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Introduction

This note is an elaborated version of the talk with the same title I gave in
the January 2006 workshop at the HRI. The talk was aimed at (complex)
algebraic geometers with little background in Hodge theory. In the talk,
I have tried to give as much details from Hodge theory so as to allow the
audience to follow the main arguments. Much of these details are presented
here as well. I try to avoid to become too technical by substituting references
to the existing literature.

The point of departure is a beautiful result of Arakelov [Arak] which is
explained below in § A brief sketch of the original proof is given in
g Since its appearance, this theorem motivated many people to look
for analogs in the number theoretic setting. Analogs which eventually led
Faltings to his proof [Fa83b|] of the Mordell conjecture conjecture. Indeed,
a version of Arakelov’s theorem for Abelian varieties appears by the same
author [Fa83a] in the same journal: it is the article which is just preceding
the famous article in which the Mordell conjecture has been proven.

In [Pe90] I proved a generalization of Faltings’ result for variations of
Hodge structures. At the request of the organizers of the conference I ex-
plained this proof and added a few recent developments. Among the latter
I mention the classification of non-rigid variations of K3-surfaces [S-Zu] due
to M.-H. Saito and S. Zucker, as well as for Abelian varieties [Sal], due to
M.-H. Saito. The reader will find a few new proofs of some recent results
as well. For example, one of the main results of [L-T-Y-Z]: any family of
Calabi-Yau’s with maximally unipotent local monodromy at some point of
the boundary must be rigid (Cor . The same approach gives an easy
proof of a result from [VZ]: a variation with maximal Higgs field is rigid
(Prop. [3.7)).

Contrary to when I wrote [Pe90], nowadays some good introductory
works to Griffiths” theory have appeared such as [V] and |[C-P-M|. The
latter treats the Lie-theoretic background which I need. For that reason I
often refer to it for details omitted in the presentation below.

At the conference H. Shiga pointed out to me that he together with Y.
Imayoshi in [I-S] proved Arakelov’s rigidity result by analytic means.



1 Variations on Arakelov’s Theorem

1.1 Famailies

The statement of Arakelov’s theorem uses the concept of a family of complex
algebraic varieties:

Definition 1.1. 1) A family of algebraic varieties is a proper and flat
morphism f : X — Y between complex manifolds whose fibres are (irre-
ducible) algebraic varieties. If dim' Y = n one speaks of an n-dimensional
family. Note that neither X nor Y are assumed to be algebraic. Indeed,
Y could be a disc or a polydisc.

2) The locus over which f is not of maximal rank is called discriminant
locus and is denoted A(f); on the complement the fibres are smooth. If
the discriminant locus is empty one says that f is a smooth family.

3) A morphism from the family f': X’ — Y’ to the family f: X — Y is
given by a commutative square

f

X - X
Lr 7l
v Lox

If f =id and f~ is an isomorphism, one says that f and f’ are isomorphic;
if f =1id but f is only a bimeromorphic map, we say that f and f’ are
bimeromorphic.

Obvious examples are given by products: Xg X Y — Y, where Xy is
some smooth algebraic variety. Any family isomorphic to such a family is
called trivial.

Whenever we are given a holomorphic map between manifolds g : Y/ —
Y, there is a standard procedure to obtain a new family over Y’: one takes
the fibre product X' := X xy Y' = {(z,¢/) | f(z) = ¢g(y')} which comes
with a natural morphism X’ — Y’. This family is called the pull back of
f by g. A family is called isotrivial if it becomes bimeromorphically trivial
after pulling back through some finite covering map Y’/ — Y.

1.2 Arakelov’s theorem

Consider a class € of smooth projective varieties and fix a smooth projective
variety S, the base manifold and a closed subvariety ¥ C S, the degeneracy
locus. The Shafarevich problem for the triple (€, S, ) consists in determin-
ing the isomorphism classes of families over a given base S of which the
fibres over S — ¥ belong to €. In other words, one asks how many families



f there are over S with smooth members in € and with A(f) C X, possibly
with strict inclusion.

Arakelov’s theorem answers this question for 1-dimensional families of
curves of a fixed genus g > 2.

Theorem ([Arak]). Let S be a complete curve and a finite set ¥ of points
on S. There are at most finitely many non-isotrivial families of curves of
given genus g > 2 over S that are smooth over S — X.

In order to sketch Arakelov’s proof let us return to the Shafarevich prob-
lem for a class € of varieties which has a good moduli space M. For simplicity
of exposition this shall mean that M is some quasi-projective variety, possi-
bly singular, such that the points of M are in one to one correspondence with
isomorphism classes of varieties in €. In addition, given a family f : X — .5,
there is an induced algebraic moduli map py : S — M which sends s € S
to the isomorphism class of the fibre X, := f~!s in M. Usually, some more
functorial properties are needed which are formalised in the concept of a
coarse moduli space. For details, see [Nst]. In many cases these exist.

Examples 1.2. 1. Fix an integer ¢ > 0. Smooth projective curves
of genus g (=compact Riemann surfaces of genus g) have a quasi-
projective moduli space My, as is well known.

2. Fix an integer g > 1. Abelian varieties (complex tori embeddable in
projective space) with a fixed (principal) polarization have a quasi-
projective moduli space A, as is equally well known.

3. A K3-surface is a simply connected compact complex surface with
trivial canonical bundle. More generally, a Calabi-Yau manifold is
a simply connected compact complex manifold with trivial canonical
bundle. Projective Calabi-Yau’s with fixed cohomology ring, fixed
Chern classes and a fixed polarization admit a coarse moduli space.
This is less well known. See for example [L-T-Y-Z Thm. 8§].

It would be even more ideal if there exists a universal family Cyy — M
of varieties in € so that f is isomorphic to its pull back under the moduli
map. In this situation one speaks of a fine moduli space. This rarely occurs;
for instance, py then would be the constant map if and only if the family
f is trivial, but it is easy to construct 1-dimensional non-trivial families of
curves all of which are isomorphic (see e.g. [B-H-P-V|, Ch. V.§5]). This is
related to the existence of automorphisms of the fibres which in fact make
the family a fibre-bundle with non-trivial monodromy. The fact that a fine
moduli space of curves does not exist also is related to the fact that iso-
trivial families enter the statement of Arakelov’s theorem: it is another way
of saying that the moduli map is constant. In terms of moduli maps, the
theorem states that there are only finitely many non-constant maps from a
quasi-projective curve to M,.



Generalizing to any algebraic variety M, one is led to consider
Mor(S, M) ={u:S — M |  algebraic.}

This set has a natural structure of a topological space with possibly infinitely
many components, and one expects that each of these has an algebraic
structure. In the curve case it is not hard to see that Mor(S, M,) indeed
has such a structure.

The first step in the proof of Arakelov’s theorem is to show that there
are in fact only finitely many components. This is a boundedness statement.
The second step consists of establishing rigidity, i.e. to show that the in-
dividual components corresponding to non-isotrivial families are points. In
this survey I’ll concentrate on this second aspect.

1.3 Deforming Maps and Rigidity

Details of what follows can be found in [Pe90], § 2]. Let me start with the
basic

Definition 1.3. Let 1 : S — M be a morphism between complex varieties.
A deformation of u (keeping base and target fixed) parametrized by a germ
of a complex space (7,t) is a holomorphic map m : S x T'— M such that
m|S x {t} = u.

Taking for T the point with ring of functions the dual numbers C[e]/e?
we get the infinitesimal deformation which are classified by the vector space
HO(S, n*Tyy). Intuitively, infinitesimally small deformations of u are given

Figure 1: Infinitesimal deformations

by a vector field in M only defined at points of the image u(M) pointing



in a potential deformation direction. The set of deformations of y can be
shown to be a complex analytic space whose Zariski tangent space at u is
the space of infinitesimal deformations:

TuDef () = HO(S, 1" Ty). (1)

However, in the situations we are interested in, S is quasi-projective (we
speak of an algebraic family) and in this case not all deformations are of
interest: only the analytic subspace

Def (1) = Def (1) N Mor (S, M) C Def () (2)

of algebraic deformations count. To detail this further, in this situation
S can be compactified by some complex projective manifold S such that
¥ =S — S is a divisor with normal crossings and the algebraic infinitesimal
deformations of f correspond to global sections of some suitable extension of
w* Ty with certain controlled growth conditions “near infinity”, i.e. near the
points of ¥. Usually the bundle p*Th; will extend to a bundle on all of M
and the sections of p*T)s having the desired growth conditions correspond
precisely to sections of this extension.

Let me come back to the case of the situation in Arakelov’s theorem
where the moduli map p = py : § — M, comes from the restriction to
S of a family f : X — S of curves of genus g over the compact curve S.
There is a canonical identification [*Tyy, |, = H'(Xy, Tx,) where, I recall
X; = f~!'t. This globalizes to w Ty, = le*TX/S and one aims to calculate
its global algebraic sections over S. In this case T'x/g is a line bundle on X
which extends naturally to a line bundle

L=Tg/s

and the looked for space of infinitesimal deformations is H O(S, R f.L). The
Leray spectral sequence for f also involves H'(S, f.L), but since g > 2 the
fiber of f.L at t € S which is H°(X;, T,) vanishes. The upshot is that

T, Def(u)*8 = H(S, R' f.L) = H'(X, L).

Now L~! is the relative canonical bundle on X (with respect to f) and to
show rigidity, by Kodaira vanishing, it suffices to show that L' is ample.
Arakelov does this by a clever geometric argument involving the locus of
Weierstrafl points on the fibers.

1.4 Towards Hodge Theory

Starting with the family of curves f : X — S, one may look at the associated
family of Jacobians J; = Jac(X}). Recall (example[1.2/2) that g-dimensional



Abelian varieties have a moduli space A,. This leads to a commutative
diagram in which the moduli map py and the period map py figure:

S—>M

\/

Torelli’s theorem implies that ¢ is an immersion and so rigidity for the moduli
map is implied by rigidity for the period map.

To explain the transition to Hodge theory, recall that there is a Hodge
decomposition for 1-cohomology H'(X;) ®z C = H*(X;) ® H*'(X;) and
the position of the g-dimensional subspace H"?(X;) in H'(X;)®zC ~ C% is
described by a point pst) in the Siegel upper half space h,. The assignment
t — py(t) is ambiguous because of the monodromy action of the fundamental
group 71 (S) through the properly discontinuous action of Sp(2g) on b, and
the quotient Ay, = bh,/Sp(2g) is the moduli space considered in 2 and
pr(t) is the equivalence class of py(t).

There is a description of the tangent space to Def(ps) entirely in terms
of Hodge theory as follows. The 1-dimensional cohomology of a genus g
curve is modelled on a symplectic lattice H := (Z%9,Q) carrying a weight
one Hodge structure. More generally, recall:

Definition 1.4. Let H be a free Z-module of finite rank. A weight k Hodge
structure on H is a direct sum decomposition on its complexification

He=He,C= @ H
p+q=k

such that H?P = HP:9 where complex conjugation is with respect to the
natural underlying real structure.

In the curve case there is an extra ingredient coming from the cup-
product pairing @ = (—, —). It is an example of a polarization:

Definition 1.5. A non-degenerate integral bilinear form Q on H, symmetric
for k even and skew-symmetric for k£ odd polarizes the Hodge structure on
H if the two Riemann bilinear relations hold:

QHP, H™*) =0 if (r,s) # (¢, p) (3)
Q(Cu,a) >0 if u # 0 and where C|HP? = iP~19. (4)

The pair (H,Q) is called a weight k polarized Hodge structure. The
example of H! for a curve is by no means special:



Example 1.6. Let X be a projective manifold. Cup product with the hy-
perplane class in H?(X) defines the Lefschetz operator L on integral coho-
mology and it is well known that there is a splitting (over Q) of the integral
cohomology H*(X) into basic building blocks of the form LmHginm(X )
where the subscript denotes primitive cohomology. Primitive cohomology is
defined over Z and comes with a polarization Q. The Hodge structure on

primitive cohomology is polarized by Q.

Given a polarized Hodge structure (H,(Q), its endomorphism group
End(H, Q) consists of integral endomorphisms which are skew-symmetric
with respect to Q. Its complexification has a canonical decomposition:

End(Hc, Qc) = @) End /7 He
J

where End ™77 Hg is the complex vector space of Q-skew endomorphisms X
of He for which X HP4 = HP174=J j € 7. It is not hard to see that this is
a weight 0 Hodge structure.

After this digression, coming back to the curve case, we note that the
vector space End(H((X;),Q) decomposes in three pieces: a real piece
End®? H(Xy), which corresponds essentially to the endomorphisms of the
Jacobian of Xy, End ™! HL(X;) and End" ! HL(X;) which is the complex
conjugate of End" 1 HE(Xy).

The next step is to let ¢ vary over the base S. The Z-modules H{ (X;)
give a local system H ¢ on S and the subspaces H?(X;) form a holomorphic
subbundle of the associated vector bundle H = H ¢®70g. The holomorphic-
ity is equivalent to the period map S — A, being holomorphic.The bundle
End(H, Q) is the bundle of @-skew endomorphisms of H and it splits further
into types; it is not hard to show that

piTa, = End 113, Q).

As I noted before, one really only is interested in those deformations that
give families of curves over S and so one needs some growth conditions as I
now explain briefly.

For simplicity let me suppose that dim S = 1so that S = S—{p1,...,pn}.
Each of the punctures p; is called a “point at infinity”. So locally at such
a point the smooth part of the family lives over a punctured disc A*. Now,
quite generally, if we have a smooth family of varieties {X;} over the punc-
tured disc, going once around the puncture in the positive direction induces
on H¥(X,), t € A* the local monodromy operator T. The crucial result is
the

Theorem 1.7 (Monodromy Theorem). The operator T acts quasi-unipotently
on H*(X;): for some integers £, M, (T* — I)M = 0. Moreover M < k + 1.



Choose ¢ such that T is unipotent. The smallest number M for which

(T* — )M = 0 is called the order of unipotency of T, which by the previous
theorem at most equals k + 1. The quasi-unipotency of 7" makes it possible
to extend the vector bundle H* whose fiber at t € A* is H*(X;) to a fiber
bundle on all of A, the so-called quasi-canonical extension HE, of 3. For
details I refer to [Del70, p. 94].
In the case at hand there is a vector bundle Hc,y, on S and one can show that
the Hodge spaces H'(X}), which make up a holomorphic subbundle, also
extend to a subbundle H of Hean. Likewise End(H, Q) and End(H, Q)
extend to End(H, Q)can and End(H, Q)C;ln’1 respectively. The crucial obser-
vation now is:

Lemma 1.8. Any holomorphic section of the vector bundle End(H, Q)can
over S restricts over S to a global section of the local system End(H g, Q)
of S. Such a global section is precisely a Q-skew endomorphism of any of
its fibers H'(X;) commuting with the monodromy.

This is by no means trivial and depends on the existence of a special
metric on the bundle End(H, Q) as will be explained below (Proposition
which it inherits from the period domain. The metric in this case is any
invariant metric on the Siegel upper half space (see Cor.

From the preceding discussion a criterion for rigidity emerges:

Criterion 1.9. One has

T, Def®(ps) = T, Mor(S, Ag) = HO(S, End ™" (H, Q)can)-
= @-skew endomorphisms of H}:(X;) of type (5)
(—1,1) commuting with the monodromy group.

In particular py is rigid if the bundle End(J, Q)can only admits global
endomorphisms over S of type (0,0). It follows that py is rigid if and only if
the global (skew) endomorphisms of the bundle of 1-cohomology of X; con-
sists of the endomorphisms of any smooth member of the family of Jacobians
J¢ which commute with monodromy.

1.5 Rigidity Results for Abelian Varieties

The criterion is essentially due to Faltings [Fa83a]. Indeed, there is
nothing peculiar to Jacobians here and the criterion applies to any family
of Abelian varieties. In [Fa83a] an example is given of a family of smooth
8-dimensional Abelian varieties which is not isotrivial but still non-rigid. In
fact, the example has no non-isotrivial factors.

M.-H. Saito in [Sa] has taken up a systematic study of rigidity for Abelian
varieties parametrized by a curve and he shows that families of g-dimensional
Abelian varieties without non-isotrivial factors are rigid if g < 7 so that Falt-
ings’ example is in the lowest possible dimension. In [Sa] Faltings’ example



is shown to belong to a wide class of Kuga fiber spaces. In the following
description non-compact Hermitian symmetric spaces are needed. One type
already came up: type III spaces are just the bounded incarnations of the
Siegel upper half spaces h, and have dimension % g(g+1). Type II symmetric
spaces depend on a parameter h > 2 and will be denoted I1;. They have
dimension h(h—1) (see [Sal §6]). Type I symmetric spaces depend on two
parameters p, ¢ and will be denoted I,,; they have dimension pq.

Examples 1.10. 1. Fix natural numbers ¢, ¢, n and m, and consider the
arithmetic quotients
by * /T, IL,/T.

Over the product there is a Kuga fiber space which is a particular
family of Abelian varieties of relative dimension g = 2tmn. Fixing a
point h in the first factor gives a Kuga fiber space over 11 Iﬁ; /T which
has no isotrivial factor if m > 2 and ¢’ > 1. Moreover, all such spaces
obtained by varying h are isomorphic. So, if n > 1 and t — ¢ > 1
they are not rigid. Similarly, fixing a point in the second factor gives
a Kuga fiber space over h%_t/ /" which has no isotrivial factor if n > 1
and t —t' > 1, and it is non-rigid if m > 2. In conclusion, this gives
examples for all even g > 8.

2. A similar construction is possible for type I spaces. Again integers
t,t',n,m are given with ¢/ < ¢t. In addition one has pairs of integers
(pj,qj) 7 =1,...,t for which p; +¢; =n for j <t and p; +¢; =m
for j > t'. As base one takes the product of the two spaces

(Lprgr X -+ % Ipiqé)/r’ (4

! /
pt’+1qt’+1

X X dpyg) /T

There is a Kuga fiber space over the product of relative dimension
g = tmn which over each the two factors give families without isotrivial
factors as soon as the base dimension is > 0 and deformable as soon
as the other factor has positive dimension. This gives examples of all
dimensions g > 8 which factor as g = tnm, t,n,m > 2.

As to rigidity results, Saito shows that his general classification implies:

Theorem. o A 1-parameter family of Abelian varieties of prime dimen-
sion whose generic fiber is simple and has no isotrivial factors must
be rigid.

o Assume S is a mon-compact curve, the local monodromy around at
least one point at infinity has infinite order and the generic fiber is a
simple Abelian variety. Then the family is rigid.

Referring to the Monodromy theorem in the weight one case the
order of unipotency is at most 2 and so either 7T is finite or has maximal
order of unipotency 2, which puts the previous result into perspective.



Remark 1.11. The results in [Sa] have been explained geometrically by Ben
Moonen [Mo| in terms of Shimura theory.

1.6 Rigidity Results for K3-surfaces

It is easy to construct examples starting from products of modular families
of elliptic curves, say {E; X E, | (0,7) € C x D}, C and D modular curves.
Fixing 7 = 79 gives a family of abelian surfaces over C with deformation
parameter 7 € D. This does not contradict the previous non-rigidity results
for Abelian varieties, since the family has a trivial factor. However, the
associated family of Kummer surfaces is a genuine 1-parameter family of
K3’s with a deformation parameter. The results of [S-Zu] generalize this
construction. The upshot is that the base of any non-rigid families of K3’s
must be of the form h/T", where I' is a discrete subgroup of SL(2,R) acting
freely on h and there is one deformation parameter as in the preceding
example. This is deduced from the very special structure of the Q-algebra

End — { endomorphisms of H?(X;; Q) } (6)

commuting with the monodromy group.
Note that one takes all endomorphisms instead of just the Q-skew endomor-
phisms.

To explain the main result concerning this algebra, I briefly have to say
something about the structure of the cohomology groups H?(X;, Q) of the
fibres. The cup product form on this Q-vector space induces an orthogonal
direct sum decomposition

H*(X;,Q) =S, &T;, S, =NS(X;)®Q, T; = S,

where NS(X) is the Néron-Severi group of the surface X;. It can be shown
that there is a local system S over S, the algebraic part of the local system

Hg := {H*(X,Q)}ies

such that S, = NS(X;) for ¢ in the complement of a countable set of points in
S. The rank of the system S is therefore called the generic Picard number
p of the family of K3’s. The orthogonal complement of S is called the
transcendental part T of the local system Hg.

Theorem 1.12. The algebra @ 1 a quaternion-algebra over a totally real
number field Z. If [Z : Q] = g, the local system T over S is a rank-1
End-module and hence in particular has dimension 4g.

Since dim H?(X;, Q) = 22, one has in particular

Corollary 1.13. If 22 — p is not divisible by 4, the family is rigid.

10



The monodromy group I' of the family acts always as a finite group on the
algebraic part (the algebraic part has signature (1, p— 1), but a polarization
is always fixed). However, it might act non-finitely on the transcendental
part T'. The induced group is a subgroup of the algebra End and one has
[S-Zul, The. 5.6.2]:

Theorem 1.14. Suppose that the family of K3’s is non-isotrivial and non-
rigid. Then the monodromy group I' either acts as finite group on T or as an
arithmetic subgroup of SL(2,R) commensurable with SL(2,7Z). In particular,
if there is an infinite order local monodromy operator, one has End = M3(Q)
and p = 18.

Recalling the Monodromy Theorem [I.7] the maximal order of unipotency
on 2-cohomology is 3. So a local monodromy operator T' can be finite, or
has order of unipotency 2 or 3. In the situation of Theorem the order
of unipotency must be at most 2 and so one has:

Corollary 1.15. If there is a local monodromy operator at infinity T having
mazximal order of unipotency 3, the family must be rigid.

2 A Hodge Theoretic Approach

2.1 Period Maps

Fix a free Z-module H of finite rank, an integer k, the weight, and positive
integers hP4, p + q = k, the Hodge numbers adding up to rank(H) and
assembled in a Hodge vector h= (..., hpk=p pptLk=l=p )

The set of all possible Hodge structures on H whose Hodge numbers
make up the fixed Hodge vector h forms a nice algebraic variety, a partial
flag variety. In order to make this identification it is essential to pass from
the Hodge decomposition H = @@ H"™* to the corresponding Hodge filtration
<. FP > FP=l 5 ... where

P = H*T. (7)

r>p

The condition H?? = H9P translates into HQC = FP@Fk—p+1. On can also
go in the reverse direction since HP? = FP N H4. This shows that instead
of Hodge decompositions, one may equivalently speak of Hodge filtrations.

The Hodge structures coming from geometry are polarized in the sense
of Definition So assume that a non-degenerate Z-valued form @ on H
is given which is symmetric for k£ even, and skew-symmetric otherwise and
which satisfies the two Riemann bilinear relations. These imply a condition
on the signature of Q: it should be equal to >_(—1)PhP*P,

The group G of isometries (with respect to @) of the real vector space
Hgr := H ®z R acts on the period domain D = D(H,Q,ﬁ) consisting of

11



possible Hodge structures of Hodge vector & polarized by Q. The pair (ﬁ, Q)
will be called the polarization type. The form ) induces a hermitian metric
on He =: H ®z C, the Hodge metric defined by

h(u,v) := Q(Cu,v), wu,v € Hc. (8)

It turns out that G acts transitively on D. At a reference point Fy € D
corresponding to a Hodge decomposition @ HP+? the isotropy group is

V={geG|gH"? C HP}.

Hence the period domain is the homogeneous space D = G/V and so it
is in particular a manifold, but one cannot expect this to be an algebraic
variety because of non-algebraic nature of the second Riemann relation .
However, it embeds naturally in a projective manifold, the compact dual D of
D which by definition is the set D = D(H, Q, ﬁ) of Hodge decompositions on
H with given Hodge vector h which only satisfy the first Riemann equation
. The “complex” group

Ge = Aut(H ®2C,Q® 1)

turns out to act transitively on D with isotropy group (at a reference point
Fy € D corresponding to a Hodge decomposition @ HP?) the subgroup

B ={g e Gc | gHP? C HP}.
So, again, the compact dual
D = G¢/B,

a homogeneous variety, and in this case D is even a smooth projective variety
in which D sits as an open (but not Zariski open) subset.

Note that D is the base of a principal bundle B — G¢ — D and the
holomorphic tangent bundle T(D) is the vector bundle which is associated
to the through the adjoint representation of B on Lie G¢/Lie V. The tan-
gents coming from geometry turn out to be very special. To describe these,
introduce

: LieG¢
g7 = {Xeg|XHP" P c HR P forallpeZ}

Clearly, g = LieG ® C = @ g’/ is a Hodge structure on Lie G which
depends on the point Fy € D. The subbundle TP C T(D) is given at F
by

TH™ := Lie B + g"' /Lie B.

12



This Gc-equivariant subbundle of T'(D) is called the horizontal bundle. We
have a natural adjoint action of Lie B on g~"! as well and hence an asso-
ciated vector bundle on D with fiber at Fy given by g~ 1!
identification of this bundle with 7"r:

and we fix an

Tig"~ g (9)

Let S be a complex manifold and suppose that a representation of (S, *)
in Gz, the group of isometries of (H, Q) is given. So over some unramified
cover S — S the representation becomes trivial. The minimal such cover
is called the monodromy cover, S™°". The image G™°" of 71 (S, *) in Gz is
called the monodromy group.

By definition, a variation of Hodge structures on S of polarization type
(f_i, Q) is a holomorphic map p : S™™ — D which is horizontal in the
sense that p,[T5S™°%) C TE'D, F = p(s). Such a map is called period map.
Equivalently, it is a holomorphic map p : S — D/G™°" lifting to a horizontal
map S — D on a suitable unramified cover S — S. There is also a direct
definition:

Definition 2.1. A wvariation of Hodge structure on S of weight k is a local
system H g of free Z-modules of finite rank on S such that each fiber over
t € S of the complexification admits a Hodge structure of weight k and such
that

— the associated Hodge flag F;? depends holomorphically on t (this is the
holomorphicity of the period map)

— the flat connection V satisfies Griffiths’ horizontality condition:

VeF] C thfl, ¢ a germ of a holomorphic tangent field at ¢ .

(this last condition is the horizontality of the period map).
The Hodge structure is polarized by a flat bilinear integral form @ if @
induces a polarization on the Hodge structures on each fibres of H g.

This reformulation leads to the basic examples provided by the primitive
cohomology group of fixed rank of smooth projective varieties varying in a
family:

Example 2.2. Let p : X — S be a smooth family of projective varieties.
For simplicity, assume that every fiber X; can be embedded in the same
projective space so that it makes sense to speak of “the” cohomology class
h € H?(X;) of a hyperplane section and hence there for each positive in-
teger k there is an associated local system of primitive cohomology groups
ngim(Xt). For later reference, let me observe that since these form a local
system, there is a canonically defined flat connection V, the Gauss-Manin-
connection.

13



By Exampleeach of the modules ngim(Xt) carries a polarized Hodge
structure. Pulling back to the monodromy cover, this local system trivializes
and a deep result of Griffiths states that Hodge filtration varies holo-
morphically, i.e. the associated period map p : S™°" — D is holomorphic

and, horizontal. See |[C-P-M]| and the references therein.

To a polarized variation of Hodge structures on a local system Hg at any
point ¢ € S one can associate its infinitesimal variation, consisting of the
defining polarized Hodge structure on (H, Q) together with the tangents at
t to the period map, i.e.

o:T =TS — End"(H,Q)®C. (10)
Pick n € T and write
0pq(n) = o|HP9 — HP~HOH,

One can show (cf. [C-P-M|, Theorem 5.3.4]) that in the geometric situation
(example this map just comes from cup-product with the image of n
under the Kodaira-Spencer map p: T — H(X;, X;):

Up(n) _
g+ HI(Xy, O )—2 HITH(X,, Q5 (11)

Infinitesimal variations have a rich multi-linear algebra structure. The
maps oy, (1) can be composed into

(M, ... k) = oop(m)o -+ oopo(ne) : HMO — HOF

By [C-P-M. § 5.5] this endomorphism is @-symmetric and depends symmet-
rically on the 7;, thereby producing a homomorphism

7 : Sym* T — Sym?(H*®)Y ¢ End **(H ® C) (12)

Remark 2.3. In the geometric situation this map, the Griffiths- Yukawa cou-
pling can be defined in concrete terms using the Gauss-Manin connection
(cf. Examples as follows. Recall that the Gauss-Manin connection
is the flat connection V on the local system of the primitive cohomology

groups ngim(Xt;(C). Assume that S is a polydisc with local coordinates
(t1,...,tn). Then Voo, acts as differentiation on cohomology classes. It

will be abbreviated as %. With this convention, at the origin, for any class
J

we 7Y (X¢; C) there is the following formula for the Yukawa-coupling in

prim
terms of the polarisation Q:

0 0 0 0
T<6tl"”’%C)w_Q(w’aho"'oatkw) (13)
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2.2 Higgs Bundles

An important property of variation of Hodge structures is their complete
reducibility [Del71l, 4.2.6]:

Theorem 2.4. A polarized variation of Hodge structures over a quasi-
projective manifold is direct sum of irreducible ones.

It turns out that a further reduction is often needed. For this, one needs
complex systems of Hodge bundles. To explain this notion, recall that a
Hodge structure on a real vector space leads to a grading on the associated
complex vector space and hence to a grading Hs ® Os = P, J—Cg’k_p on
the bundle associated to a variation of Hodge structure. This grading is

real in the sense that ng’k_p = ﬂ-fg_p P, One can identify J—Cg’k_p with the
holomorphic bundle 7 /FP*+1. The horizontality just means that V induces
Og-linear bundle maps o, : f]{’é’p_k — U'C:g_l’pﬂ_k ® Qk. The pair

(%Sv U)'} with j—CS = @}C%k_py and o := @Up
p p

is a complex system of Hodge bundles. It is an example of a Higgs bundle:

Definition. A Higgs bundle over S is a couple (H, o) consisting of a holo-
morphic vector bundle H over S and

o €End M (H) @ QY <= ¢:TS — End VY(H), the (Higgs field)

having the he property that ¢ A ¢ = 0 which is just the flatness of the
connexion V.

Remarks 2.5. 1. Note that since there is no a priori real structure on a
Higgs bundle so that the additional reality constraint on a the com-
plexified variation of Hodge structure is an extra ingredient.

2. In general an irreducible variation gives a complex system of Hodge
bundles which splits further into Higgs bundles which themselves are
complex systems of Hodge bundles.

A flat bilinear hermitian form Q = > @, on a complex system of Hodge
bundles H = @ HP is called a polarization if the splitting is @Q-orthogonal
and if (—1)PQ, is positive definite on HP. If I comes from a polarized
variation of Hodge structures, the polarization indeed gives a polarization
for H.

The complete reducibility result stated for polarized variations of Hodge
structures remains true for polarized complex systems of Hodge bundles
[Del87, § 1.11]:
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Theorem 2.6. A polarized system of complex systems of Hodge bundles
over a quasi-projective manifold is an orthogonal direct sum of irreducible
polarized complex systems of Hodge bundles.

This implies that the complexification of an irreducible variation of
Hodge structures may further split into irreducible Higgs bundles.

Example 2.7. Suppose that Hg is a local system of Q-vector spaces un-
derlying a variation of Hodge structures of weight k. Let H be the typical
fiber of Hg. Let A € End(H,Q) ® C be a non-zero flat endomorphism
of H. Then Ker A defines a non-trivial subsystem of Hg. As remarked
above, complex systems of Hodge bundles are completely reducible and so
Hs®C = Ker(A)® Mg where Mg is a complex variation of Hodge structures.

Suppose that A is pure of type (—1,1). If Hg ® C has a non-trivial part
of type (0, k), the preceding splitting is a non-trivial splitting since AH g,k; C
H;l’kﬂ = 0. This splitting in general is not a splitting of variations of
Hodge structures since Hg’o does not have to belong to Ker(A).

2.3 Curvature

The goal is to describe the curvature of a suitable connection on the hori-
zontal tangent bundle T"*D. Tt is a subbundle of the full tangent bundle
and thus one can calculate the curvature of the hermitian metric defined by
the classical Killing form on g

B(X,Y)=TrX.Y, X, Yeq.

This a symmetric form, invariant under the adjoint action of G¢ on g and
it is real on Lie (G). The involution # on g which is just multiplication with
(—=1)7 on g7’ can be shown to be real on Lie G and the expression

WX,Y):=-B(6X,Y), X, Yeg (14)

being invariant under the adjoint action of V' defines a sesquilinear form on
Tr,D = LieG/Lie V. It turns out (see [C-P-M| Prop. 12.2.5]) that this form
is in fact a hermitian metric on T’ D, which by construction extends to a
G-invariant hermitian metric on T'D.

Recall that the Chern connection Dy, is the unique metric connection on
T D whose (0, 1)-part is just the operator 9. The curvature of this connection
is an End (7' D)-valued 2-form Fj, and when evaluated on germs of holomor-
phic vector fields X and Y at Fy € D yields Fj,(X,Y), an endomorphism of
Tr,D.

To describe it on horizontal directions, one resorts to the identification
@. To start, note that for X € g, by definition Q(Xu,v) + Q(u, Xv) =0
for all u,v € Hc, i.e. g consists of the @-skew endomorphisms. This does
not mean that these are skew with respect to the Hodge metric h , since
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here the Weil-operator C intervenes which depends entirely on the Hodge
structure. Indeed, for X € g we may define X* € g as the h-adjoint of
X, ie. h(Xu,v) = h(u, X*v) for all u,v € He. If X is conjugation with
respect to the real structure coming from g = Lie G ® C, i.e. X (u) = X (u),
uw € He we have X* = X if X € g7/ with j odd, while X* = —X if j is
even (see [C-P-M| Cor. 12.2.3], the transpose-sign should be deleted, it has
no meaning). This clarifies the relation between the Hodge metric and the
global complex structure on g.

Coming back to the curvature calculation, assume now that X and Y
are germs of horizontal vector fields near Fy so that Y* =Y € gb~! and
[X,Y*] € g% = Lie V. The adjoint action of this element on g~!! gives an
endomorphism on TI}}S’TD =g~ 1! and by [C-P-M| § 13.3] we have

Fu(X,Y) = —% ad[X,Y"]. (15)

On horizontal directions X, Y the metric becomes h(X,Y) = B(X,Y*) =
Tr XoY™*. Using and the Jacobi-identity, as in [Pe90, Corr. 1.8] one
finds

Lemma 2.8. Let X,Y € g~ ' then
h(FR(X, X7)Y,Y) = 2[|[X, Y][[n — [[X" Y]l[n

so in particular, if [X,Y] =0, one has h(F,(X, X*)Y,Y) <O0.

2.4 Deforming Period Maps

Let p : S™™ — D be a period map. To simplify notation, assume that
S™o = § so that the source of the period map remains algebraic. In partic-
ular, S has a suitable smooth compactification S. As p*T"°*D is contained
as the (—1, 1)-part of an endomorphism bundle of Hodge structures, one can
take its canonical extension

B = [f*ThorD]cam

a holomorphic object E on S (see the end of § . Actually E generally
only is a coherent sheaf, but I neglect details like this and I assume for
simplicity that E is a vector bundle. The metric then is defined on
E|S.

Notation. A metric h on a holomorphic vector bundle E can be used to
contract a pair of F-valued differential forms €2, © to an ordinary differential
form denoted Tr(2 A ©): on decomposables Q = e® o, © = f ® 5 we put
Tr(QAO)(e®a, f®f) := h(e, f)aAB; in general extend this in a sesquilinear
fashion.
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As an example, if £ € H°(S, E) is a global section, the curvature form
with respect to h is an E-valued (1, 1)-form Fj,& on S so that Tr(Fp€ A€) is
an ordinary (1,1)-form on S. It can be evaluated on the pair (X,Y’), where
X € gh! comes from a tangent vector X’ € TS and the tangent Y at the
point Fy = p(s) comes from the deformation. One has:

Te(Fp§ A E)(X,Y) = h(F(X, XT)Y,Y). (16)

Of course period maps can a priori be deformed into maps S — D that
are no longer horizontal, but these are not coming from geometry. For this
reason only those deformations P : S x T' — D are considered which are
horizontal themselves. This implies by |[C-T| Prop. 5.2.] that any two
vectors in P, (T(s ) when considered in the Lie-algebra gh! (see (9)) must
commute. This applies to X and Y so that from Lemma and one
concludes that Tr(Fjs A s) is negative semi-definite. We now invoke the
following principle (see |[C-P-M| 11.1.9]:

Proposition 2.9 (Principle of Plurisubharmonicity). Let (E,h) be a Her-
mitian holomorphic vector bundle over a compact complex manifold and let
s be a holomorphic section of E. Suppose that the (1,1)-form Tr(Fyps A s) is
negative semi-definite. Then s is flat with respect to the Chern connection
Dy, i.e. Dps=0.

So from Lemma [2.§ one concludes that the section £ is flat with respect
to Dy, and this proves the analog of in the Hodge theoretic setting of a
period map u=p: S — D:

Corollary 2.10. The tangent space at i to the space of period map defor-
mations is

T, Def () = { Q-skew endomorphisms of H of type (—1,1) }

commuting with the monodromy group.

The left hand side is also equal to the algebra of global flat endomor-
phisms of the underlying local system (Hg, Q) which are of type (—1,1). To
the variation one has associated a Higgs bundle (see § . Its Higgs field
at every point ¢ € S can be shown to be just the infinitesimal variation of
Hodge structure (10} at that point. So one can reformulate Cor. in
terms of Higgs bundles as follows:

Theorem 2.11. Tangents to algebraic deformations of a given variation of
Hodge structure on S correspond to flat global type (—1,1) endomorphisms
of the underlying local system (Hg, Q) which are at the same time Higgs
fields for the associated Higgs bundle.
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3 Back To Geometry

Let me now come back to the setting of the Shafarevich problem. The class C
of projective manifolds is now assumed to have a nice quasi-projective coarse
moduli space M. The base manifold S is fixed as well as the degeneracy
locus ¥ which will be assumed to be a strictly normal crossing divisor. Take
a family X — S with fibers X;, t € S =S — X in C so that, by assumption,
there is a moduli map py : S — M. On the other hand, one can apply
Example mto f:X — S, the restriction of f to X = f~ 15’ so that there
is a period map py : § — D/I', where D is the period domain associated to
the primitive cohomology groups of the fibers of some fixed rank, and where
I" is the monodromy group. These two maps fit into a commutative diagram

s —H . M

\/

Clearly, if one wishes to draw geometric conclusions from properties of the
variation of Hodge structure, one likes to know that the variation determines
the family, at least locally. If this is the case, one says that the (local) Torelli
theorem holds for C. It means that the map ¢ is an immersion.

Examples 3.1. The Torelli theorem holds for curves. The local Torelli
theorem holds for hypersurfaces in projective (n+1)-space of degree > n+1.
It also holds or any projective manifold with trivial canonical bundle such
as an Abelian variety, a K3-surface, or any other Calabi-Yau manifold. In
fact, if n is the dimension, it suffices to look at the variation of H™° inside
primitive cohomology. See [C-P-M]| for an explanation and references to the
original works.

Under the hypothesis that ¢ is an immersion, the above diagram gives an
inclusion p3 Ty C p} Thr(D/T)). Recall that the right hand side is just the
(—1,1)- part of the endomorphism bundle of the variation of Hodge structure
and has a quasi-canonical extension (see directly below the statement of
Thm. . By definition, the quasi-canonical extension of ,u;‘cTM is just the
closure of this bundle inside the quasi-canonical extension.

As shown before, the tangent space to deformations of py as a variation
of Hodge structure, is just

End@ — endomorphisms of <H§r1m(Xt§ Q),Q)
commuting with the monodromy group,

ie.,
H(S, [1iThr] ) = [End? ®C] .
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To bring the geometric deformations into the picture, note that being a
coarse moduli space implies that at any smooth point m € M corresponding
to a variety X,,, there is a canonical identification

T M ~ HY(X,,, TX,)

and hence u}TM can be identified as the bundle whose fiber at t equals
H' (X, TX;). Any geometric deformation 1 of f thus defines at each point
t € S an element 0; € H'(X;, TX;), the associated infinitesimal Kodaira-
Spencer class of f at t. By cup product with it gives an infinitesimal
variation of Hodge structure at the point ¢:
o(n;) € End~ b1 Hl];rim(Xt; C).

Such an infinitesimal variation can be called the infinitesimal variation in
the geometric direction defined by n. Tangents to geometric deformations
correspond global flat endomorphisms inducing such infinitesimal variations
at each point ¢ € S and vice versa. Summarizing, one has:

Proposition 3.2. If the (local) Torelli property holds for C, tangentsn to ge-
ometric deformations correspond to those flat endomorphisms [EndQ ®(C] bt
which at each point defines an infinitesimal variation of the Hodge structure

in the geometric direction defined by n, and vice versa.

Let me now consider the kernel of such flat endomorphisms o(n). In
Example we have seen that the complexified variation splits as Ker(o) ®
Mg and Ker(o) contains the (0, k)-part of the variation. If K = MS’O and
if Aj,... A € EndH ® C all have pure type (—1,1), their composition
Ajo...o0A maps K to the (0, k)-part in Mg which is zero by construction.
Applying this to the maps which compose into the Yukawa coupling ,
we conclude that any non-trivial deformation forces the Yukawa-coupling to
vanish on K. If for instance h** = 1 the entire (k,0)-part of the variation
is contained in K and so:

Corollary 3.3. In the above situation, if h*° = 1, any non-trivial geometric
deformation forces the Griffiths- Yukawa coupling to vanish.

If T combine this result with

Proposition 3.4. Let there be a given a weight k polarized variation of
Hodge structures over a non-compact algebraic curve S with h*9 = pOkF =
1, and suppose hat there is a point at infinity where the local monodromy
operator has mazximal order of unipotency (k + 1) (see Theorem . Then
the Griffiths- Yukawa coupling is non-zero.

I deduce the following criterion:

20



Corollary 3.5. Let f : X — S be a non-isotrivial family of Calabi-Yau’s
over a non-compact curve S and suppose hat there is a point at infinity where
the local monodromy operator has mazimal order of unipotency (k+ 1) (see

Theorem . Then f is rigid.

Sketch of the proof of Prop.[3.4. Suppose (A,t) is a local coordinate disc
centered at a puncture where the local monodromy 7" has order of unipotency
(k +1). For simplicity assume that the monodromy is unipotent of order
(k + 1) and introduce

N =log(T —1)= Z(_lgmﬂ

an operator with N* # 0, N**! = 0. Schmid in [Sch] has introduced a mixed
Hodge structure on the typical fiber H of the local system Hg underlying
the variation of Hodge structure whose weight filtration Wy C --- C Wa,
is determined by N and whose Hodge structure is given by the fiber at 0
of the quasi-canonical extensions of the Hodge filtration bundles. In the
case at hand [H*?]_,, is a line bundle trivialized by a section whose value
at 0 can thus be seen as an element w € H ® C The map N is a type
(=1, —1)-morphism of H ® C. In particular N* : Wor/Woy_1 — Wy maps
the pure (k, k)-type Hodge structure of the left hand side to the (0,0)-type
Hodge structure on the right hand side. Since N* # 0 both sides are 1-
dimensional and necessarily w € Wy represents a generator. Now one needs
to use that N is essentially the residue at 0 of the logarithmic connection
on the canonical extension Hg,, and after a suitable renormalization one
then has Nw = o(t[0/0t])w and in particular, the Griffiths-Yukawa coupling
o*(t[0/0t]) does not vanish. O

Remark 3.6. In [L-T-Y-Z, Theorem 38| the proof appears to have a gap.
The preceding correction has been communicated to me by Kang Zuo. I
also want to remark that this gives another proof of Cor. [I.15]in the special
case of K3-surfaces.

I want to finish by showing how the above ideas give a simpler proof
of [VZ, Lemma 4.3]. For this S is a curve. At any point ¢ € S, the Higgs
field gives an endomorphism ¢ of the variation which is well defined up to a
multiplicative constant. A variation of Hodge structure of weight k is said
to be of Hodge-Lefschetz type a if

e for some integer a with 0 < a < 2k one has h*0 = ... = pk—athaetl —

e themaps o : H¥ 37 — HF-i=Li=k+tl j — ¢  k—a are isomorphisms
at a generic point t € S.

This implies that the length of the Hodge filtration is exactly k —2a+ 1 and
all non-zero Hodge numbers are equal. Any variation of Hodge structures
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of weight k which is the direct sum

Hs@C=F® - --® Fy, F, Hodge-Lefschetz of type a

is called (strictly) mazimal. Now if A is a flat type (—1,1) endomorphism
of such a system, ker A contains the (0, k — a)-part of Fj, hence, since ker A
is a Higgs subfield, it must contain the entire Hodge-Lefschetz subsystem
F,, hence Hg ® C = ker A, i.e. A =0. This argument shows the announced
result loc. cit.:

Proposition 3.7. A variation over a curve with strictly maximal Higgs field

1$ rigid.
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