isomorphism;
see later, Cor. 7.5.8), where we indeed show that this follows from the
conjectures.

(2) In fact, if conjectures I, II and III hold for all powers of X, then IV(X) is
also true (see Corollary 7.5.9).
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(3) In § 7.5 we shall see that there is a close relation between the Bloch-
Beilinson conjectures and the conjectures I-IV.

7.3. Some Evidence for the Conjectures; an Overview

7.3.1. Low Dimensional Varieties. Conjectures I, II, III and IV are triv-
ially true for curves. Less trivially, they hold also for surfaces by Theorem 6.2.1.
Namely by Theorem 6.3.1 surfaces have a Chow-Künneth decomposition, hence
I(S) is true for all surfaces S. Next let us first consider divisor classes : we have
seen in Theorem 6.2.1 that p0(S), p3(S) and p4(S) operate as zero on CH1(S)Q, so

II(S) holds for divisors. By Lemma 7.2.1 we always have Ker p2(S) ⊆ CH1
hom(S)Q.

However since CH1
hom(S)Q = CH1

alg(S)Q and since p1(S) is the identity on CH1
alg(S)Q

we have for D ∈ CH1
hom(S)Q that

0 = (p2(S)◦p1(S))∗(D) = p2(S)∗(D),

hence Ker p2(S) = CH1
hom(S)Q and III(S) is true for divisors. Conjecture IV(S)

holds for divisors since the filtration on CH1(S)Q is the natural one

CH1(S)Q ⊃ CH1
hom(S)Q ⊃ (0).

Next for zero-cycles, we have indeed that p0(S) and p1(S) act as zero by Theorem
6.2.1, hence II(S) holds. Also III(S) is trivially true, and finally IV(S) is true since
by Theorem 6.2.1 (iii) the kernel of p2(S) on CH2(S)Q is the Albanese kernel T (S)Q;

hence the filtration on CH2(S)Q is the natural one

CH2(S)Q ⊃ CH2
hom(S)Q ⊃ T (S)Q ⊃ (0).

7.3.2. Special Varieties. For conjecture I, the Chow-Künneth conjecture,
we refer to the list in 6.1.5. For the other conjectures we have the following facts:

(1) In § 7.4 we shall show that conjectures I, II and III are true for threefolds
of the form X = S × C, where S is a surface and C a curve (always
assumed smooth and projective).

(2) For fourfolds of the form X = S × S′, with S and S′ surfaces, conjecture
I is clearly true (see 6.1.5 (3)) but also some important consequences of
conjecture II are true. See § 7.6 for details.

(3) For an abelian variety A of dimension g conjecture I is true provided one
takes the “canonical projectors” from [Den-Mu]; concerning conjecture

II we have that pi(A) operates as zero on CHj(A)Q for i < j and i > j+g.
In the remaining range 2j < i < j + g the conjecture II coincides with a
conjecture of Beauville [Beau83], and if this part is also true then IV(A)
is true.
We shall give some information on the Proof. For conjecture I, see § 6.1.5.
For conjecture II see [Mur93, part I, section 2.5]. This part depends
on the so-called Fourier theory of Mukai and the results of Beauville on
the decomposition of the “eigenspaces” of CHj(A)Q under the action of
multiplication by n on A. Assuming conjecture II(A) we get for IV(A)
the following [Mur93, part I, Lemma 2.5.4]: the filtration in this case is

given by F νCHj(A)Q = ⊕s>νCH
j
s(A) (0 ≤ ν ≤ j), where

CHj
s(A) = {Z|n∗(Z) = n2j−sZ},

and F j+1 = 0.
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7.3.3. Behaviour on Divisors and Zero-cycles.

Lemma 7.3.1. Given X ∈ SmVar(k), let p0(X) and p1(X) be the projectors
constructed in section 6.2. Assume that p0(X) and p1(X) can be completed to a full
set of projectors that give a Chow-Künneth decomposition of X. Then conjectures
II, III and IV are true for CH1(X)Q.

Proof : By Theorem 6.2.1 the projector p1(X) operates as the identity on
CH1

alg(X)Q. Now let i �= 1 and D ∈ CH1
alg(X)Q. Then

0 = (pi(X)◦p1(X))∗(D) = pi(X)∗(D).

Hence for i �= 1 the projector pi(X) acts as zero on CH1
alg(X)Q = CH1

hom(X)Q. Ap-

plying this for i = 2 we see that Ker p2(X) on CH1(X)Q is indeed CH1
hom(X)Q,

so conjecture III is true. For i �= 1, 2 we put Di = pi(X)(D). Then 0 =
(p2(X)◦pi(X))∗(D) = p2(X)(Di), hence Di ∈ CH1

hom(X)Q = CH1
alg(X)Q. There-

fore, by the above, if i �= 1, 2 then

pi(X)∗(D) = (pi(X)◦pi(X))∗(D) = pi(X)∗(Di) = 0

and conjecture II is true. Finally the induced filtration on CH1(X)Q is the natural

one CH1(X)Q ⊃ CH1
hom(X)Q ⊃ (0), hence conjecture IV is true. �

Remark 7.3.2. Let X be a smooth, projective variety of dimension d, and
let p2d(X), p2d−1(X) be the projectors constructed in § 6.2. Assume that they
can be completed to a full Chow-Künneth decomposition for X. What about the
action of the projectors on the group of zero-cycles CHd(X)Q? We can not say

much. Trivially F 1CHd(X)Q = CHd
hom(X)Q is the subgroup of zero-cycles of degree

zero. However non-trivially we have by Theorem 6.2.1 (iii) that F 2CHd(X)Q is the
Albanese kernel T (X)Q.

7.4. Threefolds of Type S × C

This section is devoted to a sketch of the proof of the following Proposition,
which appeared in [Mur93, Part II].

Proposition 7.4.1. Let X = S × C with S a surface and C a curve (always
tacitly assumed to be smooth and projective over k). Then X satisfies conjectures
I, II and III.

7.4.1. General Remarks on Chow-Künneth Projectors on products.
Let Z = Xd × Ye be the product of two varieties of dimension d resp. e, hence
n = dimZ = d + e. Assume that X and Y have a Chow-Künneth decomposition
with projectors pi(X) (0 ≤ i ≤ 2d) and pj(Y ) (0 ≤ j ≤ 2e).

In order to distinguish the factors of the product we use the following conven-
tion:1 write X1 = X2 = X, Y1 = Y2 = Y and Z1 = Z2 = Z. There is the obvious
isomorphism

X1 × Y1 ×X2 × Y2 � X1 ×X2 × Y1 × Y2

that we shall tacitly suppress from the notation in the sequel. With this convention
we have

Z × Z = X1 ×X2 × Y1 × Y2,

1here the subscript does not refer to the dimension: recall that dimX = d and dimY = e
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hence

Δ(Z) = Δ(X)×Δ(Y ) =

(
2d∑
i=0

pi(X)

)
×

⎛⎝ 2e∑
j=0

pj(Y )

⎞⎠
=

2n∑
m=0

⎛⎝ ∑
i+j=m

pi(X)× pj(Y )

⎞⎠ .

Hence Z has a Chow-Künneth decomposition with projectors pm(Z) (0 ≤ m ≤ 2n)
defined by

pm(Z) =
∑

i+j=m

pi(X)× pj(Y ).

Let us write pij(Z) = pi(X)× pj(Y ). Then pm(Z) =
∑

i+j=m pij(Z).

Remark . Note that the correspondences pij(Z) are themselves projectors, mu-
tually orthogonal.

7.4.2. On the Proof of Proposition 7.4.1. A large part of the proof con-
sists of easy, but tedious verifications. We omit most of them (see [loc. cit.] for
details), but we shall prove some of the more complicated parts.

As we have seen in the previous subsection, X = S × C has a Chow-Künneth
decomposition with projectors pm(X) (0 ≤ m ≤ 6) that admit a description in
terms of the projectors pi(S) and pj(C) from Chap. 6.

So we need to check conjectures II(X) and III(X) for the above projectors
pm(X).

7.4.3. Conjectures II and III for CH1(S × C)Q.

Lemma 7.4.2. If D ∈ CH1
hom(S × C)Q then D is degenerate, i.e., D = D1 ×

C + S ×D2 with D1 ∈ CH1
hom(S) and D2 ∈ CH1

hom(C).

Proof : Replacing if necessary D by an integral multiple of D, we may and do
assume that D ∈ CH1

alg(S × C) ⊂ CH1
hom(S × C). The result then follows from

Proposition A-2.2.
�

Proposition 7.4.3. Conjectures II and III hold for CH1(S × C)Q.

Proof : Theorem 6.2.1 and Lemma 7.4.2 imply that the projector

p1(X) = p1(S)× p0(C) + p0(S)× p1(C)

acts as the identity on CH1
alg(S×C)Q = CH1

hom(S×C)Q. Once this has been shown,
the rest of the proof goes as in lemma 7.3.1; we leave this to the reader. �

7.4.4. Conjectures II and III for CH2(S × C)Q. Recall that if X, X ′,
Y and Y ′ are smooth, projective varieties and Z ∈ CH(X × Y ) = Corr(X,Y ),
α ∈ Corr(X,X ′) and β ∈ Corr(Y, Y ′) are correspondences then

(α× β)∗(Z) = β◦Z◦Tα ∈ Corr(X ′, Y ′)

by Lieberman’s Lemma 2.1.3. In the following we shall often tacitly apply this
Lemma.

Another remark: in the following proofs we shall – for convenience – sometimes
follow the convention of § 7.4.1 and denote the factors by S1 = S2 = S and C1 =
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C2 = C in order to distinguish them. We shall also usually consider cycles in
“general position”, leaving the “special positions” (“horizontal” or “vertical” cycles)
to the reader.

Proposition 7.4.4. Conjecture II holds for CH2(S × C)Q.

Proof : We have to show that the projectors p0(X), p1(X), p5(X) and p6(X) act

as zero on CH2(S ×C)Q. We shall restrict our attention to proving p1(X)∗(Z) = 0

and p5(X)∗(Z) = 0 for Z ∈ CH2(S ×C)Q; the analogous statements for p0(X) and
p6(X) are easy.

Step 1. We shall first show that p1(X)∗(Z) = 0 for all Z ∈ CH2(S × C)Q. By
7.4.1 we have p1(X) = p10(X) + p01(X). We claim that both p01(X)∗(Z) = 0 and
p10(X)∗(Z) = 0. By Lieberman’s Lemma we have

p10(X)∗(Z) = (p1(S)× p0(C))∗(Z) = p0(C)◦Z◦p3(S).

It suffices to show that the transpose T(p0(C)◦Z◦p3(S)) = p1(S)◦
TZ◦p2(C) is zero.

Let eC ∈ C be a base point. An easy calculation gives

p1(S)◦
TZ◦p2(C) = p1(S)◦

TZ◦(C2 × eC)

= p1(S)◦(C2 × TZ(eC)) = 0

= C2 × p1(S)∗(
TZ(e)) = 0

because p1(S) acts as zero on CH2(S)Q.
Next choose a base point eS ∈ S and consider

p01(X)∗(Z) = (p0(S)× p1(C))∗(Z)

= p1(C)◦Z◦p4(S)

= p1(C)◦Z◦(S2 × eS)

= p1(C)◦(S2 × Z(eS))

= S2 × p1(C)∗(Z(eS)) = 0

because Z(eS) ∈ CH2(C)Q = 0.

Step 2. We show that p5(X)∗(Z) = 0. From 7.4.1 we have p5(X) = p41(X) +
p32(X). Again we claim that both correspondences act as zero on CH2(S × C)Q.
First consider

p41(X)∗(Z) = (p4(S)× p1(C))∗(Z)

= p1(C)◦Z◦Tp4(S)

= p1(C)◦Z◦p0(S).

Now consider first Z◦p0(S). A calculation shows that Z◦p0(S) = m.(eS×C), where
m is the degree of the map prC : Z → C. Next p1(C)◦(eS×C) = eS×p1(C)∗(C) = 0
since p1(C)∗(C) = 0. Hence p41(X)∗(Z) = 0.

Finally we have to show that p32(X)∗(Z) = 0. We have

p32(X)∗(Z) = (p3(S)× p2(C))∗(Z) = p2(C)◦Z◦Tp3(S) = p2(C)◦Z◦p1(S).

Now we first compute p2(C)◦Z = (C × eC)◦Z = prS(Z)× eC . Next

(prS(Z)× eC)◦p1(S) =
Tp1(S)∗(prS(Z))× eC = p3(S)∗(prS(Z))× eC = 0

because p3(S)∗ acts as zero on divisors.

Conclusion. Conjecture II is true for CH2(S × C)Q. �
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Lemma 7.4.5. Conjecture III is true for CH2(S × C)Q.

Proof : We have to show: if Z ∈ CH2
hom(S × C)Q then p4(X)∗(Z) = 0. By 7.4.1

we have
p4(X) = p40(X) + p31(X) + p22(X)

with pij(X) = pi(S)× pj(C).

(i) We first show that p40(X)∗(Z) = 0. By Lieberman’s Lemma we have

(p4(S)× p0(C))∗(Z) = p0(C)◦Z◦Tp4(S) = p0(C)◦Z◦p0(S).

Let eS ∈ S be a base point. We have Z◦p0(S) = m(eS × C) with m the degree of
Z over C. As Z is homologically equivalent to zero we have m = 0, and the result
follows.

(ii). p31(X)∗(Z) = 0 (the delicate case!)
To study the action of p31(X) = p3(S)× p1(C), we proceed in three steps.

Step 1. Case Z = α× C with α a zero-cycle on S. Then

(p3(S)× p1(C))∗(α× C) = p3(S)∗(α)× p1(C)∗(C) = 0

because p1(C)∗(C) = 0. (Remark: for the proof we do not need deg(α) = 0.)

Step 2. Case Z = D × α with D a divisor on S, α ∈ C. Then

(p3(S)× p1(C))∗(D × α) = p3(S)∗(D)× p1(C)∗(α) = 0

because p3(S)∗(D) = 0. (Remark: again the proof works for arbitrary D and α.)

Step 3. General case.
Put

Z ′ = p31(X)∗(Z) = p1(C)◦Z◦p1(S).

We need to show that Z ′ = 0 if Z is homologically equivalent to zero. Let Z1 =
TZ ′ ∈ Corr0(C, S). For every point x ∈ C we have deg(Z1(x)) = 0 since Z1, being
the transpose of Z, is homologically equivalent to zero. Moreover, using Step 1 we
may assume without loss of generality that Z1(eC) = 0 for a point eC on C.

Claim. For η ∈ C generic point we have Z1(η) = 0.
Proof of Claim: Z1 determines a homomorphism of abelian varieties

ϕZ1
: J(C) → Alb(S).

We claim first that ϕZ1
= 0. It suffices to check this statement on the torsion points

of J(C). We have

ϕZ1
: J(C)[�n] = H1

ét(Ck̄,Z/�
nZ) → AlbS [�

n] = H3
ét(Sk̄,Z/�

nZ)

which is given by the Künneth component γ(Z1)13 of the cycle class γ(Z1). Since
Z1 is homologically equivalent to zero we have ϕZ1

= 0, and hence Z1(η) is al-
banese equivalent to zero on S. But Z1 = TZ ′ = p3(S)◦

TZ◦p1(C), hence Z1(η) =
p3(S)∗

TZ(η − eC) and since p3(S) is a projector we have Z1(η) = p3(S)∗Z1(η).
Since Z1(η) is albanese equivalent to zero on S and the albanese kernel is also the
kernel of p3(S)∗ by Theorem 6.2.1 (iii) we get Z1(η) = 0, which proves the claim.

Since CH2(Sη)Q = lim−→
U

CH2(U × S)Q where U runs through the open sets of C,

we get Z1 =
∑

i ai × Di with ai ∈ C and Di divisors on S. Hence Z ′ = TZ1 =∑
i Di × ai. Finally note that Z ′ = (p31(X))∗(Z) and since p31(X) is a projector

we have Z ′ = p31(X))∗(
∑

i Di × ai). Hence Z ′ = 0 by Step 2.
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Remark . Note that in the above proof we have used the inclusion T (S)Q ⊂
Ker p3(S), where T (S) denotes the albanese kernel. This is the “hard” part of the
proof of Theorem 6.2.1.(iii).

(iii) p22(X)∗(Z) = 0. We have

p22(X)∗(Z) = p2(C)◦Z◦p2(S).

Consider first p2(C)◦Z = prS(Z)× eC and note that prS Z is a divisor on S homo-
logically equivalent to zero. We finally get

p2(C)◦Z◦p2(S) = p2(S)∗(prS(Z))× eC = 0

because Ker p2(S) = CH1
hom(S)Q.

This completes the proof of Lemma 7.4.4 and of Proposition 7.4.1 as far as
CH2(S × C)Q is concerned. �

7.4.5. Conjectures II and III are true for CH3(S×C)Q. This is easy and
is left to the reader (see [Mur93, part II, section 8.4]).

7.5. On Some Results of Jannsen and Their Consequences

In 1991 Uwe Jannsen proved the following theorem.

Theorem 7.5.1 ([Jann94, Thm. 5.2, p.288]). Fix a field k. Then the Bloch-
Beilinson conjectures a),b),c),d) and e) from § 7.1 are true for all smooth, projective
varieties if and only if this is so for the conjectures I, II, III and IV from § 7.2.
Moreover, if these conjectures are true, then the Bloch-Beilinson filtration is the
same as the filtration from § 7.2; in fact, a filtration with these properties is unique
([ibid., Cor. 5.7]).

For the proof we refer to [ibid], section 5. In the proof a crucial rôle is played
by the following proposition.

Proposition 7.5.2 ([Jann94, Proposition 5.8] ). Let Xd and Ye be smooth,
projective varieties that have a Chow-Künneth decomposition given by

chi(X) = (X, pi(X), 0)(0 ≤ i ≤ 2d) resp. chj(Y ) = (Y, pj(Y ), 0)(0 ≤ j ≤ 2e).

Consider the product variety Z = X × Y , which has then a Chow-Künneth decom-
position with projectors

pm(Z) =
∑

r+s=m

pr(X)× ps(Y ), 0 ≤ m ≤ 2d+ 2e

as we have seen in § 7.4.1. Now the following holds:

a) If, with these projectors, Conjecture II(Z) holds then

HomMotrat(k)(ch
i(X), chj(Y )) = 0 for i < j.

b) If, with these projectors, Conjecture III(Z) holds then

HomMotrat(k)(ch
i(X), chi(Y ))

∼−→ HomMothom(k)(h
i(X), hi(Y )).
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Remarks. 1) In fact in Part a) we only need that pm(Z) acts as zero on CHd(Z)Q
for m > 2d.

Part b) of the Proposition is equivalent to the following statement: if R ∈
CHd(X×Y )Q = Corr0(X,Y ) is such that pi(Y )◦R◦pi(X) is homologically equivalent
to zero, then pi(Y )◦R◦pi(X) = 0. This holds in particular if R itself is homologically
equivalent to zero.
2) In matrix form this Proposition can be expressed as follows. Given R ∈ CHd(X×
Y ), write

αji(R) = pj(Y )◦R◦pi(X) : chi(X) → chj(Y ).

Then if Z satisifies conjectures II and III the matrix has the following form (for
simplicity we first take d = e, so that we have a square matrix)

(αji(R)) =

⎛⎜⎜⎜⎜⎜⎜⎝
r = h ∗ ∗ . . . ∗
0 r = h ∗ . . . ∗
...

. . .
. . .

. . .
...

...
. . .

. . . ∗
0 . . . . . . 0 r = h

⎞⎟⎟⎟⎟⎟⎟⎠ ,

i.e., in the lower left hand corner (j > i) we have zeroes and on the diagonal
(j = i) the correspondence αii(R) depends only on its class modulo homological
equivalence.

In the general case (d and e arbitrary) we have a similar pattern, but now we
have a matrix with 2e+ 1 rows and 2d+ 1 columns.

Proof of Proposition 7.5.2. For the proof in the general case we refer to [Jann94,
p. 293-294]. Here we give the proof under the extra assumption that the Chow-
Künneth decomposition of X is self-dual, i.e., p2d−i(X) = Tpi(X) (which is for us
the most important case!).

For simplicity of notation, write

Mi = chi(X), Nj = chj(Y ), pi = pi(X) and p′j = pj(Y ).

Now recall (see 7.4.1) that, with the convention that we suppress the obvious iso-
morphism X × Y ×X × Y ∼= (X ×X)× (Y × Y ), we have

ΔZ = ΔX ×ΔY = (
∑
i

pi)× (
∑
j

p′j) =
∑
m

pm(Z), pm(Z) :=
∑

i+j=m

pi × p′j .

Now in Motrat(k) we have

Hom(Mi, Nj) =
{
p′j◦R◦pi | R ∈ CHd(X × Y )Q

}
.

The action of pm(Z) =
∑

r+s=m pr × p′s on such a correspondence is given by

pm(Z)∗(p
′
j◦R◦pi) =

∑
r+s=m

(pr × p′s)∗(p
′
j◦R◦pi).

By Lieberman’s Lemma (see Lemma 2.1.3) we get∑
r+s=m

(pr × p′s)∗(p
′
j◦R◦pi) =

∑
r+s=m

p′s◦p′j◦R◦pi◦
Tpr = p′j◦R◦pi

because in the sum only the term with s = j and 2d − r = i survives due to the
extra assumption Tpr = p2d−r (and the others give zero). Now r + s = m, hence
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2d− i+ j = m. Therefore if II(Z) holds we get zero if m > 2d, i.e., if i < j, because

the homomorphism pm(Z) acts on CHd(Z)Q.
For the same reason we get that if III(Z) holds and if R is homologically

equivalent to zero then

p2d(Z)∗(p
′
i◦R◦pi) = p′i◦R◦pi = 0;

in fact, we only need that p′i◦R◦pi is homologically equivalent to zero. �
Corollary 7.5.3. Let X = Xd (always smooth and projective). Assume that

conjectures I, II and III hold for X and X ×X. Let f ∈ Corr0Motrat(k)(X,X). If f

is homologically equivalent to zero then f is nilpotent, in fact f2d+1 = 0.

Proof : With the above notation the matrix for f is a (2d + 1) × (2d + 1)-matrix
of the form

(αji(f)) =

⎛⎜⎜⎜⎜⎝
0 ∗ . . . ∗

0
...

...
. . . ∗

0 . . . 0 0

⎞⎟⎟⎟⎟⎠ .

Hence f2d+1 = 0. �
Corollary 7.5.4. Assume that conjectures I, II and III hold for X = Xd and

X ×X. Consider the two-sided ideal I(X) defined by the exact sequence

0 → I(X) → Corr0Motrat(k)(X,X) → Corr0Mothom(k)(X,X) → 0.

Then I(X) is nilpotent, in fact I(X)2d+1 = 0.

Proof : This follows from the previous Corollary. �
Corollary 7.5.5 (No phantom motives exist!). Assume that X ×X satisfies

I, II and III. Let M = (X, p, 0) ∈ Motrat(k) be a Chow motive such that its image
in Mothom(k) is zero. Then M = 0.

Proof : By assumption p is homologically equivalent to zero. Hence p is nilpotent
by Corollary 7.5.3. But since p is a projector it follows that p = 0. �

Corollary 7.5.6. Assume that X×X satisfies I, II and III. Let M=(X, p, 0)∈
Motrat(k). If H(M) = 0 (i.e., M has no cohomology) then M = 0.

Proof : Consider the cycle class γX×X(p) ∈ H2d(X × X). Since H(M) = 0 all
the Künneth components of γX×X(p) are zero. Hence γX×X(p) = 0, i.e., p is
homologically equivalent to zero. Hence p = 0 by the previous corollary. �

Corollary 7.5.7. Assume that conjectures I, II and III hold for X and all
powers of X. Then the motives of type (X, p, n) ∈ Motrat(k) are finite dimensional.
In particular, these conjectures imply the Kimura-O’Sullivan Conjecture (Conjec-
ture 5.6.8).

Proof : Because of Thm. 5.4.4 it suffices to do this for M = ch(X) = (X, id, 0).
Since X satisfies the the C-K conjecture, it satisfies in particular the sign conjecture
§ 4.5. So we can split M = M+ ⊕ M− with where M+ and M− has only even,
respectively odd cohomology. It follows Cor. 4.3.4 that for sufficiently large n we
have H(

∧n
M+) = H(Symn(M−)) = 0 and so, by Cor. 7.5.6,

∧n
M = Symn(M) =

0 and hence M is finite dimensional. �
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Corollary 7.5.8. Assume that conjectures I, II and III hold for X and all
powers of X. Let M = (X, p, 0) and M ′ = (X, p′, 0) be two Chow motives such
that p = p′ modulo homological equivalence. Then f = p′◦p : M → M ′ and
g = p◦p′ : M ′ → M are natural isomorphisms in Motrat(k). This holds in particular
for the Chow-Künneth projectors pi and p′i (for all i).

Proof : From I, II and III it folllows that M and M ′ are finite dimensional by
Corollary 7.5.7. The result then follows from Theorem A in [Kimu-Mur], which
states that if f : M → N and g : N → M are morphisms in Motrat(k) between
finite dimensional motives and fhom and ghom are isomorphisms in Mothom(k), then
f and g are isomorphisms in Motrat(k). �

Corollary 7.5.9. Assume that conjectures I, II and III hold for X and all
powers of X. Then the filtration is unique, i.e., conjecture IV(X) holds.

Proof : Suppose we have two C-K decompositions ch(X)=⊕(X, pi, 0)=⊕(X, p′i, 0)
with two corresponding filtrations F ∗ and (F ′)∗. By symmetry it suffices to show
that F ′ν ⊂ F ν . Apply Proposition 7.5.2 a) with Y = X, ch(X) = ⊕(X, pi, 0) and
ch(Y ) = ⊕(X, p′i, 0). It gives

p2j−t◦p
′
2j−s = p2j−t◦ idX ◦p′2j−s = 0 for s ≥ ν and t < ν,

hence on CHj(X)Q we have the inclusion

Im(p′2j−s) ⊂ Ker(p2j−t).

for all s ≥ ν and t < ν and

(F ′)ν =
⊕

s≥ν Im(p2j−s) ⊆ ∩t<ν Ker(p2j−t) = F ν ;

cf. equations (42) and (43). �

Corollary 7.5.10 (Bloch’s conjecture). Let S be a smooth, projective surface
such that H2(S)trans = 0. If conjecture III holds for S×S then the albanese kernel

(with rational coefficients) T (S)Q is zero; in fact, ch2trans(S) = 0.

Proof : We have seen in 6.3 that S has a Chow-Künneth decomposition. If
H2(S)trans = 0 then the projector ptrans2 (S) from § 6.3.2 is homologically equiv-

alent to zero. This means that ch2trans(S) is a phantom motive. We want to apply
Corollary 7.5.5. So we need the validity of conjectures II and III for S × S. Con-
jecture II(S × S) indeed holds as we shall see below (c.f. Proposition 7.6.1) where
it is shown for the relevant part of the Chow group CH2(S × S)Q). Hence if also
conjecture III(S × S) holds then ptrans2 (S) = 0 by Corollary 7.5.5. �

7.6. Products of Two Surfaces

In this section S and S′ are smooth, projective irreducible surfaces defined over
a field k. Furthermore C = C(S) (resp. C ′ = C(S′)) is the hyperplane section of S
(resp. of S′) used in the construction of the projectors p1(S) and p3(S) of S (resp.
p1(S

′) and p3(S
′) (see § 6.2).

Remarks. (1) Note that we have replaced poldj by pnewj , j = 1, 2. So, to be
correct, if C occurs in connection with p1 and p3 respectively, by what we
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did in § 6.2 (just after Lemma 6.2.10 where we treat the case of surfaces)
we should replace C by

Cnew
1 := C ∪

⋃
i

TD(β)(ai), resp. Cnew
3 := C ∪

⋃
i

D(β)(ai), C · C =
∑
i

ai.

So, in what follows we should take the support on Cnew
1 × S, respectively

S × Cnew
3 instead of C × S, respectively S × C. For simplicity we have

ignored below such fineries. This also holds for the curve C ′ on S′.
(2) In some of the following proofs we shall tacitly use Fulton’s theory of

refined intersections, which allows us to control the support of the inter-
sections.

We consider the variety X = S × S′ with Chow-Künneth projectors

pm(X) =
∑

i+j=m

pi(S)× pj(S
′).

In order to simplify the notation we often write pi = pi(S) and p′j = pj(S
′). Let

R ∈ CH2(S × S′)Q = Corr0(S, S′) and write

αji(R) = p′j◦R◦pi (i, j = 0, 1, 2, 3, 4)

as in § 7.5.

Proposition 7.6.1. ([Kahn-M-P, Thm. 7.3.10] and also [Kim] With the
above assumptions and notations, conjecture II is true for CH2(S × S′)Q.

Corollary 7.6.2. We have

HomMotrat(k)(ch
i(S), chj(S′)) = 0

for i < j.

Proof of the above Corollary : This follows immediately from Propositions 7.6.1 and
7.5.2 a. �

Remarks. (1) With the notations from the remark following Proposition 7.5.2
it follows that for R ∈ CH2(S × S′)Q the 5 by 5 matrix (αji(R) has the following
shape.

(αji(R)) =

⎛⎜⎜⎜⎜⎝
∗ ∗ ∗ 0 0
0 ∗ ∗ ∗ 0
0 0 ∗ ∗ ∗
0 0 0 ∗ ∗
0 0 0 0 ∗

⎞⎟⎟⎟⎟⎠ .

Note that we have also three zeroes in the upper right hand corner by the same ar-
gument as in the proof of Prop. 7.5.2 since the projectors p0(S×S′) and p1(S×S′)
act also as zero on CH2(S × S′)Q.
(2) In fact α00(R), α11(R), α33(R) and α44(R) depend only on homological equiv-
alence. Compare [Kahn-M-P, p. 163].

The following trivial lemma will be used in the proof of Proposition 7.6.1.

Lemma 7.6.3. Let A ∈ CH(S)Q, B ∈ CH(S′)Q be cycles, and let α ∈ Corr(S, S),
β ∈ Corr(S′, S′) be correspondences. We have

(α× β)∗(A×B) = α∗(A)× β∗(B).
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Proof : (of Proposition 7.6.1) We shall only prove that p5(X) and p1(X) act as
zero on CH2(X)Q; the cases p0(X) and p6(X), p7(X), p8(X) are easier and are left
to the reader.

Step 1. The correspondence p5(X) acts as zero on CH2(X)Q.

We have p5(X) = p41(X) + p32(X) + p23(X) + p14(X). Let R ∈ CH2(S ×S′)Q.

Case A) p41 and p14 act as zero.
Proof : We first consider p41. Let eS ∈ S be a base point. We have

p41(X)∗(R) = p′1◦R◦Tp4 = p′1◦R◦p0 = p′1◦R◦(eS × S′) = p′1◦(eS × prS′(R)).

Suppose that R is nondegenerate, i.e., prS′(R) = nS′. Apply Lemma 7.6.3 with
α = idS , β = p′1, A = eS and B = prS′(R) = n.[S′]. Then we get

p′1◦(eS × prS′)(R) = p′1◦(eS × nS′) = eS × np′1(S
′) = eS × 0 = 0.

We leave it to the reader to check the assertion when R is degenerate, i.e. if
R ∈ CH2(S × S′)Q is of type R1 ×R′

1 with R1 (resp. R′
1) a divisor on S (resp. S′).

Next consider p14. We have p14(X)∗(R) = p′4◦R◦p1. Take the transpose to
obtain

Tp14(X)∗(R) = Tp1◦TR◦Tp′4 = p3◦TR◦p′0.

As in the case of p41 one shows that Tp14(X)∗(R) = 0 using p3(S)(S) = 0. �
Case B). Next consider the (more serious) cases p32(X) and p23(X). We claim
that both act as zero.
Proof : Consider

p32(X)∗(R) = p′2◦R◦Tp3 = p′2◦R◦p1.

First of all recall equation (39):

p1(S) = pnew1 (S) = pold1 (S)− 1
2p

old
1 (S)pold3 (S).

It suffices to prove p′2◦R◦pold1 = 0 because then also p′2◦R◦pold1 ◦pold3 = 0. Therefore
we shall drop the subscript “old” and write p1 = pold1 (S). For p1 we use the
construction given in § 6.2; in particular we shall use the divisor D(β)C ∈ CH1(C×
S)Q introduced in formula (37). Recall that p1 = D(β)C◦i∗C , where iC : C → S
is the inclusion of the hyperplane section. We get p′2◦R◦p1 = p′2◦R◦D(β)C◦i∗C .
Consider first the divisor

D = p′2◦R◦D(β)C ∈ CH1(C × S′)Q

and the corresponding morphism D : ch(C) → ch2(S′). Now we shall show that
D = 0, which clearly implies that p′2◦R◦p1 = p32(X)∗(R) = 0. The morphism

D : ch(C) → ch2(S′) determines correspondences Dr = D◦pr(C) (r = 0, 1, 2) and
morphisms (denoted by the same letter)

Dr : chr(C) → ch2(S′) (r = 0, 1, 2).

In Proposition 7.4.4 we have seen that the variety Y = C × S′ ∼= S′ × C satisfies
conjecture II for all Chow groups, in particular for divisors. So it follows from
Proposition 7.5.2 (Jannsen’s proposition) that Dr = 0 for r = 0, 1. Hence

D = D2 = D◦p2(C) = D◦(C × eC) = p′2◦R◦D(β)C◦(C × eC).

Now consider D(β)C◦(C × eC) = C × D(β)C(eC). As D(β)C(eC) = 0 by the
normalisation in § 6.2, we have D = 0. For p23(X)∗(R) we use the transpose. This
completes the proof for p5(X). �
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Step 2. Next consider the action of p1(X) on CH2(S × S′)Q. We have p1(X) =
p10(X) + p01(X) with pij(X) = pi × p′j . Consider

p01(X)∗(R) = p′1◦R◦Tp0 = p′1◦R◦p4 = p′1◦R◦(S × eS)

= p′1◦(S ×R(eS)) = S × (p′1)∗(R(eS))

and note that this is zero because R(eS) ∈ CH2(S′)Q and p′1 operates as zero on
zero-cycles.

Working with the transpose we also get p10(X)∗(R) = 0. This completes the
proof for CH2(S × S′)Q (leaving the actions of p0(X), p6(X), p7(X) and p8(X) to
the reader!) �

The remaining case α22(R). Again R ∈ CH2(S × S)Q. What can we say

about α22(R) = p′2◦R◦p2 : ch2(S) → ch2(S′)?

Lemma 7.6.4. We have

(i) HomMotrat(k)(ch
2
alg(S), ch

2
trans(S

′)) = 0;

(ii) HomMotrat(k)(ch
2
trans(S), ch

2
alg(S

′)) = 0.

Proof : For the proof of part (i), recall from § 6.3.2 that

palg2 (S) =

ρ∑
i=1

1

#(Di·Di)
Di ×Di

where {Di}ρi=1 is an orthogonal basis for NS(S)Q and #(Di.Di) is the self-intersec-
tion number of Di. So let us define the motive

Mi = (S,
1

#(Di·Di)
Di ×Di, 0)

and consider HomMotrat(k)(Mi, ch
2
trans(S

′)). An element in this group is (up to
scalar) of the form

(p′2)
trans◦R◦(D ×D) = (p′2)∗

trans(D ×R∗(D))

where D is a divisor on S′, but this is zero since

(p′2)∗
trans(D ×R∗(D)) = D × (p′2)

trans
∗ (R∗(D)) = D × 0;

see § 6.3.2.
For part (ii), take the transpose to reduce to the previous case. �
Lemma 7.6.5. We have

HomMotrat(k)(ch
2
alg(S), ch

2
alg(S

′))
∼−→ HomMothom(k)(h

2
hom(S), h

2
hom(S

′)).

Proof : Let {Di} (resp. {D′
j}) be an orthogonal basis for NS(S)Q (resp. NS(S′)Q).

Consider

(p′2)
alg◦R◦palg2 =

∑
i,j

1

#(D′
j ·D′

j)
(D′

j ×D′
j)◦R

1

#(Di ·Di)
◦(Di ×Di).

We must show that this is zero if R is homologically equivalent to zero. Working
term by term we get

(D′ ×D′)◦R◦(D ×D) = (D′ ×D′)◦ (D′ ·R∗(D))

= #(D′ ·R∗(D))◦(D ×D′)

and #(D′ ·R∗(D)) = 0 if R is homologically equivalent to zero. �
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So there remains the crucial case

HomMotrat(k)(ch
2
trans(S), ch

2
trans(S

′)).

Its elements are of the form ptrans2 (S′)◦R◦ptrans2 (S) with R ∈ CH2(S × S′)Q =

Corr0(S, S′). We are not yet able to prove conjecture III(S × S′). However we

can say something about this group. Namely, consider the group CH2
≡(S × S′)Q of

degenerate correspondences defined in (40), Chapter 6. Then we have the following

Theorem 7.6.6 ([Kahn-M-P, Theorem 7.4.3]). The map

α : CH2(S × S′)Q → HomMotrat(k)(ch
2
trans(S), ch

2
trans(S

′))

defined by α(R) = ptrans2 (S′)◦R◦ptrans2 (S) induces an isomorphism

β : CH2(S × S′)Q/CH
2
≡(S × S′)

Q

∼−→ HomMotrat(k)(ch
2
trans(S), ch

2
trans(S

′)).

This theorem should be compared with the theorem of Weil A-2.1 where we have
similar results for curves but where it is possible to replace the “abstract” motives
ch1(C) and ch1(C ′) by the “concrete geometric” jacobians J(C) and J(C ′).

Proof of the Theorem: By definition the map α is surjective. It remains to show
that α is zero on CH2

≡(S × S′)Q and that the induced map β is injective.

Step 1. The map α is zero on CH2
≡(S × S′)Q.

Let R be in CH2
≡(S × S′)Q and consider ptrans2 (S′)◦R◦ptrans2 (S). Consider first

the case that R is supported on Y × S′ with Y ⊂ S a curve; there is no loss of
generality if we assume that Y is irreducible, and moreover, taking if necessary the
desingularization of Y , we may assume that Y is smooth. Let j : Y ↪→ S be the
natural morphism. Then

R = (j × idS′)∗R1 = R1◦j∗, R1 ∈ CH1(Y × S′)Q.

Hence we obtain

ptrans2 (S′)◦R = ptrans2 (S′)◦p2(S
′)◦R

= ptrans2 (S′)◦p2(S
′)◦R1◦j∗.

Consider p2(S
′)◦R1 ∈ Corr(Y, S′). Let pi(Y ) be the projectors that give the Chow-

Künneth decomposition of Y . Since Y × S′ satisfies conjecture II, by Propositions
7.4.4 and 7.5.2 we have

p2(S
′)◦R1 = p2(S

′)◦R1◦(
2∑

i=0

pi(Y )) = p2(S
′)◦R1◦p2(Y ).

NowR1◦p2(Y ) = R1◦(Y×eY ) with eY the base point of Y , and we getR1◦(Y×eY ) =
Y ×D with D := (R1)∗(eY ) a divisor on S′. Combining all this we get

ptrans2 (S′)◦R = ptrans2 (S′) ◦R1◦(Y × eY )◦j
∗

= ptrans2 (S′)◦(Y ×D)◦j∗

=
(
Y × ptrans2 (S′)∗D

)
◦j∗ = 0

since ptrans2 (S′)∗D = 0, D being a divisor on S′; See the table in Proposition 6.3.2.
Next consider the case where R is supported on S × Y ′ with Y ′ a curve on S′.

We want to show that ptrans2 (S′)◦R◦ptrans2 (S) = 0. Clearly it suffices to see that the
transpose

T(ptrans2 (S′)◦R◦ptrans2 (S)) = ptrans2 (S)◦TR◦ptrans2 (S′)
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is zero, but this follows from the previous case.

Step 2. The map β is injective.
Suppose that ptrans2 (S′)◦R◦ptrans2 (S) = 0. Let ξ be the generic point of S. We

have

0 = (ptrans2 (S′)◦R◦ptrans2 (S))∗(ξ) = ptrans2 (S′)∗[R∗{ptrans2 (S)∗(ξ)}]. (44)

To study this expression we proceed step by step. We first consider ptrans2 (S)∗(ξ).
Recall that

ptrans2 (S) = Δ(S)− eS × S − p1(S)− p3(S)− S × eS −
∑
i

1

#(Di·Di)
(Di ×Di)

where {Di} is an orthogonal basis for NS(S)Q. As the projectors p0(S), p1(S) and

palg2 (S) act as zero on CH2(S)Q we get

ptrans2 (S)∗(ξ) = ξ − p3(S)∗(ξ)− eS

where p3(S)∗(ξ) is a zero-cycle supported on the curve C ⊂ S that was used in the
construction of p1(S) and p3(S) (see § 6.2). Moreover, the degree of p3(S)∗(ξ) is
zero (because D(β)∗(eC) = 0).

Next we consider the operation of R on ptrans2 (S)∗(ξ). We obtain

R∗(p
trans
2 (S)∗(ξ)) = R∗(ξ)−R∗(p3(S)∗(ξ))−R∗(eS).

Note that R∗(p3(S)∗(ξ)) is a zero cycle that is supported on a curve

Γ′ = R∗(C)

on S′ and Γ′ is defined over k. We shall denote this zero-cycle by Z(ξ).
Finally we consider the action of ptrans2 (S′) on the zero-cycle R∗(p2(S)∗(ξ)).

Arguing as above, we get

ptrans2 (S′)∗(R∗(p
trans
2 (S)∗(ξ))) = R′

1(ξ)−R′
2(ξ)−R′

3(ξ)

where

R′
1(ξ) = R∗(ξ)− Z(ξ)−R∗(eS)

R′
2(ξ) = p3(S

′)∗(R∗(ξ)− Z(ξ)−R∗(eS))

R′
3(ξ) = deg(R∗(ξ)− Z(ξ)−R∗(eS))eS′ .

Note that R′
2(ξ) is a zero-cycle that is supported on the curve C ′ ⊂ S′ that was

used in the construction of p3(S
′) and R′

3(ξ) = 0 because degR∗(ξ) = degR∗(eS)
and degZ(ξ) = 0. So R′

1(ξ)− R′
2(ξ) is a zero-cycle on S′

ξ,and by the relation (44)

we have R′
1(ξ)−R′

2(ξ) = 0 in CH2(S′
ξ)Q. Rewriting (44) we get

R∗(ξ) = Z(ξ) +R∗(eS) +R′
2(ξ), (45)

where the right hand side is a cycle class in CH2(S′
ξ)Q supported on Γ′ ∪ C ′ ⊂ S′,

with Γ′ and C ′ curves defined over the ground field k. (Also note that the finite
set of points |R∗(eS)| is supported on Γ′.) Now consider S′

ξ as the fiber over ξ of

S × S′ → S. We have

CH2(S′
ξ)Q = lim−→

U

CH2(U × S′)Q

where U runs through the open sets of S. By taking the Zariski closure in S × S′

(i.e., we “spread out” these cycles) we obtain the relation

R = Z1 + Z2
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where Z1, the Zariski closure of the right hand side of (45), is supported on S × Y ′

with Y ′ ⊂ S′ a curve, and Z2 is supported on Y × S′ with Y ⊂ S a curve. Hence
R belongs to the subgroup CH2

≡(S × S′)Q ⊂ CH2(S × S′)Q. �
Corollary 7.6.7. Let again S and S′ be smooth projective surfaces defined

over k. Let k(S) be the function field of S and let T (S′) be the Albanese kernel of
S′. Then there is a canonical surjection

λ : T (S′)Q(k(S)) � HomMotrat(k)(ch
2
trans(S), ch

2
trans(S

′)).

Proof : Let ξ be the generic point of S (hence k(S) = k(ξ).) Let ζ ∈ T (S′)Q(k(ξ))
be a cycle class on S′ in the albanese kernel, defined over k(ξ), i.e. “rational over
k(ξ)” in the technical sense. Consider the fibre S′

ξ over ξ in S × S′ and choose a

representing cycle Zξ for ζ. This is a 0-cycle (of degree 0) on S′
ξ defined over k(ξ).

Take its Zariski closure in S×S′ and let R ∈ CH2(S×S′)Q be its class. Obviously,

R is not uniquely determined by ζ, but rather by its class modulo CH2
≡(S × S′)Q

since another representative Z ′
ξ for ζ differs from R by a cycle supported on D×S′,

where D is a divisor on S.
Using the notation of Theorem 7.6.6, set λ(ζ) = β(R). This now is well-defined;

hence, starting with the cycle class ζ from above we have defined a morphism
β : ch2trans(S) → ch2trans(S

′).
It is also surjective as we show as follows. Start with

ρ ∈ HomMotrat(k)(ch
2
trans(S), ch

2
trans(S

′)).

Then
ρ = ptrans2 (S′)◦R1◦ptrans2 (S) = R′

1

where R1 and R′
1 are elements of CH2(S × S′)Q. Take ζ = R′

1(ξ) and apply the
above construction. With the above notation, we then get

λ(ζ) = α(R1) = β(R′
1) = ρ.

Remark . We can prove even more [Kahn-M-P, Thm. 7.4.8]: the kernel of λ is
the subgroup of T (S′)Q(k(S)) generated by those elements in the Albanese kernel
of S′ which are defined over fields L/k contained in k(S) with transcendence degree
< 2.

Corollary 7.6.8. Let S be a smooth projective surface over k. If T (S)Q(K) =

0 for all K ⊃ k, then ch2trans(S) = 0.

Proof : By Cor. 7.6.7, it follows that in fact ch2trans(S) = 0 as soon as T (S)Q(k(S)) =

0, namely take the identity morphism of ch2trans(C) in the right hand side of
Cor. 7.6.7 with S′ = S. This identity morphism comes from some τ ∈ T (S)Q(k(S)),
hence idch2trans(S) = 0. �
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Relations Between the Conjectures

Stand. Conj. Hdg(X) (§ 3.1.3)

+

Stand. Conj. B(X) (§ 3.1.1)

+

N(X)(=Conj. 5.6.9)

Stand. Conj. C(X) (§ 3.1.1) & D(X) (=Conj. 1.2.19)

CK(X) (Conj. 6.1.2)

§ 3.1.4

[Kahn-M-P, Thm. 7.7.3]

Stand. Conj. D(X) for all X Beilinson-Bloch-Murre (§ 7.1, § 7.2)

+

Voevodsky Conj.=1.2.21 S(X) & N(X) ∀X (§ 4.5 &Conj. 5.6.9

Kimura-O’Sullivan (Conj. 5.6.8)

Bloch for surfaces (Conj. A-3.1)

[Andr, p. 117]

Cors. 7.5.7 and 5.6.7

Prop. 5.6.12

Prop. 5.6.13

Prop. 5.6.11





CHAPTER 8

Relative Chow-Künneth Decomposition

In this chapter we work over the complex numbers, i.e. our field k = C. For
simplicity we take for our Weil cohomology H∗

B, the Betti cohomlogy. Throughout
this chapter, we write dX for the dimension of X (assumed equi-dimensional).

8.1. Relative Motives

8.1.1. Introduction. As we have seen in Chapter 6, fixing a Weil-cohomology
theory, a Chow-Künneth decomposition of X ∈ SmProj(k) is given by mutually
orthogonal projectors pi(X)∈ CH(X ×X) with

∑
i pi(X) = Δ(X) that give the

decomposition

H∗(X) =
⊕

iH
i(X) (46)

induced by the Künneth decomposition of the class of the diagonal Δ ⊂ X ×X.
In the relative setting one replaces the projective variety X by a projective

morphism f : X → S where one assumes that X is a smooth but not necessarily
projective variety and S can be any variety over the field C. We then should replace
the cohomology groups Hk(X) of X by the direct image sheaves Rkf∗Q. This can
be best explained using the language of derived categories as follows. For details
the reader may consult [Pe-St, Appendix A].
—Start from any additive category A. In the homotopy category H(A) the objects
are the complexes of objects in A while the morphisms are the equivalence classes
[f ] of morphisms between complexes up to homotopy.1 Suppose moreover that A is
abelian. Then its derived category D(A) is obtained from H(A) by making quasi-
isomorphisms invertible. Recall that a quasi-isomorphism is a morphism s : K• →
L• between complexes such that the induced morphismsHq(s) : Hq(K•) → Hq(L•)
are all isomorphisms.
— Consider the category QX of sheaves of Q-vector spaces over a topological space
X. Associated to a continuous map f : X → S there is the derived direct image
functor Rf∗ : D(QX) → D(QS). Recall that for any sheaf F of Q-vector spaces
on X the object Rf∗F ∈ D(QS) is represented by a complex f∗K

• of sheaves
of Q-vector spaces on S, where f∗ is the usual direct image and K• is some f -
acyclic resolution of F , i.e., the cohomology sheaves Hi(K•) vanish for all i ≥ 1,
H0(K•) = F , and moreover Rif∗K

j = 0 for i ≥ 1. These resolutions exist: one
may take the Godement resolution of the sheaf F (see e.g [Pe-St, Appendix B.2]).
Its cohomology sheaves are the usual direct images, e.g.

Rif∗F = Hi(Rf∗F ) = Hi(f∗K
•). (47)

Note that the direct image sheaves generalize the usual cohomology groups: if
aX : X → Spec k is the structure morphism, then aX,∗ = Γ is the global section

1This notion if more fully explained in the next Chapter, see e.g. § 9.2.1.
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functor and

Rk(aX)∗F = Hk(X,F).

If f : X → S is a morphism, the Grothendieck spectral sequence associated to the
commutative diagram

X

aX ���
��

��
��

��
f �� S

aS����
��
��
��
�

Spec k

is the Leray spectral sequence

Ep,q
2 = Hp(S,Rqf∗F) ⇒ Hp+q(X,F).

Next, one needs to generalize the decomposition (46) to the relative setting.
This is fairly easy if one considers smooth projective morphisms: by [Del68] the
Leray spectral sequence for f degenerates at E2 and gives the decomposition

Rf∗QX �
⊕

iR
if∗QX [−i], (48)

where the (non-canonical) isomorphism takes place in the derived category D(QS)
of complexes of sheaves of Q–vector spaces over S. In other words, the complex
of sheaves Rf∗QX on the left can be replaced by the complex on the right with
Rif∗QX put on place i and where the differentials are all zero.

It is in this setting that Deninger and Murre [Den-Mu] generalized the no-
tion of Chow-Künneth decomposition by replacing the projectors pi(X) by relative
projectors pi(X/S) ∈ CHdX

(X ×S X) that induce the above decomposition.
If one no longer assumes that f is smooth, the Leray-spectral sequence need

not degenerate at E2. However, ordinary cohomology on a smooth variety such
as X is the same as the so-called intersection cohomology for the constant sheaf.
Intersection cohomology is known to behave much better under morphisms if one
is prepared to work with perverse sheaves. These objects in general are not sheaves
at all but complexes of sheaves satisfying certain axioms which are recalled in § 8.2.
Since X is smooth, the constant sheaf on X becomes perverse when viewed as a
complex concentrated in degree −d, where d = dim(X). There is a perverse vari-
ant of the Leray spectral sequence which degenerates at E2: this is the content of
the decomposition theorem of Beilinson-Bernstein-Deligne-Gabber which we recall
below (Theorem 8.2.6). Corti and Hanamura [Cor-Ha00] extended the work of
Deninger-Murre to this setting. In their approach, a relative Chow-Künneth de-
composition is given by a set of mutually orthogonal relative projectors that induce
this generalized decomposition of Rf∗QX .

8.1.2. Relative Correspondences.

Definition 8.1.1. Let S be a quasi-projective variety over k. The category
Var(S) is the category whose objects are pairs (X, f) with X a smooth quasi-
projective variety over k and f : X → S a projective morphism. A morphism from
(X, f) to (Y, g) is a morphism h : X → Y such that g◦h = f .
By abuse of notation, we shall sometimes suppress the structure morphism to S
from the notation and write X ∈ Var(S).
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In order to generalize the notion of a degree d correspondence, recall that

Corrp(X,Y ) = CHp+dX (X × Y )Q = CH−p+dY
(X × Y )Q.

The latter expression also makes sense for singular varieties adopting the definition
for Chow groups from [Ful, Ch1.3]. This then leads to the following definition in
the relative situation.

Definition 8.1.2. Let (X, f), (Y, g) ∈ Var(S). Suppose that Y is equidimen-
sional of dimension dY . The group

CorrpS(X,Y ) = CHdY −p(X ×S Y )Q

is called the group of degree p relative correspondences (over S) from X to Y . If
Y is not equidimensional, write Y =

∐
Yi with Yi equidimensional of dimension di

and put

CorrpS(X,Y ) =
⊕

iCHdi−p(X ×S Yi)Q.

Remark 8.1.3. Note if s ∈ S is a point such that the fibers Xs and Ys over s
are smooth and if T ∈ CorrpS(X,Y ), then

T |Xs×Ys
∈ Corrp(Xs, Ys).

To define composition of relative correspondences we use Fulton’s refined Gysin
homomorphisms [Ful, § 6.2]. These are defined for cartesian squares

Y −→ X⏐⏐� ⏐⏐�
S

i−→ T,

where i is a regular embedding. If i is of codimension d, the upper map induces i! :
CHk(X)Q → CHk−d(Y )Q. We apply this construction using the following diagram
with right hand side Cartesian square

X ×S Z
pXZ←−−− X ×S Y ×S Z −→ (X ×S Y )×k (Y ×S Z)

↓ ↓
Y

δ−→ Y ×k Y.

Here, since Y is smooth, δ is a regular embedding and so the refined Gysin ho-
momorphism δ! is well-defined. Now, given two relative correspondences Γ1 ∈
CorrpS(X,Y ) and Γ2 ∈ CorrqS(Y, Z) we define

Γ2 ◦S Γ1 := (pXZ)∗(δ
!(Γ1 ×k Γ2)) ∈ Corrp+q

S (X,Z). (49)

8.1.3. Definition and Basic Properties.

Definition 8.1.4. The objects in the category Motrat(S) of Chow motives over
S are triples (X, p(X/S), n) with X ∈ Var(S), p(X/S) ∈ Corr0S(X,X) a projector
(i.e., p(X/S)◦p(X/S) = p(X/S)) and n ∈ Z. Morphisms are given by

Hom((X, p(X/S),m), (Y, q(Y/S), n) = q(Y/S)◦Corrn−m
S (X,Y )◦p(X/S).

Note that if S = k, the category Motrat(Spec k) = Motrat(k) is the category of
Chow motives that we defined in Chapter 2.

Example 8.1.5. The motive LS = (S, idS ,−1) is called the Lefschetz motive
over S.



108 8. RELATIVE CHOW-KÜNNETH DECOMPOSITION

Let ΔS : X ↪→ X ×S X be the diagonal embedding. There is a contravariant
functor

chS : Var(S) → Motrat(S)

that sends X ∈ Var(S) to its relative motive chS(X) = (X,ΔS(X), 0) and a mor-
phism h : X → Y to its transposed graph TΓh.

Observe that the Hom-groups in the category of relative motives are given by

HomMotrat(S)(chS(X)⊗ L⊗i
S , chS(Y )⊗ L⊗j

S ) = Corri−j
S (X,Y ) (50)

= CHdY −i+j(X ×S Y )Q.

In particular

HomMotrat(S)(L
⊗i
S , chS(Y )) = CHdY −i(Y )Q. (51)

Functoriality. Given a flat morphism f : S → S′ there is an induced (con-
travariant) morphism f∗ on the level of Chow groups, and for proper f there is a
(covariant) morphism f∗. See [Ful] for details. These induced morphisms can be
used to pull back or push forward relative correspondences.

Lemma 8.1.6 (Composition of relative correspondences and base change). Let
X,Y, Z ∈ Var(S) be quasi-projective and smooth over k, and let f : S → S′ be a
morphism. Let jXY : X ×S Y ↪→ X ×S′ Y be the natural morphism and similarly
for jY Z and jXZ .

(1) Suppose f is flat. Let Γ′
1 ∈ CorrS′(X,Y ), Γ′

2 ∈ CorrS′(Y, Z). Then

((jY Z)
∗Γ′

2)◦S((jXY )
∗Γ′

1) = (jXZ)
∗(Γ′

2◦S′Γ′
1).

(2) Suppose f is proper. Let Γ1 ∈ CorrS(X,Y ), Γ2 ∈ CorrS(Y, Z). Then

((jY Z)∗Γ2) ◦S′ ((jXY )∗Γ1) = (jXZ)∗(Γ2◦SΓ1).

Proof : We prove only (2) since it is similar but more complicated than the proof
of (1). Moreover, we shall only use (2).

Consider the following diagram

X ×S Z
pXZ←−−− X ×S Y ×S Z −→ (X ×S Y )×k (Y ×S Z)⏐⏐�jXZ

⏐⏐�q

⏐⏐�p

X ×S′ Z
p′
XZ←−−− X ×S′ Y ×S′ Z −→ (X ×S′ Y )×k (Y ×S′ Z)

↓ ↓
Y

δ−→ Y ×k Y.

By [Ful, Thm. 6.2, p. 98] (with δ playing the rôle of i) we have

δ!(jXY ×k jY Z)∗(Γ1 ×k Γ2) = q∗(δ
!(Γ1 ×k Γ2)).

Apply (p′XZ)∗ to this formula to obtain:

(jXZ)∗Γ2 ◦S′ (jY Z)∗Γ1 = (p′XZ)∗(q∗(δ
!(Γ1 ×k Γ2))

= (jXZ)∗(pXZ)∗(δ
!(Γ1 ×k Γ2))

= (jXZ)∗(Γ2◦SΓ1). �

Corollary 8.1.7. There exists a functor Motrat(S) → Motrat(k) from the
category of relative Chow motives to the category of absolute Chow motives. This
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functor sends a motive M = (X, p(X/S), n) to (X, p(X), n), where p(X) is the
image of p(X/S) under the map

CHdX
(X ×S X)Q → CHdX

(X ×X)Q
‖ ‖

Corr0S(X,X) Corr0(X,X),

which is a ring homomorphism so that p(X) is indeed a projector.

Proof : Apply Lemma 8.1.6 (2) to the structure morphism aS : S → Spec k. �
The category Motrat(S) is an additive tensor category with sum and tensor

product given by

chS(X) + chS(Y ) = chS(X � Y ), chS(X)⊗ chS(Y ) = chS(X ×S Y ).

8.2. Perverse Sheaves and the Decomposition Theorem

As mentioned in the introduction of this Chapter, if we work on possibly sin-
gular varieties we better replace ordinary cohomology by intersection cohomology.
The definition of the latter concept is quite involved and we shall only sketch it;
for details, we shall refer to [Pe-St].

The basic idea is as follows. If S is an irreducible singular variety, its singular-
ities form a proper subvariety Ssing and hence this is a variety of lower dimension.
The complement S−Ssing figures in this way as an open stratum of highest dimen-
sion in a stratification of S. The next lower dimensional strata are then constructed
in the same manner on the components of the singular variety Ssing. The resulting
stratification of S consists of only smooth strata. However, a normal slice to a fixed
stratum (in the classical topology) may have non-constant topological type. It is a
non-trivial theorem that one may refine the given stratification in such a way that
along a fixed stratum the normal slice stays locally the same. These stratifications
have further technical properties and are called Whitney stratifications. See [Pe-St,
Appendix C] for a technical summary and further references.

Using such a stratification, one defines the intersection complex IC•
S of S

[Pe-St, Def. 13.12]. This complex belongs to the subcategory Db
c(QS) of the de-

rived category of complexes of sheaves of Q–vector spaces consisting of complexes of
sheaves whose cohomology sheaves are constructible (i.e., locally constant on some
stratification of S) and bounded (i.e., zero outside a finite range). In the case of the
intersection complex, the range is [−dS ,−1]. The hypercohomology groups of IC•

S

are called the intersection cohomology groups of S.
The intersection complex satisfies further properties, the support and co-sup-

port condition. The co-support condition is dual to the support condition under
the so-called Verdier duality, a generalization of the (topological) Poincaré duality
[Pe-St, §13.1]. It is an involutive operator DS : Dc(QS) → Dc(QS).

Definition 8.2.1. A complex F • ∈ Db
c(QS) satisfies the support condition if

dim SuppH−i(F •) ≤ i

for all i ∈ Z. We say that F • satisfies the cosupport condition if its Verdier dual
DS(F

•) satisfies the support condition.

Definition 8.2.2. A perverse sheaf is a complex F • ∈ Db
c(QS) that satisfies

both the support and cosupport conditions. The subcategory of perverse sheaves
is denoted by Perv(S).
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Example 8.2.3. If S is smooth, every local system L can be viewed as a
perverse sheaf by considering it as a complex concentrated in degree −dS . We
denote this as L[dS ].2 Indeed, L[dS ] has cohomology only in degree −dS and its
Verdier dual, L∨[dS ] only has cohomology in degree −dS . So both support and co-
support conditions hold since these cohomology sheaves are supported on all of S.
In general, if L is a local system on a Zariski open dense subset U of S consisting of
smooth points, there is a unique extension of L to a perverse sheaf, the intersection
complex ICS(L). In particular, if S = U is smooth then ICS(L) = L[dS ].

Unfortunately, the usual cohomology sheaves of a perverse complex need not
be perverse at all. To remedy this, one needs perverse cohomology sheaves. Below
we give a brief outline of their construction; for details see [Beil-Ber-Del].

Recall that the usual cohomology of a complex K in an abelian category A can
be obtained using the classical truncation functors τ≤k and τ≥k. These are obtained
as follows: for τ≤k, remove the Kp with p > k and replace Kk by the kernel of the
differential Kk → Kk+1, while in τ≥kK all Kp with p < k are removed while Kk is
replaced by the co-image ofKk−1 → Kk. The crucial property of the complex τ≤kK
is that it has the same cohomology as K in degrees ≤ k but no higher cohomology
(and similarly for τ≥kK). The operation τ≤0 followed by τ≥0 thus produces out of
K a complex with cohomology concentrated in degree 0 only. In general, one has

Hk(K) = τ≤0τ≥0(K[k]),

viewed as a complex in degree zero. This procedure enables us to recover the abelian
category A from its derived category D(A): upper truncation followed by lower
truncation at degree 0 identifies A with the subcategory of complexes concentrated
in degree zero.

These constructions can be understood abstractly within the framework of
triangulated categories; this leads to the notions of t-structure and heart. Before
we discuss these, let us explain where distinguished triangles originate from. First
recall:

Definition 8.2.4. Let A• f−→ B• be a morphism of complexes in an additive
category A. The cone of f , denoted Cone(f), is the complex A•[1] ⊕ B• with
differential d(a, b) = (−da, db+ f(a)).

One can show that the short exact sequence 0 → A
f−→ B → C → 0 can be

replaced by 0 → A
f−→ B′ → Cone(f) → 0 with B′ homotopy equivalent to B.

So, up to homotopy we can replace C by Cone(f); furthermore, in the homotopy
category we can permute the three objects A,B,Cone f cyclically: we get a so-

called distinguished triangle A
f−→ B → Cone(f) → A[1] in D(A). Such a triangle

encodes all that is needed to write down the long exact sequence in cohomology.
This will be generalized in the concept of a triangulated category.

Definition. A triangulated category is an additive category D such that

(1) there is a a shift operator A �→ A[1];
(2) there are distinguished triangles A → B → C → A[1] satisfying certain

axioms first formulated by Verdier; see [Verd].

2Recall that for any complex K in an abelian category the complex K[d] denotes the complex
shifted d places to the left, i.e., K[d]i = Kd+i.
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Next, a t-structure on a triangulated category D consists of

(1) two full subcategories D≤0 and D≥0 which correspond to complexes hav-
ing only cohomology in degree ≤ 0 and ≥ 0 respectively. The transla-
tion functor then makes it possible to define D≤k as consisting of objects
K[−k], K ∈ D≤0 and similarly D≥k =

{
K[−k] | K ∈ D≥0

}
. Some obvi-

ous inclusion relations must hold: D≤−1 ⊂ D≤0 and D≥1 ⊂ D≥0;
(2) truncation functors τ≤0 : D �→ D≤0 and τ≥1 : D �→ D≥1 such that

τ≤0K → K → τ≥1K → τ≤0K[1] is a distinguished triangle.

The heart of a t-structure is defined as c(D) = D≤0∩D≥0. The heart can be proven
to be an abelian category.

To introduce cohomology, we need to define the other truncation functors of a
t-structure:

τ≥kK = τ≥1(K[k − 1])[−k + 1], τ≤k(K) = τ≤0(K[k])[−k].

The cohomology associated to the t-structure is defined by
tH0(K) := τ≤0τ≥0K, tHk(K) := τ≤0τ≥0(K[k]).

By construction tHk(K) belong to the heart of D.
One applies these considerations to D = Db

c(QS). Define D≤0 as the category
consisting of the complexes in this category satisfying the support condition while
D≥0 are those which satisfy the co-support condition. Indeed, one has:

Theorem ([Beil-Ber-Del, Corollary 2.1.4]). The support and cosupport con-
ditions define a t-structure, the so-called perverse t-structure, on Db

c(QS). Hence
Perv(S), being the heart of this perverse t-structure, is an abelian category.

The truncation functors of the perverse t-structure are denoted pτ≤0 and pτ≥0,
and its cohomology functors are called the perverse cohomology functors. Explicitly

pHk : Db
c(QS) → Perv(S)

F • �→ pτ≤0
pτ≥0(F

•[k]).

Given (X, f) ∈ Var(S), and F = F • perverse on X, there is a special notation for
the perverse direct image sheaf on Y :

pRif∗(F ) := pHi(Rf∗F )),

which is motivated by the fact, recalled before (see equation (47)), that the usual
direct image Rif∗F equals the cohomology sheaf Hi(Rf∗F ).

Example 8.2.5. If f : X → S is a smooth morphism and S is smooth, the
sheaves Rif∗Q are local systems and (Rif∗Q)[dS ] is a perverse sheaf for all i (see Ex-
ample 8.2.3). In this case we have isomorphisms of perverse sheaves (cf. [Ca-Mi09,
Remark 1.5.1])

pRif∗(Q[dX ]) � (Ri+dX−dSf∗Q)[dS ].

Theorem 8.2.6 (Decomposition theorem, [Beil-Ber-Del, Theorem 6.2.5]).
Suppose that X is smooth and that f : X → S is a projective morphism. Then

Rf∗(QX [dX ]) � ⊕i
pRif∗(QX [dX ])[−i] (52)

pRif∗(QX [dX ]) � ⊕Z ICZ(V
i
Z0), (53)

where the sum runs over the irreducible subvarieties Z ⊂ S, Z0 ⊂ Z is a dense
smooth open subset, Vi

Z0
is a local sytem on Z0 and {Z | Vi

Z0
�= 0} is a finite set.
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Remark 8.2.7. If f is a stratified map (cf.[Pe-St, Appendix C.1.2]), the sub-
varieties Z can be taken to be closures of strata; cf. [Cor-Ha00, Gor-Ha-Mu].
The survey article [Ca-Mi09] contains a very nice discussion of the decomposition
theorem.

8.3. Relative Chow-Künneth Decomposition

8.3.1. Realization Functor. For possibly singular varieties not only are Ful-
ton’s co-variant Chow groups better behaved, also instead of cohomology, it is better
to use co-variantly behaving Borel-Moore homology. For instance if S is smooth
but not complete, the Borel-Moore group HBM

i (S) with Q–coefficients is the same
as ordinary cohomology H2dS−i(S).

We next consider the cycle class map for Borel-Moore homology:

CorrpS(X,Y ) = CHdY −p(X ×S Y )Q → HBM
2dY −2p(X ×S Y,Q).

We want to rewrite the right hand side as a group of homomorphisms so that we
can map a correspondence to such a homomorphism:

Lemma 8.3.1 ([Cor-Ha00, Lemma 2.21 (2)]). Let (X, f), (Y, g) ∈ Var(S). We
have

HBM
2dY +i−j(X ×S Y,Q) ∼= HomDb

c(QS)(Rf∗QX [i], Rg∗QY [j]).

So, indeed, we deduce:

Corollary 8.3.2. There exists a realization map

ψ : CorrpS(X,Y ) → Hom(Rf∗QX , Rg∗QY [2p]).

In particular, the cycle class map γX×SX : CHdX
(X ×S X) → HBM

2dX
(X ×S X)

corresponds to a map

EndMotrat(S)(chS(X)) = Corr0S(X,X) → EndDb
c(QS)(Rf∗QX).

Given Γ ∈ CorrpS(X,Y ), we write

Γ∗ : Rf∗QX → Rg∗QY [2p]

for the induced map inDb
c(QS). AsDb

c(QS) is pseudo–abelian ([Cor-Ha00, Lemma
2.24], [Bal-Sc, Le-C]), projectors have images. Hence we can extend this construc-
tion to relative motives. In this way we obtain a realization functor

real : Motrat(S) → Db
c(QS)

which sends ((X, f), p(X/S), n) to p(X/S)∗Rf∗QX [2n].

8.3.2. Motivic Decomposition Conjecture.

Definition 8.3.3. A projective morphism f : X → S admits a relative Chow-
Künneth decomposition in the weak sense if there exist mutually orthogonal relative
projectors pi(X/S) that induce the decomposition (52) in Db

c(QS), i.e.,

(i)
∑

i pi(X/S) = ΔX ;
(ii) pi(X/S)◦pj(X/S) = δijpi(X/S);

(iii) pi(X/S)∗|pRjf∗(QX [dX ]) =

{
0 i �= j
id i = j.

We say that f : X → S admits a relative Chow-Künneth decomposition in the
strong sense if there exists mutually orthogonal relative projectors pi,Z(X/S) that
induce the decomposition (53), i.e.,
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(i)
∑

i pi,Z(X/S) = ΔX ;

(ii) pi,Z(X/S)◦pj,W (X/S) =

{
0 if (i, Z) �= (j,W )

pi,Z(X/S) if (i, Z) = (j,W );

(iii) pi,Z(X/S)∗|ICW (Vj

W0 )
=

{
0 (i, Z) �= (j,W )
id (i, Z) = (j,W ).

Remark . If f is a smooth morphism, the notions of Chow-Künneth decompo-
sition in the weak and strong sense coincide.

Conjecture 8.3.4 (Motivic Decomposition Conjecture [Cor-Ha00],
[Gor-Ha-Mu]). For every (X, f) ∈ Var(S), the morphism f : X → S admits a
relative Chow-Künneth decomposition in the strong sense.

Proposition 8.3.5. If the cycle class map

γ : CHdX
(X ×S X)Q → HBM

2dX
(X ×S X;Q)

is an isomorphism, then X → S admits a relative Chow-Künneth decomposition
(in the strong sense).

Proof : By Corollary 8.3.2, γ corresponds to an isomorphism

real : Corr0S(X,X)
�−→ End(Rf∗QX).

Choose projectors ptopi (X/S) ∈ End(Rf∗QX) that induce the decomposition (53),

and lift them to projectors pi(X/S) ∈ Corr0S(X,X). The projectors pi(X/S) give a
relative Chow-Künneth decomposition (in the strong sense) of X → S. �

Example 8.3.6 (Semi-small Maps). Recall that a proper, surjective map f :
X → S is called semi-small if

dim{s ∈ S | dim f−1(s) = k} ≤ dimX − 2k

for all k. (This implies in particular that the map f is generically finite.) The map
being semi-small implies that every irreducible component of X×SX has dimension
≤ dX , hence the cycle class map

γ : CHdX
(X ×S X)Q → HBM

2dX
(X ×S X)

is an isomorphism. Proposition 8.3.5 implies that f : X → S admits a relative
Chow-Künneth decomposition in the strong sense.

8.4. Further Examples

Throughout this section we consider the following special situation, which was
studied in [Den-Mu]. Let S be smooth quasi-projective variety, and consider the
category V(S) of varieties X equipped with a smooth, projective morphism f : X →
S. In this case, the formula (49) simplifies: given two relative correspondences
Γ1 ∈ CorrpS(X,Y ) and Γ2 ∈ CorrqS(Y, Z) we have

Γ2 ◦S Γ1 := (pXZ)∗(p
∗
XY (Γ1) · p∗Y Z(Γ2)) ∈ Corrp+q

S (X,Z)

where pXZ : X ×S Y ×S Z → X ×S Z denotes the projection map, and similarly
for pXY , pY Z . In this setting we have the following relative version of the Manin
identity principle. Given T ∈ V(S), put XS(T ) := CorrS(T,X) = CH(X ×S T ;Q)
and for f ∈ CorrS(X,Y ), let

fT : XS(T ) → YS(T ), α �→ f◦α.

Then we have the:
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Proposition 8.4.1 (Relative Manin identity principle). Let f, g ∈ CorrS(X,Y ).
Then the following are equivalent:

(1) f = g;
(2) fT = gT for all T ∈ V(S);
(3) fX = gX .

In particular,

f is an isomorphism ⇐⇒ fT is an isomorphism for all T ⇐⇒ fX is an

isomorphism.

As before, there is a relative version of Lieberman’s lemma which implies the
following result.

Corollary 8.4.2. Let f, g ∈ CorrS(X,Y ). We have f = g as relative corre-
spondences if and only if

(idT ×Sf)∗ = (idT ×Sg)∗ : CH(X ×S T ) → CH(Y ×S T )

for all T ∈ V(S).

8.4.1. Abelian Schemes over a Base. Let f : A → S be an abelian scheme
over S of relative dimension g. For every integer n, we have a map idA ×n :
A×S A → A×S A. Using the theory of the Fourier transform, Deninger and Murre
showed [Den-Mu] that there exist mutually orthogonal projectors pi(A/S) such
that

ΔA =

2g∑
i=0

pi(A/S) (54)

and such that (idA ×n)∗pi(A/S) = nipi(A/S) for all n ∈ Z. The projectors pi(A/S)
give a relative Chow-Künneth decomposition of A over S.

8.4.2. Morphisms that Admit a Relative Cell Decomposition. A mor-
phism f : X → S admits a relative cell decomposition if there exists a filtration

X = X0 ⊃ X1 ⊃ . . . ⊃ Xn ⊃ ∅

of closed subschemes Xα ⊂ X such that for all α

(1) fα = f |Xα
: Xα → S is flat;

(2) the open subset Uα = Xα −Xα+1 is an affine bundle over S under

πα := f |Uα → S.

Proposition 8.4.3. Suppose f : X → S admits a relative cell decomposition.
Then the relative Chow motive is a direct sum of relative Lefschetz-motives and f
admits a relative Chow-Künneth decomposition.

Proof : Let jα : Uα ↪→ Xα and iα : Xα+1 ↪→ Xα be the inclusions. Suppose that
the codimension of Xα+1 in Xα equals dα and consider the localization sequence

CHk−dα(Xα+1)Q
(iα+1)∗−−−−−→ CHk(Xα)Q

j∗α−−→ CHk(Uα)Q → 0.

One has (πα)
∗ : CHk(S)Q

∼−→ CHk(Uα)Q since πα is an affine bundle. Consider the
closure Γα in Xα × S of the graph of πα. Its transpose is a degree zero correspon-
dence from S to Xα. Then

CHk(Uα)Q
(π∗

α)−1

−−−−−→ CHk(S)Q
TΓα−−−→ CHk(Xα)Q
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is easily seen to be a section of the morphism j∗α : CHk(Xα)Q → CHk(Uα)Q. Let
kα : Xα ↪→ X be the inclusion and let cα = dα+dα−1+ · · ·+d1 be the codimension
of Xα in X. Using induction it thus follows that

⊕αγ
∗
α :
⊕

αCH
k−cα(S)Q

∼−→ CHk(X)Q, γα := kα◦TΓα ∈ Corrcα(S,X),

an isomorphism, which is moreover functorial with respect to cartesian squares

X ×S T −→ X⏐⏐�fT

⏐⏐�f

T −→ S.

Hence, using the relative version of Manin’s identity principle (Corollary 8.4.2) and
(51), we obtain

chS(X) ∼=
⊕

αL
⊗cα
S .

This decomposition is given by a set of mutually orthogonal projectors pα(X/S) ∈
Corr0S(X,X). As the maps pα(X/S)∗ induce the decomposition

Rf∗QX � ⊕αQS [−2cα]

in Db
c(QS), the result follows. �

8.5. From Relative to Absolute

Given a smooth, projective k-variety X that is fibered over a base S, one could
try to obtain a Chow-Künneth decomposition of X in two steps:

1) Find relative projectors pi(X/S) that give a relative Chow-Künneth de-
composition of X over S (in the strong sense);

2) Take the images pi(X) of the projectors pi(X/S) under the map
Motrat(S) → Motrat(k); these are projectors by Lemma 8.1.6 (2). Try
to construct an absolute Chow-Künneth decomposition of X using the
projectors pi(X), by decomposing these further if necessary.

This approach was initiated in [Gor-Ha-Mu]. In the previous section, we have
seen some examples where Step 1 can be carried out. The problem in Step 2 is that
the motives Mi = (X, pi) may have cohomology in more than one degree; in this
case, one should find a decomposition Mi = ⊕jMij of the motive Mi such that Mij

has cohomology in only one degree.

We shall illustrate this method in the following example.

Example 8.5.1 (Conic bundles over a surface [Nag-Sa]). Let k be an alge-
braically closed field of characteristic zero, and let f : X → S be a conic bundle
over a surface, i.e., X is a smooth projective threefold defined over k, S is a smooth
projective surface over k and the fiber f−1(s) is a conic for all s ∈ S. Let C ⊂ S be

the discriminant curve parametrising the singular fibers, and let ρ : C̃ → C be the
double covering parametrising the irreducible components of the singular fibers.

For simplicity, we shall make a few additional assumptions3:

(i) all the fibers of f are reduced (i.e. double lines do not occur)
(ii) ρ is a nontrivial double covering
(iii) C is connected.

3As shown in [Nag-Sa] these assumption are superfluous.
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If these assumptions are satisfied, C and C̃ are smooth and irreducible, and ρ is an
étale double covering; cf. [Beau77, Propositions 1.2 and 1.5].
Step 1: Relative Chow-Künneth Decomposition. Let us start by describing the
result of the two decompositions (52), (53) in our example:

Proposition 8.5.2. We have4

Rf∗(QX [2]) � QS [2]⊕QS ⊕ i∗L.,

where L is a rank one local system on C, and i : C → S the inclusion.

Proof : By [Beau77, Prop. 1.2] the conic bundle X embeds into a projective

bundle Y = P(E)
ϕ−→ S with E a rank three vector bundle over S. Using the

relative version of the Lefschetz hyperplane theorem for perverse sheaves (see e.g.
[Ca-Mi09, Thm. 2.6.4]), the smoothness of ϕ and Example 8.2.5 we obtain

pR−1f∗(QX [3]) � pR−2ϕ∗(QY [4]) � (R0ϕ∗QX)[2] � QS [2].

The relative hard Lefschetz theorem [Beil-Ber-Del] implies that pR1f∗(QX [3]) �
pR−1f∗(QX [3]) � QS [2]. Hence the decomposition theorem of [Beil-Ber-Del] gives
an isomorphism

Rf∗(QX [3]) � QS [3]⊕ (pR0f∗(QX [3])⊕QS [1].

Comparing the cohomology sheaves on both sides, we obtain pR0f∗(QX [3]) � i∗L[1]
in Perv(S), with L = Coker(R2ϕ∗(QX) → R2f∗(QY )), a rank one local system
supported on C. Shifting one unity to the right gives the desired decomposition. �

The conic bundle X → S admits a multi-section, i.e., there exists Z ⊂ X such
that Z → S is a double covering. Put ξ = 1

2 [Z] ∈ CH1(X), and define

p′0(X/S) = ξ ×S X, p′2(X/S) = X ×S ξ.

By [Nag-Sa, Lemma 2.1] we have

p′0(X/S) = [X]◦ξ

with [X] ∈ CH0(X) ∼= Corr0S(S,X) and ξ ∈ CH1(X)Q ∼= Corr0S(X,S). By transpo-
sition p′2(X/S) = Tξ◦T[X]. As f∗(ξ) = [S], we have ξ◦[X] = id = T[X]◦Tξ, hence
p′0(X/S) and p′2(X/S) are projectors.

We have p′2(X/S)◦p′0(X/S) = 0, but p′0(X/S)◦p′2(X/S) need not be zero, as the
cycle ξ may have a nontrivial self-intersection. We correct this by putting

p0(X/S) = p′0(X/S)− 1
2p

′
0(X/S)◦p′2(X/S) (55)

p2(X/S) = p′2(X/S)− 1
2p

′
0(X/S)◦p′2(X/S) (56)

to obtain orthogonal projectors. Put p1(X/S) = id−p0(X/S)− p2(X/S).

The projector p′0(X/S) acts as δ0j . id on pRjf∗Q since its restriction to every
smooth fiber Xs = f−1(s) is the projector p0(Xs) constructed in Example 2.3
(ii). Similarly, p′2(X/S) acts as δ2j . id on pRjf∗Q. By (55) and (56) the projectors

pi(X/S) act as δij . id on pRjf∗Q for i = 0, 2. Since the remaining projector p1(X/S)

is supported on C, it acts as zero on pRjf∗Q for j = 0, 2, and hence as the identity
on pR1f∗Q. So the projectors pi(X/S) give a relative Chow-Künneth decomposition
(in the strong sense).

4According to the convention of Theorem 8.2.6 we should consider Rf∗(QX [3]). Since we
apply the result to the Chow-Künneth conjecture, it is more practical to use a different shift which
results in sheaves placed in degrees 0, 1 and 2 in stead of −1, 0 and 1.
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Step 2: Absolute Chow-Künneth decomposition. Let pi(X) be the image of pi(X/S)
under the map Motrat(S) → Motrat(k) (i = 0, 1, 2). Put Mi = (X, pi). The

correspondence ξ ∈ Corr0S(X,S) induces an isomorphism M0
∼= ch(S) with inverse

[X] ∈ Corr0S(X,S) (This follows from the relation ξ◦[X] = id.) The correspondences
T[X] and Tξ induce an isomorphism M2

∼= ch(S)(−1).
The decomposition

ch(S) = ch0(S) + ch1(S) + ch2(S) + ch3(S) + ch4(S)

gives decompositions

M0 = M00 +M01 +M02 +M03 +M04

M2 = M20 +M21 +M22 +M23 +M24

such that the motives Mij have cohomology in only one degree.
It remains to consider the cohomology of the motive M1. As p1,∗(Rf∗QX) ∼=

i∗L(−1)[−2] we have
Hi(M1) ∼= Hi−2(C,L).

By assumption the local sytem L is nontrivial, hence H0(C,L) = 0. By Poincaré-
Verdier duality H2(C,L) ∼= H0(C,L∨) = 0. Hence M1 only has cohomology in
degree three, and we obtain an absolute Chow-Künneth decomposition

ch(X) = ch0(X) + ch1(X) + ch2(X) + ch3(X) + ch4(X) + ch5(X) + ch6(X)

with

ch0(X) ∼= ch0(S)

ch1(X) ∼= ch1(S)

ch2(X) ∼= ch0(S)(−1) + ch2(S)

ch3(X) ∼= ch1(S)(−1) + ch3(S) +M1

ch4(X) ∼= ch2(S)(−1) + ch4(S)

ch5(X) ∼= ch3(S)(−1)

ch6(X) ∼= ch4(S)(−1).

Remark . For any étale double cover σ : C̃ → C of smooth projective curves,

the Prym-projector is the projector pprym := 1
2 (id−σ∗) ∈ Corr0C(C̃, C̃) and the

corresponding Prym-motive is

Prym(C̃/C) := (C̃, pprym).

It can be shown that the motive M1 is isomorphic to Prym(C̃/C)(−1); this is the
main geometric input of [Nag-Sa].





Appendix D: Surfaces Fibered over a Curve

Let S be a smooth projective surface that admits a surjective, generically
smooth morphism f : S → C to a smooth, projective curve C. Let i : Σ ↪→ C
be the discriminant locus, which is a finite set. Put SΣ = f−1(Σ) = �t∈ΣSt, let

S̃Σ → SΣ the normalization and let ι : S̃Σ → S the obvious map. We put U = C−Σ
and SU = f−1U and we let j : U ↪→ C stand for the natural inclusion. These maps
figure in the diagram

SU ↪→ S
ι←− S̃Σ⏐⏐�f |U

⏐⏐�f

⏐⏐�
U ↪→ C

i←− Σ.

Theorem 8.5.3. In the above situation, assume that

(i) the singular fibers St = f−1(t), t ∈ Σ, are divisors with strict normal
crossings. Hence the components are smooth and have multiplicity 1.

(ii) the morphism f : S → C admits a section ε : C → S. We let B = ε(C) ⊂
S.

Then f : S → C admits a strong relative Chow-Künneth decomposition.

The remainder of this Appendix is devoted to a sketch of the proof of this
Theorem. We use the following convention: St,o is the component of the fibre St

meeting the section and we write

St = St,o +
∑
α�=o

St,α t ∈ Σ.

Start with the decomposition from Theorem 8.2.6. As explained in footnote 4, it
is better to perform a shift to the right; one then gets (see for example [Ca-Mi07,
§ 3.3.2]):

Rf∗(QS [1]) � QC [1]︸ ︷︷ ︸
pR0f∗(QS [1])

⊕ QC [−1]︸ ︷︷ ︸
pR2f∗(QS [1])[−2]

⊕ ICC(R
1fU,∗Q)[−1]⊕ i∗V[−1]︸ ︷︷ ︸
pR1f∗(QS [1])[−1]

, (57)

where

V := Ker
[
R2f∗Q → j∗(R

2f∗Q|U)
]

which is a skyscraper sheaf on Σ whose fiber over t ∈ Σ is a Q–vector space of
dimension one less the number of components of St. Explicitly, we have

Vt =
[⊕

αQ · γS̃t,α
(S̃t,α)

]
/Q · γS̃t,α

(ι∗St). (58)

As we did before (see formulas (55) and (56)), we modify the projectors

p′0(S/C) = B ×C S, p′2(S/C) = S ×C B

119
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to obtain orthogonal projectors

p0(S/C) = p′0(S/C)− 1
2p

′
0(S/C)p′2(S/C) (59)

p2(S/C) = p′2(S/C)− 1
2p

′
0(S/C)p′2(S/C) (60)

that induce the projections from Rf∗QS to the first two factors in the above de-
composition (57).

We now look for a relative projector

p∞(S/C) ∈ Corr0C(S, S) = CH2(S ×C S)Q

that induces the projection to i∗V[−1]. As S̃Σ ×Σ S̃Σ is two-dimensional, the cycle
class map

CH2(S̃Σ ×Σ S̃Σ)Q
γS̃Σ×ΣS̃Σ−−−−−−−→ H4(S̃Σ ×Σ S̃Σ)

‖ ‖
⊕t∈ΣCH2(S̃t × S̃t)Q

�−−−−−−→ ⊕t∈ΣH4(S̃t × S̃t)

(61)

is an isomorphism. Put

p∞(S/C) :=
∑
t∈Σ

∑
α,β �=o

mα,βSt,α × St,β ,

where (mα,β)
−1 is the intersection matrix of the components St,α, α �= 0. We

view this as an element in CH2(S ×C S)Q. As can be easily seen directly from
the definitions, it is a projector (same argument as Appendix C) and through
the cycle class map it acts as the projection onto the last factor i∗V[−1] in the
above decomposition (57), where the reader should bear in mind the cycle class
isomorphism (61) (compare [Cor-Ha07, Proposition 1.5], [Gor-Ha-Mu, Prop.
I-3]).

It remains to show that p∞(S/C) is orthogonal to p0(S/C) and p2(S/C). By
(55) and (56) it suffices to show that p∞(S/C) is orthogonal to p0

′ and p′2. From
the definition of p∞(S/C) we clearly have p∞ = Tp∞. So, as p′2 is the transpose of
p′0, it suffices to show that

p∞◦p′0 = p′0◦p∞ = 0.

Now, by definition, to calculate p′0◦p∞, we need to form the intersection product
(p∞ ×C S) · (S ×C B ×C S) and then apply (p13)∗ to the result, where p13 means
projection onto the product of the first and third factor. Since B does not meet
any of the St,β , β �= 0, the above intersection product is trivially zero and a fortiori
we have p′0◦p∞ = 0. To prove that p∞◦p′0 = 0 we have to apply (p13)∗ to the
intersection product Z := (B ×C S ×C S).(S ×C p∞). This also vanishes since a
dimension count shows that dimZ = 2 (Z fibers over Σ with 2-dimensional fibers)
and dim p13(Z) = 1, hence (p13)∗(Z) = 0 by definition. Finally we put

p1(S/C) = id−p0(S/C)− p2(S/C)− p∞(S/C).

By construction p1(S/C)∗ acts as the identity on ICC(R
1fU,∗Q) and is zero on

the other factors. Hence the projectors pi(S/C) (i = 0, 1, 2,∞) give a relative
Chow-Künneth decomposition of S → C in the strong sense.

Remark 8.5.4. To pass from a relative to an absolute Chow-Künneth decom-
position in this case, one should split the motive M1 = (S, p1) into a ‘constant’ and
a ‘nonconstant’ part.
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Remark 8.5.5. Let f : X → Y be a projective morphism between smooth
varieties that is flat of relative dimension one. The technique used in the case of
conic bundles (Example 8.5.1) and in the proof of Theorem 8.5.3 produces a relative
Chow-Künneth decomposition for f in the weak sense. M. Saito has proved that a
morphism f as above admits a relative Chow-Künneth decomposition in the strong
sense if f is of relative dimension at most one; see [MüS-Sa, (1.5)].





CHAPTER 9

Beyond Pure Motives

Up to now we have discussed motives for smooth projective varieties over a field
k. There is no theory yet for mixed motives, i.e. a theory of motives for arbitrary
varieties over a fixed field k, but there are several steps toward such a theory as we
explain now.

Serre [Serre91, §8] suggested the following approach to “virtual” motives. The
idea is that any variety can be obtained from the smooth projective ones by suc-
cessive cutting and pasting of smooth subvarieties. Encoding this K-theoretically
and applying the functor h should then give the “virtual” mixed motives. More
precisely, let X be any k-variety and write it as a disjoint union of smooth quasi-
projective varieties Y . Now, if resolution of singularities would hold, one may write
each Y as the complement of a union of a smooth projective variety and some
smaller dimensional variety. By induction one can then write

X =
∐
j

Yj −
∐
k

Zk

where the Yj and Zk are smooth projective. The virtual motive should be

h∼(X) :=
∑
j

h∼(Yj)−
∑
k

h∼(Zk)

where this has to be interpreted in an appropriate Grothendieck group, the group
K0Mot∼(k). This K-theoretic approach can be made to work as was shown by
Gillet and Soulé in [Gil-So], and independently by Guillén and Navarro Aznar
[Gu-Na]. We follow in § 9.1 a simpler approach which is due to Looijenga and
Bittner [Bitt].

The approach in [Gil-So] and [Gu-Na] is richer since it produces a lifting of
the “virtual motive” to the homotopy category. This lifting of h∼(X) is the weight
complex W (X) as explained in § 9.2. The name comes from the Deligne weight
complex in mixed Hodge theory. But the motivic weight complex contains more
information, since it works over the integers and thus yields a weight filtration
on integral cohomology groups. Of course this could a priori just be a trivial
enhancement of Deligne’s weights on rational cohomology, but as shown by an
example (cf. § 9.2.3), it is not!

The third and last approach is the one of Voevodsky, who constructed the trian-
gulated category of motives [Maz-Vo-We, Voe00]. The category of Chow motives
embeds in the Voevodsky category provided we reverse arrows. A brief discussion
of Voevodsky’s theory is given in § 9.3. Results similar to Voevodky’s have been
obtained by Hanamura [Hana95, Hana04] and Levine [Lev98]. The hope is that
these triangulated categories of motives carry a suitable t-structure whose heart

123



124 9. BEYOND PURE MOTIVES

would give the category of mixed motives. An entirely different approach has been
suggested by Nori. Although Nori did not publish his results, a short introduction
to his ideas can be found in [Hub-MüS] and [Lev05].

Two Auxilliary Notions

Let k be any algebraically closed field. We say that k admits resolution of
singularities if any scheme of finite type over k admits resolution of singularities.
By Hironaka’s fundamental theorem, algebraically closed fields of characteristic zero
admit resolution of singularities.

We say that weak factorization holds for k if the following statement holds for
every birational map φ : X1����X2 between complete smooth connected varieties
over k:

Property (Weak Factorization). Let U ⊂ X1 be an open set where φ is an
isomorphism. Then φ can be factored into a sequence of blowing-ups and blowing-
downs with smooth centers disjoint from U , i.e. there exists a diagram

X
φ1

����
��
��
�� φ2

���
��

��
��

�

X1
φ ��������� X2

where φ1 and φ2 are projective morphisms which are compositions of blowings up
in smooth centers disjoint from (the inverse images of) U . Moreover, if X1 − U
(respectively, X2 − U) is a simple normal crossings divisor, then the factorization
can be chosen such that the inverse images of this divisor under the successive
blowings up are also simple normal crossing divisors.

By [Ab-K-M-W] weak factorization holds for any field of characteristic zero,
algebraically closed or not.

9.1. Motivic Euler Characteristics

Definition 9.1.1. Let Var(k) be the category of k-varieties, i.e. reduced and
separated schemes of finite type over k. Product of varieties endows Z[Var(k)] with
a ring structure.

Define K0Var(k) to be the quotient ring Z[Var(k)]/J of finite formal sums∑
nV (V ), nV ∈ Z, of isomorphism classes (V ) of varieties V modulo the ideal

J generated by (X) − (Y ) − (X − Y ) for any closed subvariety Y ⊂ X. Let [X]
be the class of X in K0Var(k). By construction in K0Var(k)) the scissor-relation
[X] = [Y ] + [X − Y ] holds.

The following result gives a presentation of the Grothendieck group of varieties
in terms of generators and relations.

Theorem 9.1.2 ([Bitt, Thm. 3.1]). Suppose that weak factorization holds for
k. Then K0Var(k) is generated by classes [X] of smooth projective varieties subject
to the following two relations

(1) [∅] = 0.
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(2) the blow-up relation [X] − [Z] = [Y ] − [E] where Y = BlZ(X) is a blow
up in a smooth subvariety Z ⊂ X and E the exceptional divisor. In other
words,

K0(Var(k)) = Z[SmProj(k)]/I,

where I is the ideal generated by the relations [∅]−0 and the blow-up rela-
tions [X]− [Z]− [Y ]+[E], where the smooth projective varieties X,Y, Z,E
fit in the blow-up diagram

E
ı̃−→ Y = BlZX

σ|E

⏐⏐⏐� σ

⏐⏐⏐�
Z

i−−→ X.

(62)

Let us come back to the category Mot∼(k) of motives. Recall from § 2.3 that
there is a functorial way to assign to a smooth projective variety X a motive
h∼(X) ∈ Mot∼(k).

As for any additive (small) category, we can associate a K0-group to Mot∼(k);
it is the free abelian group on the isomorphism classes [M ] of motives M modulo
the relation [M ] = [M ′] + [M ′′] whenever M � M ′ ⊕M ′′.

Proposition 9.1.3. The functor h passes to K-theory, i.e., we have a well-
defined ring homomorphism, the motivic Euler characteristic with compact support

χc
mot : K0(Var(k)) → K0Mot∼(k) (63)

Proof : The functor

h∼ : SmProj(k) → Mot∼(k)

induces a ring homomorphism K0(SmProj(k)) → K0(Mot∼(k)) sending [X] to
[h∼(X)]. By Bittner’s theorem 9.1.2 this ring homomorphism descends to
K0(Var(k)) if it vanishes on the ideal I ⊂ K0(SmProj(k)) generated by the blow-up
relations, i.e., if we have

h∼(X)− h∼(Z) = h∼(Y )− h∼(E)

for every blow-up diagram. This relation holds by Manin’s computation of the
motive of a blow-up; see ((17)). �

Remark . By construction the ring homomorphism χc
mot sends the class [A1] of

the affine line to the Lefschetz motive L.

To define the motivic Euler characteristic (without compact support)

χmot : K0(Var(k)) → K0(Mot∼(k))

we shall define a motivic Euler characteristic for pairs. The idea guiding this con-
struction is that the motivic Euler characteristic with compact support of a possibly
non-complete variety X should be the same as the motivic Euler characteristic of
the pair (X̄, ∂X), where X̄ is some completion of X obtained by adding a “bound-
ary”’ ∂X := X̄−X to X. Once this has been done, the motivic Euler characteristic
without support χmot(X) is defined as the motivic Euler characteristic of the pair
(X,∅).



126 9. BEYOND PURE MOTIVES

To make this precise, one starts from the category Var2(k) of pairs (X,Y ) of
varieties where Y ⊂ X is a closed subvariety of a variety X. One introduces the
corresponding Grothendieck group:

Definition 9.1.4. The Grothendieck group K0Var
2(k) is the quotient

Z[Var2(k)]/J̃ consisting of finite formal sums
∑

nX,Y (X,Y ), nX,Y ∈ Z of isomor-

phism classes of pairs (X,Y ) ∈ Var2(k) modulo the ideal J̃ generated by

• Excision: (X ′, f−1Y )) − (X,Y ) ∈ J̃ whenever f : X ′ → X is proper
and Y ⊂ X is a closed subvariety such that f induces an isomorphism
X ′ − f−1Y ∼= X − Y ;

• Gysin maps : (X −D,∅)− [(X,∅)−(P1 ×D, {∞}×D)] ∈ J̃ whenever X
is smooth and connected, and D ⊂ X is a smooth divisor;

• Exactness : (X,Z)− (X,Y )− (Y, Z) ∈ J̃ whenever X ⊃ Y ⊃ Z, Y closed
in X and Z closed in Y .

Denote the isomorphism class of (X,Y ) in this group by {X,Y }. The class of
(X,∅) is also denoted {X}. One can further show that the product operation

{X,Y } · {X ′, Y ′} := {X ×X ′, X × Y ′ ∪ Y ×X ′}
respects excision, exactness (both easy), and the Gysin relation (less trivial, see
[Bitt, § 4]). Consequently, K0Var

2(k) becomes a ring. Note that excision implies
that {X,Y } only depends on the isomorphism class of the pair (X,Y ). By exactness
{X,Y } = {X} − {Y } while exactness and excision yield {X � Y } = {X � Y, Y }+
{Y } = {X}+{Y } and {∅} = 0. If X ⊂ W is an open embedding withW complete,
then the the excision property implies that {W,W −X} is independent of W . We
set

{X}c := {W,W −X} .
If Y ⊂ X is closed this can be seen to imply

{X}c = {X − Y }c + {Y }c .
Hence we have a ring homomorphism

ψ : K0(Var(k)) → K0(Var
2(k)), {X} �→ {X}c . (64)

Theorem 9.1.5 ([Bitt, Theorem 4.2]). Suppose that weak factorization holds
for k. Then the above ring homomorphism is an isomorphism.

Using Theorem 9.1.5 we can define the motivic Euler characteristic for pairs
as

χ2
mot = χc

mot◦ψ
−1 : K0Var

2(k) → K0Mot∼(k)

In other words, χ2
mot is the unique map that makes the following diagram commu-

tative:
K0Var(k) χc

mot
������

��

ψ

��
K0Mot∼(k)

K0Var
2(k).

χ2
mot ��






We then define the motivic Euler characteristic as the ring homomorphism

χmot : K0(Var(k)) → K0(Mot∼(k))

defined by χmot[X] = χ2
mot({X,∅}).
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Remark . If we invert the class [A1] of the affine line, we obtain the so-called
naive motivic ring

M(k) := K0Var(k)[A
1]−1.

This ring carries a duality involution D that is characterized by the property

D[X] = [A1]−d[X], X smooth and projective, d = dimX.

The two Euler characteristics χc
mot and χmot are interchanged by the duality oper-

ator:

D[χmot {X}] = L−d ⊗ χc
mot[X] = χc

motD([X]).

9.2. Motives Via Weights

9.2.1. Weight Complex, Statement of Main Result. In the previous
section, we have defined motivic Euler characteristics with values in K0(Mot∼(k)).
We want to lift these to have values inHb(Mot∼(k)), where for any additive category
A the notation Hb(A) stands for the category of bounded cochain complexes in A

up to homotopy.
Let us briefly review this notion. To start, a homotopy operator between two

morphisms f, g : K → L between complexes K and L in an additive category A is
a collection of morphisms kq : Kq → Lq−1 such that fq − gq = dq−1◦kq + kq+1◦dq.
This is an equivalence relation compatible with composition. If such a homotopy-
operator exists we write f ∼ g and we say that f is homotopic to f . The objects in
the homotopy category Hb(A) are the bounded complexes in A and the morphisms
are classes of homotopic cochain maps. Isomorphic objects in this category are
those which are homotopy equivalent, i.e admiting a homotopy equivalence between
them: a morphism admitting an inverse up to homotopy.

As a first step toward the weight complex, it can be shown that

K0(H
b(Mot∼(k)) = K0(Mot∼(k));

see e.g. [Gil-So, Lemma 3].

Theorem 9.2.1 ([Gil-So, Thm. 2] [Gu-Na, Th. 5.2]). For every X ∈ Var(k)
there is a unique complex (up to homotopy) W (X) ∈ HbMot∼(k), called the weight
complex. It refines the motivic Euler characteristic in the sense that χc

mot(X) =
[W (X)] ∈ K0(H

b(Mot∼(k)) = K0(Mot∼(k)).
The assigment X �→ W (X) is functorial:

• a proper map f : X → Y induces f∗ : W (Y ) → W (X) and composable
proper maps f, g satisfy (g◦f)∗ = f∗◦g∗; in other words, if Varc(k) denotes
the category of k-varieties with proper morphisms between them, we get a
contravariant functor

W : Varc(k) → HbMot∼(k).

• open immersions i : U ↪→ X induce i∗ : W (U) → W (X); composable open
immersion behave likewise functorial;

It obeys the product rule W (X×Y ) = W (X)⊗W (Y ) and it has a strong motivic
property refining the scissor-relations: If i : Y ↪→ X is a closed immersion with
complement j : U = X − Y ↪→ X one has a distinguished triangle

W (U)
j∗−−→ W (X)

i∗−−→ W (Y ) → W (U)[1].
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Remark . Guillén and Navarro Aznar have defined a contravariant functor

G : Var(k) → HbMot∼(k),

the Gysin complex that refines the motivic Euler characteristic χmot :K0(Var(k))→
K0(Mot∼(k)) in the sense that the class of G(X) in K0(Mot∼(k)) equals χmot(X).
See [Gu-Na, § 5.6–5.10].

9.2.2. On the Construction of the Weight Complex. The construction
of the weight complex can be understood as being based on the following two prin-
ciples.
(1) The weight complex reflects the deviation of purity: in the case of a smooth
projective variety X the weight complex is the motive h∼(X) considered as a ho-
motopy class of a complex concentrated in degree 0.
(2) The cutting and pasting procedure using blow-ups must be replaced by homo-
topy.

To explain the second principle, we start by recalling that the category of Chow-
motives Motrat(k) contains the motives ch(X) = hrat(X) of smooth projective k-
varieties as well as their Tate twists ch(X)(j) and arbitrary finite sums of such
motives. If X and Y are two smooth projective k-varieties and Γ a degree zero
correspondence from Y toX, there is an induced morphism ch(Γ) : ch(Y ) → ch(X).
In particular, if f : X → Y is a morphism ofvarieties the transpose of the graph
defines ch(f) : ch(Y ) → ch(X). We can view this as a morphism of cochain
complexes in Motrat(k) concentrated in degree 0. Then its cone, Cone(ch(f)) (see
Definition 8.2.4) is the cochain complex ch(Y ) → ch(X), where we place ch(X) in
degree 0 and ch(Y ) in degree −1.

This construction leads to the definition of the weight complex for any k-variety
starting with the simplest variety X − Z, where i : Z → X is the inclusion of a
smooth subvariety Z of codimension r + 1 in a smooth and proper variety X. In
this special case we define the weight complex of X − Z as the cochain complex
Cone(ch(i))[−1] in HbMotrat(k), i.e.,

W (X − Z) =
[
ch(X)︸ ︷︷ ︸
deg 0

−→ ch(Z)︸ ︷︷ ︸
deg 1

]
, (65)

where the rectangular parentheses mean ‘isomorphism class in the homotopy cat-
egory’. To make sense out of this, the weight complex should (up to homotopy
equivalence) only depend on X − Z and not on the choice of X and Z.

Let us for instance look at what happens if we blow up Z. Recall the blow-up
diagram

E
ı̃−→ Y = BlZX

σ|E

⏐⏐⏐� σ

⏐⏐⏐�
Z

i−−→ X.

We should then prove that W (X − Z) = W (Y − E):

Lemma 9.2.2. In Motrat(k) the morphism of cochain complexes

Cone(i) → Cone(ı̃)

induced by the pair (ch(σ|E), ch(σ)) is a homotopy equivalence. Consequently, in
Hb(Motrat(k)) one has equality W (X − Z) = W (Y − E).
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Proof : Manin’s calculations (see (17)) on the motive of a blown up variety show
that there are canonical isomorphisms of motives

ch(E) = ch(Z)⊕ T, T :=
⊕r

j=1ch(Z)(−j)

ch(Y ) = ch(X)⊕ T

induced by degree 0 correspondences between the left and right hand sides of the
two formulas. In fact, from Manin’s arguments [Manin], it follows that in the
category Motrat(k) the blow-up diagram (62) is canonically isomorphic to

ch(Z)⊕ T

i:=

⎛
⎝ch(i) 0

0 idT

⎞
⎠

←−−−−−−−−−−−−− ch(X)⊕ T

i′1=ch(σ|E)

�⏐⏐⏐ i1=ch(σ)

�⏐⏐⏐
ch(Z)

ch(i)
←−−−−−−−−−−− ch(X),

(66)

where i1 and i′1 are the inclusions of the first factors. Let p1 and p′1 be the corre-
sponding projections.

To show that (i′1, i1) is a homotopy equivalence it suffices to show that the four
compositions p1◦i1, p

′
1◦i′1, i1◦p1 and i′1◦p′1 are homotopic to the identity. Clearly,

p1◦i1 = id, p′1◦i′1 = id. For the remaining two compositions, introduce the map

k =

(
0 0
0 idT

)
: ch(X)⊕ T → ch(Z)⊕ T.

It serves as a homotopy operator between (i′1, i1) and the identity: since

i1◦p1 =

(
idX 0
0 0

)
=

(
idX 0
0 idT

)
− i◦k

i′1◦p′1 =

(
idZ 0
0 0

)
=

(
idZ 0
0 idT

)
− k◦i

showing that these two compositions are indeed homotopic to the identity. �
The above principles can be refined to give a definition of the weight complex

in general which is independent of choices. For details we refer to [Gil-So]. We
illustrate the definition with an example.

Example 9.2.3 ([Gil-So, Theorem 3]). Let X ⊃ U be a good compactification
of U . This means that X itself is a smooth projective variety and that D :=
X − U =

⋃
i∈I Di is a union of smooth hypersurfaces Di of X meeting like the

coordinate hyperplanes in Ad. Set

DI = Di1 ∩ · · · ∩Dim , I = {i1, . . . , im}
aI : DI ↪→ X

D(m) =
∐

|I|=m

DI

am =
∐

|I|=m

aI : D(m) ↪→ X.

The D(m) are smooth projective. By definition, D∅ = X. For I = (i1, . . . , im) put

Ij = (i1, . . . , îj , . . . , im).
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There are m natural inclusions ajI : DI ↪→ DIj ⊂ D(m−1) which can be assembled
into morphisms

δm : D(m) → D(m− 1), δm|DI =

m∑
j=1

(−1)jajI

and which satisfy δm−1◦δm = 0. So this gives a chain complex concentrated in
degrees k, k − 1, . . . , 0 where k is the maximal m for which D(m) is not empty.
Applying the functor h and the appropriate shift, we get the weight complex

W (U) :=
[
0 → ch(X)︸ ︷︷ ︸

0

→ ch(D(1))︸ ︷︷ ︸
1

→ · · · → ch(D(k))︸ ︷︷ ︸
k

→ 0
]
.

This complex is related to H∗
c (U) = H∗(X,D) via the so-called weight spectral

sequence for compactly supported cohomology whose E2-term is given by

Ej,n
2 = Hj

(
· · ·Hn(D(j − 1))

δ∗j−−→ Hn(D(j))
δ∗j+1−−−→ Hn(D(j + 1)) · · ·

)
and which converges to H∗(X,D):

Ej,n
2 =⇒ Hj+n(X,D) = Hj+n

c (U). (67)

This spectral sequence refines the weight spectral sequences in mixed Hodge theory
with Q-coefficients, which in this case degenerates at E2.

Example 9.2.4. We come back to the case where U can be compactified to a
smooth projective X with a single smooth divisor D. In this case Hn

c (U) carries a
two-step weight filtration with graded pieces

GrWn−1H
n
c (U) = E1,n−1

2 = Coker(i∗ : Hn−1(X) → Hn−1(D))

GrWn Hn
c (U) = E0,n

2 = Ker(i∗ : Hn(X) → Hn(D))

as it should be in mixed Hodge theory.

9.2.3. Weight Filtration on Integral Cohomology. Suppose we are given
a covariant functor from motives to some abelian category A, say Γ : Mot∼(k) →
A. For any variety X this yields a complex Γ(W (X)) in A for which one may
calculate the cohomology HiΓ(W (X)). Theorem 9.2.1 implies for instance that
this assigment is contravariantly functorial in X and one has long exact sequences
associated to pairs (X,Y ) where Y ⊂ X is a closed subvariety.

Note that to define W (X) we work with complexes with integer coefficients.
So we may take for Γ the functor Hn, integral cohomology of rank n. Applying
(67) then yields a weight filtration on integral cohomology with compact support
which induces the one on rational cohomology from Hodge theory constructed in
[Del71, Del74a]. However, this weight filtration cannot in any way be deduced
from Deligne’s weight filtration and is a truly motivic invariant as illustrated by
the following example.

Example 9.2.5 (compare [Gil-So, p. 148]). Let S be a Kummer surface (i.e.
the singular quotient of an abelian surface A by the standard involution ι) and let
S′ an Enriques surface. We claim that H3(S × S′) = (Z/2Z)6 with 2-step weight
filtration H3 = W3 ⊃ W2, W2 = (Z/2Z)5.

To see this, we first calculate the cohomology of S by comparing it to that of the
minimal resolution σ : S̃ → S which is a K3-surface. We know [Bar-Hu-Pe-VdV,



9.3. VOEVODSKY’S TRIANGULATED CATEGORY OF MOTIVES 131

Ch. VIII §3] that H1(S̃) = H3(S̃) = 0 while H2(S̃) = Z22. Let Ei ⊂ S̃, i =
1, . . . , 16 be the exceptional curves and consider the Mayer-Vietoris sequence for
the pair (S̃,∪Ei). Let j : ∪Ei ↪→ S be the inclusion. Then the Mayer-Vietoris
sequence has a piece

0 → H2(S)
σ∗
−−→ H2(S̃)

j∗−−→ ⊕iH
2(Ei) → H3(S) → 0. (68)

Since S = A/ι, and ι acts as the identity on H2(A) we have H2(S) = H2(A) = Z6

and H3(S) must be torsion. The homology sequence is dual to the above and reads

0 → ⊕iH2(Ei)
j∗−−→ H2(S̃)

σ∗−−→ H2(S) → 0.

By [loc. cit. Ch. VIII § 5], the lattice Γ0 = Im(j∗) = Ker(σ∗) spanned by the
fundamental classes of the Ei is a sublattice of the primitive lattice Γ it generates
inside H2(S̃) of index 25. Moreover, Γ/Γ0 is 2-torsion so that

Tor(H2(S)) = Γ/Γ0 � (Z/2Z)5.

The first equality follows since σ∗ maps Γ/Γ0 isomorphically to Tor(H2(S)). By
the universal coefficient theorem one thus has that

Tor(H2(S)) � Tor(H3(S)) = H3(S) � (Z/2Z)5.

The weight complex is compatible with the Mayer-Vietoris sequence because of the
motivic property (Theorem 9.2.1) so the last map of the exact sequence (68) is a
surjection of weight 2 spaces and hence H3(S) has pure weight 2.

One also knows the invariants of an Enriques surface [loc. cit, Ch. VIII,§ 15].
For instance H1(S′) = 0, H3(S′) = Z/2Z while H2(S′) = Z10 ⊕ Z/2Z. Again by
functoriality the weight filtration on the k-th cohomology of smooth varieties must
be pure of weight k and hence H3(S′) has pure weight 3.

The Mayer-Vietoris sequence shows that H1(S) = 0. Hence the Künneth for-
mula simplifies to give H3(S × S′) = H3(S) ⊕ H3(S′). The product rule for the
weight filtration coupled to functoriality implies that the Künneth formula respects
weight. It follows that H3(S×S′) indeed has a non-trivial two-step weight filtration
W3 ⊃ W2.

9.3. Voevodsky’s Triangulated Category of Motives

Throughout this section we assume that k is a perfect field that admits resolution
of singularities.

We discuss (without proofs) the construction of Voevodsky’s category DMeff
gm(k)

of effective geometric motives, its basic properties and its relation to the category
Motrat(k) of Chow motives. For a thorough discussion of Voevodsky’s theory see
[Maz-Vo-We]; see also [Andr],[Friedl-Su-Vo] and [Lev98].

9.3.1. Effective Geometric Motives.

Definition 9.3.1. Given X, Y ∈ Var(k), the group Corrfin(X,Y ) of finite
correspondences fromX to Y is the abelian group generated by integral subschemes
Z ⊂ X × Y such that pX : Z → X is finite and Z surjects onto an irreducible
component of X.

The category SmCor(k) is the category with objects [X], X ∈ Sm(k) and
morphisms Hom(X,Y ) = Corrfin(X,Y ). The graph Γf of a morphism f : X → Y
is a finite correspondence from X to Y , which we shall denote by f∗. There exists
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a functor Sm(k) → SmCor(k) that sends X to [X] and f : X → Y to Γf = f∗ ∈
Corrfin(X,Y ).

The category SmCor(k) is an additive tensor category with tensor product

[X]⊗ [Y ] := [X × Y ].

The bounded homotopy category Hb(SmCor(k)) is a triangulated tensor category.

Definition 9.3.2. The category DMeff
gm(k) of effective geometric motives is

obtained in the following way:

(1) Localize1 Hb(SmCor(k)) with respect to the thick subcategory generated
by complexes of the form

(a) [Homotopy] [X ×A1] → [X];

(b) [Mayer-Vietoris] [U ∩ V ] → [U ] ⊕ [V ] → [X], where U and V are
Zariski open subsets of X such that X = U ∪ V .

(2) Take the pseudo–abelian completion of the resulting quotient category.

The category DMeff
gm(k) then is a triangulated tensor category [Bal-Sc].

Definition 9.3.3. The motive of X ∈ Sm(k) (in the sense of Voevodsky) is

the image of [X] in DMeff
gm(k). We denote this motive by M(X).

The covariant functor M : Sm(k) → DMeff
gm(k) sends f : X → Y to f∗ :

M(X) → M(Y ) and satisfies

M(X
∐
Y ) = M(X)⊕M(Y ), M(X × Y ) = M(X)⊗M(Y ). (69)

Remark . Note that Voevodsky’s construction is covariant rather than con-
travariant, i.e., it gives homological motives rather than cohomological motives.

Remark . For the definition of DMeff
gm(k) we have followed [Friedl-Su-Vo, Chap-

ter 5]. In [Maz-Vo-We] this category is defined in a different way. Both definitions
are equivalent; see [loc.cit., p. 110].

9.3.2. Properties.
We list the main properties of the category DMeff

gm(k). The properties M1-
M3 readily follow from the definition. The finer properties M4-M6 are proved via
an embedding of DMeff

gm(k) into a triangulated category DMeff
− (k), the category of

motivic complexes, whose construction will be sketched in Appendix E.

Basic Properties.

M1 (Homotopy-invariance) M(X ×A1) � M(X).
M2 (Mayer-Vietoris triangle)

M(U ∩ V ) → M(U)⊕M(V ) → M(X) → M(U ∩ V )[1].

M3 (Tate object) Let a : P1
k → Spec k be the structure morphism. The Tate

object Z(1) is the complex

[P1]
a∗−−→ [Spec k]

cf. [Friedl-Su-Vo, p. 192]. We write Z(n) = Z(1)⊗n. We denote by

DMgm(k) the triangulated category that is obtained from DMeff
gm(k) by

inverting the motive Z(1).

1see e.g. [Weib, Thm. 10.3]
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Voevodsky has shown that one can associate to every X ∈ Var(k) an effective
geometric motive M(X); cf. Appendix E. This extends the construction we have
seen in § 9.3.1 for smooth varieties. Voevodsky [Voe00] shows that the motive
M(X) satisfies the following properties.

M4 (Blow-up triangle) Every blow-up diagram

E
ı̃−→ Y = BlZX

σ|E

⏐⏐⏐� σ

⏐⏐⏐�
Z

i−−→ X.

induces a distinguished triangle

M(E)
(σ|E)∗+ı̃∗−−−−−−−→ M(Z)⊕M(Y )

i∗−σ∗−−−−→ M(X) → M(E)[1] (70)

in DMeff
gm(k).

M5 (Gysin triangle) If X is a smooth scheme, and Z ⊂ X is a smooth closed
subscheme of codimension c in X, there exists a distinguished triangle

M(X − Z) → M(X) → M(Z)(c)[2c] → M(X − Z)[1].

M6 (Duality involution) There exists a duality involution D : DMgm(k) →
DMgm(k) such that

HomDMgm
(M(X),M(Y )) ∼= HomDMgm

(M(X)⊗ D(M(Y )),Z) (M6a).

If X is smooth and proper of dimension d, then

D(M(X)) � M(X)(−d)[−2d] (M6b).

Remark . There exists a second motive, the motive with compact support
M c(X) ∈ DMeff

gm(k); see Appendix E. If X is proper, then M c(X) = M(X).

Motivic cohomology. Recall that if X is defined over C and

aX : X → SpecC

is the structure morphism, the Betti cohomology Hp(X(C),Q) is given by

Hp(X(C),Q) ∼= HomDb(pt)(Q, (aX)∗QX [p])

∼= HomDb(QX )(QX ,QX [p]).

The motivic analogue is the following. Voevodsky [Voe00] defines:

Definition 9.3.4. Given X ∈ Var(k) and q ≥ 0, the motivic cohomology groups
of X are the groups

Hp(X,Z(q)) := HomDM(M(X),Z(q)[p]). (71)

These turn out to be related to S. Bloch’s higher Chow groups CHp(X,n), which
generalize the classical Chow groups and which are defined in the following way.
Let

Δn = Spec k[t0, . . . , tn]/(
n∑

i=0

ti − 1)

be the algebraic n-simplex, and let zp(X,n) be the free abelian group on integral
algebraic subvarieties of codimension p in X×Δn which meet all the faces X×Δm
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with m < n properly, i.e., in codimension p. The alternating sum of restriction
maps to the faces of Δq defines a chain complex

· · · → zp(X,n+ 1) → zp(X,n) → zp(X,n− 1) → · · ·
whose homology groups are the higher Chow groups CHp(X,n). These indeed
reappear as motivic cohomology:

Theorem 9.3.5 ([Maz-Vo-We, Theorem 19.1]). If X ∈ SmProj(k), then

CHp(X, q) ∼= H2p−q(X,Z(p)).

9.3.3. Comparison to Chow Motives.

The following result relates Voevodsky’s triangulated category of motives to
the category of Chow motives.

Theorem 9.3.6 ([Maz-Vo-We, Prop.20.1]). There exists a fully faithful em-
bedding

i : Motrat(k)
opp → DMeff

gm(k).

Proof : Given X ∈ SmProj(k), put i(ch(X)) = M(X). To obtain a well–defined
functor, we have to show that degree zero correspondences from Chapter2 act on
Voevodsky motives. This is done as follows. Consider

Γ ∈ HomMotrat(k)
opp(X,Y ) = Corr0rat(Y,X) = CHdY (Y ×X) = CHdX

(X × Y ).

By the moving lemma of Friedlander–Lawson [Friedl-La], we can move TΓ ∈
CHdX

(X × Y ) within its rational equivalence class so that TΓ meets the family

of cycles {x} × Y , x ∈ X, properly. This implies that TΓ ∼rat

∑
i niΓi with∑

i niΓi ∈ Corrfin(X,Y ). The homotopy property M(X) = M(X × A1) im-
plies that two finite correspondences in Corrfin(X,Y ) that are rationally equiva-
lent induce the same map M(X) → M(Y ). Hence TΓ induces a well–defined map
TΓ∗ : M(X) → M(Y ).

We show now that i is fully faithful. So letX and Y both smooth and projective.
We use Theorem 9.3.5 and the basic properties listed above to complete the proof
as follows:

HomDM(M(X),M(Y )) ∼=Property (M6a) HomDM(M(X)⊗ DM(Y ),Z)
∼=Property (M6b) HomDM(M(X)⊗M(Y )(−dY )[−2dY ],Z)
∼=Relation(69) HomDM(M(X × Y ),Z(dY )[2dY ])

∼=Def. (71) H2dY (X × Y,Z(dY ))

∼=Thm. 9.3.5 CHdY (X × Y ) = Corr0rat(Y,X). �



Appendix E: The Category of Motivic Complexes

We sketch Voevodsky’s construction of the category DMeff
− (k) of effective mo-

tivic complexes, which provides a more flexible sheaf-theoretic framework for dealing
with motives. This enables Voevodsky to prove some of the more delicate properties
of DMeff

gm(k), such as the computation of Hom groups and the existence of blow-up
and Gysin triangles.

Nisnevich Sheaves with Transfers. The well known notion of a presheaf
F (of sets, groups, ...) on a topological space X can be expressed in categorical
terms as a contravariant functor F from the category of open subsets of X to the
category of sets, groups, ... As such we can replace the category of open sets of
X by any category C: a presheaf F on C with values in a category A is simply a
contravariant functor F : Copp → A.

A presheaf with transfers is a presheaf on the category SmCor(k) with values
in the category of abelian groups. Since the objects of SmCor(k) smooth varieties,
such a presheaf F attaches an abelian group F (X) to every smooth variety X. As
morphisms from X to Y in SmCor(k) are finite correspondences Z from X to Y ,
due to contravariance, every Z ∈ Corrfin(X,Y ) gives a homomorphism

Tr(Z) : F (Y ) → F (X),

which is the transfer map the terminology “presheaf with transfers” refers to. Such
a presheaf is called homotopy invariant if the natural map

p∗X : F (X) → F (X ×A1)

is an isomorphism for all X ∈ Sm(k).

Definition. A family of étale morphisms {pi : Ui → X} satisfies the Nisnevich
lifting property if for every point x ∈ X there exist an index i and a point u ∈ Ui

such that the induced map of residue fields k(x) → k(u) is an isomorphism. If this
condition is satisfied, we say that {pi : Ui → X} is a Nisnevich covering of X.

Remark . In the definition of a Nisnevich covering, one requires that the Nis-
nevich lifting property is satisfied not only for closed points, but for every scheme-
theoretic point of X (including the generic point). This implies that if {pi : Ui →
X} is a Nisnevich covering, for every point x ∈ X there exist a nonempty Zariski
open subset V ⊂ X containing x and an index i such that p−1

i (V ) → V admits a
section; cf. [Maz-Vo-We, Lemma 12.3].

Nisnevich coverings satisfy the axioms for a Grothendieck pre-topology and
generate a Grothendieck topology, the Nisnevich topology, on Var(k). A presheaf
with transfers is called a Nisnevich sheaf with transfers if its restriction to Sm(k) is
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a sheaf for the Nisnevich topology. Following André [Andr] we denote the category
of Nisnevich sheaves with transfers by2 Nistr(k).

Motivic Complexes. Let F be a presheaf of abelian groups on Sm(k). The
Suslin complex C∗(F ) is the complex of presheaves on Sm(k) defined by

Cn(F )(U) = F (U ×Δn)

whose differentials are alternating sums of pullbacks to the faces. By definition
the sheaf Cn(F ) is placed in degree −n, making C∗(F ) a complex that is bounded
above. If F is a Nisnevich sheaf with transfers, C∗(F ) is a bounded above complex
of Nisnevich sheaves with transfers.

Let D−(Nistr(k)) be the derived category of bounded above complexes of Nis-

nevich sheaves with transfers. The category DMeff
− (k) of effective motivic complexes

is the full subcategory of D−(Nistr(k)) of bounded above complexes of Nisnevich
sheaves with transfers whose cohomology sheaves are homotopy invariant.

If F is a Nisnevich sheaf with transfers, the Suslin complex C∗(F ) has homotopy
invariant cohomology sheaves. Hence we obtain a functor

C∗ : Nistr(k) → DMeff
− (k).

This construction can be used to attach a motivic complex to every k-variety
X as follows. We denote by Ztr(X) the presheaf with transfers defined by

Ztr(X)(Y ) = Corrfin(Y,X), Y ∈ Sm(k).

One can show that Ztr(X) is a Nisnevich sheaf with transfers (cf. [Maz-Vo-We,
Lemma 6.2]). Hence Ztr induces a functor

Ztr : H
b(SmCor(k)) → D−(Nistr(k)).

The motivic complex of X is the class of

C∗(X) := C∗(Ztr(X))

in DMeff
− (k). Concretely, Cn(X) is the presheaf on SmCor(k) defined by

Cn(X)(U) = Corrfin(U ×Δn, X).

Note that if in particular also X is smooth, then Ztr(X) is the presheaf on SmCor(k)
represented by X.

Voevodsky’s main technical result is the following; see [Friedl-Su-Vo, Chapter
5, Prop. 3.2.3 and Thm. 3.2.6].

Theorem (Voevodsky). We have:
(i) (Localization Theorem) The functor C∗ extends to a functor

RC∗ : D−(Nistr(k)) → DMeff
− (k).

This functor identifies DMeff
− (k) with the localization of D−(Nistr(k)) with respect

to the thick subcategory generated by complexes of the form

Ztr(X × A1) → Ztr(X), X ∈ Sm(k).

(ii) (Embedding Theorem) The functor

RC∗◦Ztr : H
b(SmCor(k)) → DMeff

− (k)

2In [Maz-Vo-We] this category is denoted by ShNis(Cor(k)).
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factors through a functor i : DMeff
gm(k) → DMeff

− (k). The functor i is a full embedding
and satisfies

i(M(X)) = RC∗(Ztr(X)) � C∗(X).

So in the end one obtains a commutative diagram

Hb(SmCor(k))
Ztr−−→ D−(Nistr(k))⏐⏐�M

⏐⏐�RC∗

DMeff
gm(k)

i−→ DMeff
− (k).

Construction of the Motives M(X) and M c(X) for X ∈ Var(k). We have
seen that the definitions of Ztr(X) and the motivic complex C∗(X) make sense
for every X ∈ Var(k). Hence one can define the motive without compact support

M(X) as the class of C∗(X) in DMeff
− (k). By Voevodsky’s embedding theorem this

definition extends the definition of M(X) for X ∈ Sm(k) given in section 9.3.1 to
Var(k).

Given X ∈ Sm(k) and Y ∈ Var(k), the group Corrq–fin(X,Y ) of quasi-finite
correspondences from X to Y is the abelian group generated by integral subschemes
Z ⊂ X × Y such that pX : Z → X is quasi-finite and dominant over an irreducible
component of X.

This enables us to define a Nisnevich sheaf with transfers Zc
tr(X) for every

X ∈ Var(k) by
Zc
tr(X)(Y ) = Corrq–fin(Y,X).

The motivic complex with compact support of X is

Cc
∗(X) = C∗(Z

c
tr(X)).

The motive with compact support M c(X) is then defined as the class of Cc
∗(X) in

DMeff
− (k).

One can show that for every X ∈ Var(k) the motives M(X) and M c(X) belong

to the triangulated subcategory DMeff
gm(k) using the blow-up and Gysin triangles

[Friedl-Su-Vo, Chapter 5, Corollaries 4.1.4 and 4.1.6].
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Δ±(X): cycles realizing the sum of even
(odd) Künneth parts of the diagonal
Δ(X), 47

Δtopo
i : the i-th Künneth component of the

diagonal Δ(X), 36
Γr(X): correspondence defined by

r ∈ R(Sn), 44
χc
mot: motivic Euler characteristic with

compact support, 125
χmot: motivic Euler characteristic, 126

τ≤k, τ≥k: truncation functors, 110∧nM : n-th alternating motive on M , 45
pHk: k-th perverse cohomology functor,

111
pRif∗(F ): i-th perverse image sheaf of F ,

111

1: motive of point, 27

Ai(X): codim-i algebraic cycle classes on
X, 8

Ai
prim(X): codim-i primitive algebraic

classes on X, 38

Alb(X): Albanese variety of X, 14

Bi(X): codim-i algebraic cycles modulo
numerical equivalence, 39

Ci
∼(X): codim-i cycles on X modulo those

equivalent to zero, 3
Ci

∼(X)F : codim-i cycles on X with
F -coefficients modulo those equivalent
to zero, 3

C∼(X)F : cycles on X with F -coefficients
modulo those equivalent to zero, 3

C∼(X): cycles on X modulo those
equivalent to zero, 3

C�: pseudo-abelian completion of C, 26
c(D) heart of t-structure (D, t), 111
CHM: category of Chow motives, 26

CHMZ(k): category of Chow motives with
integral coefficients, 30

CH(X): the Chow group of X, 4
CH(X)A: Chow group of X with

F -coefficients, 4

CH∗(X,n): higher Chow groups of level n,
133

CHi(M): i–th Chow group of the motive
M , 29

CHi(X) i–th Chow group of X, 4

CHi(X)F : i–th Chow group of Xwith
F -coefficients, 4

CH1
≡(X × Y ): degenerate divisors on
X × Y , 15

CH2
≡(S × S′)Q: degenerate codim-2 cycle
classes on products, 100

CHd
≡(X × Y ): degenerate degree 0
correspondences from X = Xd to
Y = Yd, 80

CHi
alg(X): codim-i cycle classes on X

algebraically equivalent to zero, 6

ch(X): Chow motive of X, 26

chi(X): the i–th Chow-Künneth motive of
X, 68

ch2alg(S): algebraic part of the second

Chow-Künneth component for a
surface S, 79

ch2trans(S) = t(S): transcendental part of
the second Chow-Künneth component
for a surface S, 79

Cone f : the cone of a morphism f of
complexes, 110

Corfin(X,Y ): finite correspondences from
X to Y , 131

Cor(X,Y ), Cor∼(X,Y ): classes of
correspondences from X to Y , 23

cλ(T ): Young symmetrizer of T , 52

D: duality-operator, 29

dλ(X): correspondence defined by
eλ ∈ R(Sn), 44

dalt: the n-th alternator of variety of
motive, 44

dsym: the n-th symmetriser of variety or
motive, 44

Div(X): group of divisors on X, 1

Divτ (X): τ–equivalence for divisors on X,
13

div(f): divisor of the rational function f , 4

145



146 INDEX OF NOTATION

DMgm
eff (k): effective geometric motives over
k, 132

eλ: element in R(Sn) defined by partition
λ, 44

ealt: the n-the alternator in R(Sn), 44

esym: the n-th symmetrizer in R(Sn), 44

F •
BB : Bloch-Beilinson filtration, 85

f∗: (flat) pull back of cycles, 2
f∗: push forward of cycles, 2

G(X): Gysin complex of X, 127
GrVectF : category of finite dimensional

graded F -vector spaces, 7

Griffi(X): i–th Grifiths group of X, 18

H2
trans(X): transcendental 2–cohomology

for surface X, 17

Hi
crys(X/W (k)): i–th crystalline

cohomology of X, 8

Hi
dR(X): i–th (algebraic) de Rham

cohomology of X, 8
Hi

B(X): i–th Betti cohomology of X, 8

Hi
dR(Xan;C): i–th (analytic) de Rham

cohomology of X, 8

Hi
ét(Xk̄,Q�): i–th étale cohomology of X, 8

Hp(X,Z(q)): (p, q)–th motivic cohomology
group of X, 133

h∼: functor of motives of smooth varieties
with respect to an equivalence ∼, 26

i(V ·W ;Z): intersection number of V and
W along Z, 2

IC•
S : intersection complex of S, 109

IH∗(S): intersection cohomology groups of
S, 109

J(C): jacobian

of the curve C, 15

K0Mot∼(k): K-group for motives, 125

K0Var(k): K-group of k-varieties, 124

LS : Lefschetz motive over S, 107

L∼: Lefschetz motive, 28

M(X): Voevodsky-motive of X, 132

Mc(X): Voevodsky-motive of X with
compact support, 133

Moteff∼ (k): the category of effective motives
over k, 25

Mot∼(k): pure motives over k, 25

NM: category of Grothendieck motives, 26

NS(X): Néron-Severi group of X, 13

ord: the order homomorphism, 4

Perv(S): perverse sheaves on S, 111
Pic0red(X): Picard variety of X, 14

R(G): group ring on G with Q-coefficients,
44

SmCor(k): category of smooth
correspondences over k, 131

SmProj(k): the category of smooth
projective varieties over k, 1

Symn(M): n-th symmetric motive on M ,
45

T (X): Albanese kernel for X , 17
T�(A): �–adic Tate group of A, 73
TλM : motive built from M and partition

λ, 45
T∼: Tate motive, 28

V ·W : intersection cycle of V and W , 2

Var(k): category of k-varieties, 124
V(S): category of varieties smooth and

projective over a quasi-projective
smooth base, 113

W (X): weight complex of X, 127

X � Y : correspondence from X to Y , 23

TZ: transpose of the correspondence Z, 3

Zi
⊗(X): codim-i cycles smash nilpotently

equivalent to 0, 7
Zi(X)F : codim-i cycles on X with

F -coefficients, 1
Zi
hom(X): codim–i cycles homologically

equivalent to zero, 9
Zi
num(X) codim–i cycles numerically

equivalent to zero, 10
Zi(X): codim-i cycles on X, 1
Zi
alg(X): codim-i cycles algebraically

equivalent to zero, 6
Zi
∼(X): codim-i cycles on X equivalent to

zero, 3
Zi
rat(X): codim-i cycles on X modulo

rational equivalence, 4
Z∼(X)F : codim-i cycles on X with

F -coefficients equivalent to zero, 3
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abelian category

semi simple —, 39

abelian variety

isogeny between abelian varieties, 31

Albanese

kernel, 17, 80

motive, 70

variety, 14

algebraic

classes, 35

cycle, 1

Beilinson formula, 86

Betti cohomology, 8

Bloch

Conjecture, 17, 64, 80, 96

Bloch-Beilinson

conjectures, 85, 86

filtration, 85

blow-up diagram, 125

category

derived —, 105

homotopy —, 105

Chow group, 4

higher — , 133

Chow motive, 26

birationally isomorphic varieties, 29

of non-isomorphic varieties may be equal,
34

surfaces, 78

Chow-Künneth

conjecture, 68, 86

decomposition for surfaces, 78

decomposition, curves, 31, 68

decomposition, examples, 69

decomposition, relative —, 112

motive, 68

cohomology

Betti —, 8

classical Weil —, 8

crystalline —, 9

de Rham —, 8

étale —, 9

comparison theorems for Weil cohomology
theories, 9

cone of a complex, 110

conjecture

N(M), N ′(M), 63

S(X), 63

of Kimura-O’Sullivan, 62

constructible sheaf, 109

correspondence, 3, 23

degenerate —, 80

degree, 23

relative —, 107

topological —, 37

correspondences

finite —, 131

cosupport condition, 109

crystalline cohomology, 9

cycle class map, 8

De Rham cohomology, 8

decomposition theorem (due to Beilinson,
Bernstein, Deligne, Gabber), 111

degenerate

correspondence, 80

divisor on a product, 15

dimension of motives, 46

is well-defined, 56

distinguished triangle, 110

divisor, 13

degenerate —, 15

duality for motives, 29

effective geometric motive, 131, 132

equivalence

τ–equivalence, 13

algebraic —, 6

homological —, 7

linear —, 4

numerical —, 10

rational —, 4, 5

smash nilpotent —, 7

equivalence relation

adequate (“good”) —, 3

étale cohomology, 9
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finite
correspondences, 131

dimensional motive, 46
dimensionality and products, 53
dimensionality and nilpotent morphisms,

59
dimensionality and surjective morphisms,

58

Griffiths group, 18
Grothendieck

standard conjectures, 35

motive, 26
Gysin

complex, 127

heart of a t-structure, 111

higher Chow groups, 133
homotopic

morphisms, 127
homotopy

category, 127
equivalence, 127
operator, 127
property for Chow groups, 6

intersection
cohomology group, 109
complex, 109, 110
number, 2

isogeny between abelian varieties, 31

Künneth
component of the diagonal, 67

conjecture, 36
formula, 8

Lefschetz
motive, 28, 107

theorems, 8
Leray spectral sequence, 106
Lieberman’s lemma, 24

relative —, 114

Manin’s identity principle, 33
Matsusaka’s theorem, 13
motive

for curve is finite dimensional, 47
Albanese —, 70
Chow groups, 29
Chow-Künneth, 68
cohomology groups, 30

constituent of a —, 26
curves, 68
dimension, 46
direct sums, 28
effective geometric —, 131

for complete intersection, 83
in the sense of Voevodky, 132
Lefschetz —, 107

naturally isomorphic motives, 69

of a blow-up, 34

of a curve, 30
of a projective bundle, 34

of a smooth projective variety, 26

phantom —, 61, 95

Picard —, 70
related to representations of the

symmetric group, 45

relative —, 107

transcendental —, 80

motivic
cohomology, 133

decomposition conjecture, 113

Euler characteristic, 126
for pairs, 126

with compact support, 125

moving lemma, 3

Murre conjecture
I(X), 86

for curves, surfaces, abelian varieties, 88

II(X), 86
III(X), 87

IV(X), 87

— divisors, 89

— products of 2 surfaces, 96
— results of Jannsen, 93

— special threefolds, 89

— zero-cycles, 89

Néron-Severi group, 13
naive motivic ring, 126

perverse

t-structure, 111

cohomology functors, 111
sheaf, 109

phantom motive, 61, 95

Picard

group, 13
motive, 70

scheme, 13

variety, 14
Poincaré-duality, 8

primitive algebraic classes, 38

projector, 23

pseudo-abelian completion, 26

quasi-isomorphism, 105

realization functor, 112

relative

Chow-Künneth decomposition, 112

correspondence, 107
Lieberman lemma, 114

Manin identity principle, 114

motive, 107
abelian schemes, 114

conic bundles over a surface, 115
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relative cell decomposition, 114
semi-small maps, 113
surfaces over a curve, 119

resolution of singularities for field, 124

sign conjectue S(X), 47
smash-nilpotent morphism, 54
smooth correspondences, 131
spectral sequence

Leray —, 106
standard conjecture

Lefschetz type conjectures
B(X), A(X,L), 37

C(X)=Künneth conjecture, 36, 68
D(X), 10
of Hodge type (Hdg(X)), 38

support condition, 109

t-structure, 111
heart of a —, 111

Tate

group T�, 73
motive, 28

tensor-nilpotent morphism, 54
topological correspondence, 37
trace isomorphism, 8
transcendental

2–cohomology for surface X, 17
triangulated category, 110

of motives, 123
truncation functors, 110

vanishing lemma for symmetric and
alternating products of motives, 53

Voevodsky
Conjecture, 63, 64
motive, 132

Voevodsky-Voisin result on smash
nilpotence, 7, 19

weak factorization
holds for k, 124

weight
complex, 127, 128
spectral sequence, 130

Weil
classical — cohomology, 8
cohomology, 7
Theorem on jacobians, 15

Young
symmetrizer of a tableau, 52
tableau, 51

zero cycles, 17


