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If M is a smooth projective variety whose motive is Kimura finite-dimensional and for which the stan-
dard Lefschetz Conjecture B holds, then the motive of M splits off a primitive motive whose cohomology
is the primitive cohomology. Under the same hypotheses on M , let X be a smooth complete intersection
of ample divisors within M . Then the motive of X is the sum of a variable and a fixed motive inducing
the corresponding splitting in cohomology. I also give variants with group actions.
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1 Introduction

This note aims to address the motivic nature of some classical cohomological results of Lefschetz. The
first is the Lefschetz decomposition of the cohomology of a smooth projective manifold. The second is
a consequence of Lefschetz’ hyperplane theorem, namely the splitting of the cohomology of a complete
intersection into a summand which comes from the surrounding variety, the “fixed part”, and a supple-
mentary summand, the “variable” part. Explicitly, fix an (d + r)-dimensional projective manifold M and
an ample line bundle L on M ; let X = H1 ∩ · · · ∩ Hr be a smooth complete intersection of r divisors
Hj ∈ |L|, j = 1, . . . , r and let i : X ↪→M be the inclusion. With

Hd(X)fix := Im(i∗ : Hd(M)→ Hd(X))

Hd(X)var := Ker(i∗ : Hd(X)→ Hd+2r(M))
(1)

there is an orthogonal direct sum decomposition

Hd(X) = Hd(X)fix ⊕Hd(X)var. (2)

In general it seems hard to show the motivic nature of these results and some conditions will be needed,
Clearly, a first ingredient one needs is the existence of a correspondence inducing the inverse of the Lef-
schetz operator on H∗(M). This is Lefschetz’ conjecture B(M). The second comes from a concept
introduced by Kimura [3] and O’Sullivan, the concept of finite-dimensionality for motives. These authors
conjecture that all motives are finite-dimensional. The main result of this note is that the primitive decom-
position for the cohomology of M as well as the splitting (2) is motivic provided these two conjectures
hold for M . 1 In fact, only a consequence of finite dimensionality is used, namely a certain nilpotency
result which is stated as (3).

It is known that both Kimura’s conjecture and conjecture B are verified for example for M a projective
space, or an abelian variety. For these examples the motive of M is well understood and the primitive
decomposition is probably well known. See e.g. Diaz’ explicit results [2] for abelian varieties. The motivic
nature of the splitting (2) for complete intersections X ⊂ M shows that the relevant motivic information
is hidden in the variable motive.

∗ Corresponding author: e-mail: c.a.m.peters@tue.nl
1 For the comfort of the reader some facts about Chow motives are placed together in Section 2.
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This can be taken advantage of in situations where the motive of M is too large. Let me illustrate this
starting from the Bloch conjecture [1] for surfaces S. Recall that the latter states that if pg(S) = 0, then
CH0(S) is “small” in the sense that the degree 0 part of the Chow group is just the Albanese variety of
S. In the present setting, assuming that one has a complex complete intersection surface S ⊂ M , such
that h2,0(M) 6= 0, then, by Lefschetz’ theorem on hyperplane sections h2,0(S) 6= 0, and then, by a result
of Mumford [5], the Chow group of zero cycles on S is huge. However, it may happen that the variable
submotive of S, or a submotive T thereof does satisfy the condition h2,0(T ) = 0 of Bloch’s conjecture.
This observation can indeed be put to use as is shown in the examples of [4]; the present note sets up the
proper theoretical framework.

Convention. Varieties are taken over a fixed algebraically closed field (of any characteristic).

Notation. • H∗ denotes a fixed Weil cohomology theory; CH∗ denotes Chow groups with Q-coeffcients.

• A degree k (Chow) correspondences from X to Y from a smooth projective variety X to a smooth
projective variety Y is a cycle class

Corrk(X,Y ) := CHdimX+k(X × Y ).

• For a smooth projective manifold X , its Chow motive is denoted h(X).

2 Motives

A correspondence of degree k induces a morphism on Chow groups of the same degree and on cohomology
groups (of double the degree). Correspondences can be composed and these give the morphisms in the
category of Chow motives. Let me elaborate briefly on this but refer to [6] for more details.

Precisely, an effective Chow motive consists of a pair (X, p) with X a smooth projective variety and p a
degree zero correspondence which is a projector, i.e., p2 = p. Morphism between motives are induced by
degree zero correspondences compatible with projectors. This procedure defines the category of effective
Chow motives. Every smooth projective variety X defines a motive

h(X) = (X,∆), ∆ ∈ CHdimX(X ×X) the class of the diagonal

and a morphism f : X → Y between smooth projective varieties defines a morphism h(Y )→ h(X) given
by the transpose of the graph of X .

The direct sum (X, p) ⊕ (X ′, p′) of two effective motives plays a role further on. It consists of the
disjoint union of X and X ′ equipped with the union of the projectors p and p′.

One can also use correspondences of arbitrary degrees provided one uses triples (X, p, k) where p is
again a projector, but a morphism f : (X, p, k)→ (Y, q, `) is a correspondence of degree `− k compatible
with projectors. Such triples define the category of Chow motives.

It should be recalled that motives, like varieties have their Chow groups and cohomology groups:

CHm(X, p, k) := Im
(
CHm+k(X)

p∗−−→ CHm+k(X)
)
,

Hm(X, p, k) := Im
(
Hm+2k(X)

p∗−−→ Hm+2k(X)
)
.

Kimura [3] has introduced the concept finite-dimensionality for motives and he has shown that it implies
the following nilpotency result.

N ∈ Corr0(M,M) such that N = 0 on H∗(M) =⇒ N is nilpotent. (3)

3 The primitive motive

3.1 Primitive cohomology

Let M be a smooth projective variety. For ease of presentation, introduce

HM := H∗(M)(dimM),

Copyright line will be provided by the publisher



mn header will be provided by the publisher 3

the cohomology of M centered at 0. The Hard Lefschetz theorem then is the statement that there are
isomorphisms

Lj : H−jM
∼−→ Hj

M , j = 0, . . . ,dimM. (4)

Over the complex numbers this result is a consequence of the Lefschetz decomposition. The proof requires
subtle properties of the formal adjoint of the Lefschetz operator L. If one instead uses a Weil cohomology,
one assumes the Hard Lefschetz theorem and tries to derive the analogue of the Lefschetz decomposition.
Hard Lefschetz (4) indeed makes it possible to construct a replacement λ : HM → HM for the formal
adjoint of L, an operator of degree −2 which makes the following diagrams commutative. It is uniquely
defined in this way. 2

H−jM

λ

��

Lj

∼
// Hj

M

L

��
H−j−2
M ∼

Lj+2
// Hj+2

M for − j = −d+ 2, . . . , 0

H−1
M

L
∼
//
H1
M

λ
oo

H−j+2
M

Lj−2

∼
// Hj−2

M

H−jM

L

OO

∼
Lj
// Hj

M ,

λ

OO

for j = 2, . . . , d.

We set λ = 0 on H−dM and H−d+1
M . By definition, setting H≤0

M = ⊕dj=0H
−j
M , we have

Hpr
M = Kerλ ⊂ H≤0

M .

From the preceding definition it follows that for all integers r ≥ 1 one has

λr◦Lr = id on the image of λr

Lr◦λr = id on the image of Lr.
(5)

This implies that Lr◦λr and λr◦Lr are projectors. Consider the special case r = 1 and write

u = (u− Lλ(u)) + Lλ(u).

This gives the Lefschetz decomposition

HM = Hpr
M ⊕ LHM . (6)

Indeed, L◦λ(u) = 0 if u is primitive, while if u = Lu′, using (5) one sees that L◦λ(u) = L◦λ◦L(u′) =
L(u′) = u and so Im(L) ⊂ Im(L◦λ) and hence Im(L) = Im(L◦λ). Consequently,

πpr := id− L◦λ (7)

is a projector onto the primitive cohomology.

2 Over C it differs slightly from the formal adjoint of L, usually called the Λ-operator. In fact, from the proof of [7, Cor. 1.25]
one sees that Λ◦L|

LrH
j−2r,pr
M

= r(j − r) · id while λ◦L = id on ImL.
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3.2 Construction of the “primitive” Chow projector

We next explain under what conditions these projectors can be lifted to correspondences. First note thatL ∈
Corr1(M,M). Lefschetz’ conjectureB(M) states that there is a correspondence, say Λ ∈ Corr−1(M,M)
inducing λ. More will be needed, namely the existence of a lift of Lr◦λr to a (Chow) projector. Because
operators in general don’t commute, this motivates the following variant of the Lefschetz conjectureB(M).

Conjecture 3.1. PropertyB(M)∗ holds if for all r ≥ 1 there are correspondences Λr and Λ̃r in Corr−r(M,M)
such that

• Lr◦Λr ∈ Corr0(M,M) is a projector inducing Lr◦λr in cohomology.

• Λ̃r◦L
r ∈ Corr0(M,M) is a projector inducing λr◦Lr in cohomology.

It is not clear whether B(M)∗ =⇒ B(M) even under the assumption that h(M) is finite dimensional,
but the converse holds:

Lemma 3.2. If h(M) is finite dimensional, then B(M) implies B(M)∗.

Proof : I shall follow the proof of [6, Lemma 5.6.10] in detail. First I shall construct Λr. Using the
correspondence Λ, let e = Lr◦Λr ∈ Corr0(M,M). Since this is a cohomological projector, (3) implies
that e2 − e is nilpotent, say (e2 − e)N = 0. Introduce

E := (1− (1− e)N )N = (P (e) · e)N , (P some polynomial)

= eN · P (e)N

= Lr◦Λr · eN−1 · P (e)N .

In cohomology this induces the same operator as e. One has

E = (1− (1− e)N )N = 1 +

N∑
j=1

(−1)j
(
N

j

)
(1− e)jN

and so, since eN · P (e)N = eN · P (e)N , for some polynomial Q one has

E◦E = E◦(1 +

N∑
j=1

(−1)j
(
N

j

)
(1− e)jN )

= E + P (e)N ◦eN ◦(1− e)N ◦Q(e)

= E (since eN ◦(1− e)N = 0).

This is thus a projector inducing the same operator as e in cohomology. Now set Λr := Λr · eN−1 ·P (e)N .
By construction E = Lr◦Λr induces the same operator as e in cohomology, i.e. the operator Lr◦λr.

To show the second claim, exchange the order of Lr and Λr.

For r = 1, this yields:

Theorem 3.3. Suppose that Lefschetz’ conjecture B(M) holds and that the Chow motive h(M) is Kimura
finite dimensional. There is a correspondence Λ1 ∈ Corr−1(M,M) such that one has a direct sum
decomposition of motives

h(M) = (M,L◦Λ1)⊕ (M,Πpr), Πpr := ∆M − L◦Λ1.

Referring to (7), the projector Πpr induces the projector πpr onto Hpr
M in cohomology and L◦Λ1 induces

the projector onto LHM .
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4 The variable and fixed motive

4.1 Construction of the projectors

Let i : X ↪→ M be a d-dimensional smooth complete intersection of r hypersurfaces. Note that the graph
Γi ∈ X ×M of i induces the Lefschetz correspondence (I am ignoring multiplicative constants here)

Lr = i∗◦i
∗ ∈ Corrr(M,M).

Set

pr := Lr◦Λr ∈ Corr0(M,M),

which by construction (cf. Lemma 3.2) is a projector. One has

Lemma 4.1. Assume B(M) and that h(M) is finite dimensional. Then the correspondences

πfix := i∗◦Λr◦pr◦i∗ ∈ Corr0(X,X)

and

πvar := ∆X − πfix

are commuting projectors.

Proof : It suffices to show that πfix is a projector. Then

(πfix)2 = i∗◦Λr◦pr◦L
r◦Λr◦pr◦i∗

= i∗◦Λr◦p
3
ri∗

= i∗◦Λr◦pri∗

= πfix.

4.2 Cohomological action

The inclusion i : X ↪→ M induces maps i∗ : H∗(M)→ H∗(X) of degree 0 and i∗ : H∗(X)→ H∗(M)
of degree 2r with i∗◦i∗ = Lr and i∗◦i∗ = (L|X)r.

Lemma 4.2. For the action on Hd(X) one has pr◦i∗ = i∗ and πfix induces the projector i∗◦λr◦i∗.

Proof : By definition of the fixed and variable cohomology (1), one has

i∗H
d(X) = i∗H

d
fix(X) = i∗◦i

∗Hd(M) = LrHd(M).

By equality (5), Lr◦λr = id on the image of Lr. One then has pr◦i∗ = Lr◦λr◦i∗ = i∗ and πfix =
i∗◦λr◦i∗.

Corollary 4.3. The cohomological projectors πfix and πvar induce projection onto the fixed and variable
cohomology.

Proof : Let x ∈ Hd(X). Then πfix(x) = i∗(λr◦i∗x) ∈ Hd
fix(X). Since i∗(x − i∗λri∗x) = i∗x −

Lrλri∗x = i∗x− i∗x = 0, one has x− πfixx ∈ Hd
var(X). To complete the proof I need to show that fixed

and variable cohomology intersection only in 0. So assume that πfix(u) = πvar(v) = v − πfix(v). Then

πfix(u+ v) = v =⇒ πfix(u+ v) = πfix(v),

since πfix is a projector. Hence πfix(u) = 0 as was required to show.3

3 Observe that the result also follows from the direct sum decomposition (2).
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4.3 The motives

Now define the fixed and variable submotive of X by means of

h(X)fix = (X,πfix), h(X)var = (X,πvar).

Then, Lemma 4.1 and Corollary 4.3 can be summarized as follows.

Theorem 4.4. Let M be a smooth projective manifold for which B(M) holds and suppose that h(M) is
finite dimensional. Let X ⊂M be a smooth d-dimensional complete intersection. Then πfix is a projector
inducing in cohomology projection onto the fixed part of the cohomology and πvar is a projector commuting
with πfix and inducing projection on the variable cohomology. There is a direct sum splitting of motives

h(X) = h(X)fix ⊕ h(X)var.

Remark 4.5. Let X be a surface. Then by [6, §6.3] there is a self dual Chow-Lefschetz decomposition of
the diagonal

∆ = π0 + π1 + πalg
2 + πtr

2︸ ︷︷ ︸
π2

+π3 + π4.

This decomposition is compatible with the splitting into variable and fixed motives. This is because one
has a splitting

πalg
2 = πalg,fix

2 + πalg,var
2 , πalg,fix

2 := πalg
2

◦πfix
2 , πalg,var

2 = πalg
2

◦πvar
2 . (8)

Indeed, the construction of the projector πalg
2 as given in loc. cit. proceeds by first taking an orthogonal

basis for the algebraic classes of X , say d1, . . . , dρ with π1(dj) = 0 for j = 1, . . . , ρ, and then one sets

πalg
2 =

ρ∑
i=1

1

di · di
di × di ∈ Corr0(X,X).

Since the motive (X,πalg
2 ) is a Lefschetz motive one may identify it with the corresponding cohomological

motive. In cohomology one has

πalg
2

◦πfix
2 = πfix

2 ◦πalg
2 =⇒ πalg,fix

2 is a projector.

Secondly, the splitting in variable and fixed parts is an orthogonal splitting which implies the splitting (8).
One then puts πtr

2 = π2 − πalg
2 and hence, defining πtr,var

2 := πvar − πalg,var
2 and πtr,fix

2 := πtr
2 − π

tr,var
2 ,

one gets a refinement of the above Chow-Lefschetz decomposition

∆ = π0 + π1 + πalg,fix
2 + πtr,fix

2︸ ︷︷ ︸
πfix
2

+πalg,var
2 + πtr,var

2︸ ︷︷ ︸
πvar
2

+π3 + π4.

Theorem 4.4 asserting the splitting into variable and fixed motives has the following consequence which
states that the characterization for fixed and variable cohomology has a motivic analog:

Lemma 4.6. Same assumptions as before.
1. For k ≤ d we have

CHk(h(X)var) = Ker(pr◦i∗ : CHk(X)→ CHk(M)).

2. We have an injective morphism

CHk(h(X)fix) ↪→ i∗(CHk+r(M)) (9)

Proof : 1. By definition the left hand side consists of cycles of the form y = z − i∗Λrpri∗z for some
z ∈ CHk(X). Clearly, if pr◦i∗u = 0, u is of this form and conversely, if y is of this form, we have
i∗y = i∗z − i∗i∗Λrpr◦i∗z = i∗z − Lr◦Λrpr◦i∗z = i∗z − pr◦i∗z since pr is a projector and applying pr
this vanishes.
2. By definition the projector πfix puts the “fixed” cycles all in the image of i∗.
Remark. One expects equality in (9) as is the case for cohomology. I have not been able to show this.
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4.4 A variant with group actions

In the preceding set-up, suppose that a finite group G acts on M and that X is invariant under the action
of G. In particular, g commutes with i and with LX and LM . Let Γg be the graph of the action of g on X .
For χ =

∑
g χ(g) · g ∈ Q[G] we set

πχ :=
1

|G|
∑
g∈G

χ(g)Γg.

This is a projector and defines the motive (X,πχ).
Replacing Λr by Λ̂r := 1

|G|
∑
g∈G Γg◦Λr◦Γg−1 the operator Lr◦Λ̂r remains a projector since L com-

mutes with the G-action and it still lifts λr. With this new lift, πχ◦πfix = πfix◦πχ and hence, πfix also
commutes with πvar and both πfix◦πχ and πfix◦πχ are projectors. For any Q-vector space on which G acts,
setting

V χ := {x ∈ V | g(x) = χ(g)x for al g ∈ G},

one has

Hk(X,πχ) = Hk(X)χ.

Since X ⊂M is left invariant by the G-action, the variable and fixed motives are G-stable and one sets

h(X,πχ)fix := (X,πfix◦πχ), h(X,πχ)var := (X,πvar◦πχ).

Acknowledgements Thanks to Robert Laterveer and Jaap Murre for their interest and suggestions. I also want to
thank the referees for their pertinent remarks enabling to ameliorate the presentation.
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