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DEGENERATION OF THE LERAY SPECTRAL SEQUENCE
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Abstract. We prove that the Leray spectral sequence in rational co-
homology for the quotient map Un,d → Un,d/G where Un,d is the affine
variety of equations for smooth hypersurfaces of degree d in Pn(C) and
G is the general linear group, degenerates at E2.
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1. Introduction

We consider an affine complex algebraic group G which acts on a smooth alge-
braic variety X. Assume that a geometric quotient f : X → Y for the action of G
on X exists (cf. [11, Section 0.1]). We want to give geometric conditions ensuring
that the Leray spectral sequence degenerates at Ep,q2 = Hp(Y, Rqf∗Q).

The cohomology ring of G is well known ([8], [2]). It is an exterior algebra with
exactly one generator ηi in certain odd degrees 2ri − 1, i = 1, . . . , r = r(G), the
rank of G. So, if G acts with finite stabilizers and the Leray spectral sequence
for f degenerates at E2, knowing the cohomology of the source X is equivalent to
knowing that of the target Y . As an example of how this could be used, we point
out that for any group G acting with finite stabilizers on a topological space X
the equivariant cohomology H·G(X, Q) equals H·(X/G, Q) ([3, §1, Remark 2]) and
the former can often be calculated group theoretically. See [3] for examples. So, in
these cases one knows H·(X, Q).

We prove a general result (Theorem 3) giving sufficient geometric conditions for
this to happen. These turn out to be satisfied for the group GLn+1(C) acting on
the affine variety Un,d of those homogeneous polynomials of degree d in (n + 1)
variables which give smooth hypersurfaces in Pn:

Theorem 1. Let d ≥ 3. Then the Leray spectral sequence in rational cohomology
for the quotient map Un,d → Mn,d := Un,d/G, where G = GLn+1(C), degenerates
at E2.
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Examples. 1. By results of Vassiliev [12] the map

H∗(Un,d; Q)→ H∗(GLn+1(C); Q)

is an isomorphism in the cases (n, d) = (2, 3), (3, 3). Moreover Gorinov [7] has
proved the same result for the cases (n, d) = (4, 3), (2, 5). It follows that Mn,d has
the rational cohomology of a point in these cases.

2. For the case (n, d) = (2, 4) it follows from [12] and Theorem 2 that the
space M2,4 has a cohomology group of dimension 1 in degrees 0 and 6 and has zero
rational cohomology in other degrees. This agrees with a result of Looijenga [10]
about the Poincaré–Serre polynomial of M2,4:

H6(M2,4; Q) ' Q(−6)

and the other cohomology groups are those of a point.

Remark. In [1] there is a description of M3,3 using periods of threefolds. This mod-
uli space turns out to be a certain explicitly described open subset of the quotient
of complex hyperbolic 4-space by a certain discrete group. From this description
it is quite unexpected that M3,3 has the rational cohomology of a point. It is an
interesting question to calculate the cohomology of the various compactifications of
M3,3 studied in loc. cit.

2. Generalizing the Leray–Hirsch Theorem

The proof of the Leray–Hirsch theorem as given in [9, p. 229] is valid for a locally
trivial fibration p : M → B. For cohomology with rational coefficients, the same
proof applies to a slightly more general situation:

Definition. A continuous map p : M → B is a locally trivial fibration, say with
fibre F , in the orbifold sense if for every b ∈ B there exists a neigbourhood Vb, a
topological space Ub, and a topological group Gb such that

(1) Gb acts on Ub and on F ; the action on F is by homeomorphisms homotopic
to the identity;

(2) Vb is homeomorphic to Ub/Gb;
(3) p−1Vb is homeomorphic to the quotient of Ub ×F by the product action of

Gb.

In this setting, composing the natural quotient map F → F/Gb with the home-

omorphism (F/Gb)
∼−→ p−1b and the inclusion p−1b ↪→ X, defines the orbifold fibre

inclusion rb : F → X.

Indeed, in this setting the proof as given in loc. cit. applies starting from the
observation that over the rationals we still have graded isomorphisms (replacement
of the Künneth formula)

H·(p−1Vb; Q) ∼= H·(Ub × F ; Q)Gb ∼= H·(Ub; Q)Gb ⊗H·(F ; Q)Gb

∼= H·(Vb; Q)⊗H·(F ; Q),

because g ∈ Gb acts trivially on Hq(F ; Q) since it is homotopic to the identity by
assumption.

We thus arrive at:
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Theorem 2. Let p : M → B be a fibration which is locally trivial in the orbifold

sense. Suppose that for all q ≥ 0 there exist classes e
(q)
1 , . . . , e

(q)
n(q) ∈ Hq(M ; Q)

that restrict to a basis for Hq(F ; Q) under the map induced by the orbifold fibre
inclusion rb : F → M . The map a ⊗ r∗b (ei) 7→ p∗a ∪ ei, a ∈ H·(B; Q) extends
linearly to a graded linear isomorphism

H·(B; Q)⊗H·(F ; Q)
∼−→ H·(M ; Q).

Example. Let φ : X → Y be a geometric quotient for G. Suppose that G is
connected and that for all x ∈ X, the identity component of the stabiliser Sx of x
is contractible (e. g. when Sx is finite). For y ∈ Y we take for Uy any open slice for
the action of G through x ∈ φ−1y, i. e. a contractible submanifold through x which
intersects Gx transversally at x. Then, if gx is any other point in same orbit, gUy
is a slice through gx and gSxg

−1 = Sgx so that for all g ∈ G, the quotient gUy/Sgx
gives the same neighbourhood Vy of y. We have (Uy × G)/Sx = φ−1(Vy). The
assumption that G is connected implies that multiplication by g ∈ G is homotopic
to the identity in G. So φ is indeed locally trivial in the orbifold sense (with typical
fibre G).

We study this example in more detail in the next section.

3. The Case of a Geometric Quotient for a Reductive Group

We assume that G is a reductive complex affine group, that V is a representation
space for G and that X is an affine G-invariant open subset of V such that the action
of G on X is closed. Let Σ = V \X. For x ∈ X the orbit map is denoted as follows

ox : G→ X, g 7→ g(x),

and the geometric quotient (which exists in this case, cf. [11, p. 30]) by

φ : X → Y = X/G.

Recall that H·(G) is an exterior algebra freely generated by classes ηi ∈ H2ri−1(G).
Note also that V being a vector space, we have isomorphisms

H2ri−1(X)
∼−→ H2ri

Σ (V ).

We can now apply the variant of the Leray–Hirsch theorem as stated in the previous
section to the geometric quotient φ and we obtain:

Theorem 3. Suppose that there are schemes Yi ⊂ Σ of pure codimension ri in V
whose fundamental classes map to a non-zero multiple of ηi under the composition

H2ri
Yi

(V )→ H2ri
Σ (V )

∼−→ H2ri−1(X)
o∗x−→ H2ri−1(G).

Denote the image of [Yi] in H·(X; Q) by yi; then the map a ⊗ ηi 7→ φ∗a ∪ yi,
a ∈ H·(X/G; Q) extends to an isomorphism of graded Q-vector spaces

H·(X/G; Q)⊗H·(G; Q)
∼−→ H·(X; Q).



4 C. PETERS AND J. STEENBRINK

4. Properties of Fundamental Classes

We collect some facts on fundamental classes that we need later on. We refer to
[4] for the cohomology version and [5] for the Chow version.

1. For any connected submanifold Z of pure codimension c in a complex algebraic
manifold X, its fundamental class [Z] ∈ H2c

Z (X)(c) is the image of 1 ∈ H0(Z) under

the Thom isomorphism H·(Z)
∼−→ H·Z(X)[2c](c). For Z an irreducible subvariety,

one still has a fundamental class as above, since restriction to the smooth part of Z
induces isomorphisms between the relevant cohomology groups with support in Z,
respectively the smooth part of Z. If Z =

∑
i niZi is a cycle of codimension c (with

Zi irreducible), with support |Z|, there is a cycle class [Z] ∈ H2c
|Z|(X)(c). More

generally still, one may assume Z to be a complex subscheme of pure codimension
c with irreducible components Zi of multiplicity ni in Z and define the fundamental
class to be the fundamental class of the associated cycle

∑
i niZi. There are natural

maps H·Zi → H·|Z| and if we identify [Zi] with their images under these maps we

have the equality

[Z] =
∑

i

ni[Zi].

2. The fundamental classes behave functorially as follows. Let f : X → Y
be a holomorphic map between complex algebraic manifolds, Z ⊂ X, W ⊂ Y
subschemes such that Z is contained in the scheme-theoretic inverse image f−1W .
Then f induces H·W (Y ) → H·Z(X) and if moreover Z = f−1W has the same
codimension c as W , then f∗[W ] = [Z]. In particular, if W is irreducible and the
cycle associated to Z = f−1W is

∑
niZi, we find

f∗[W ] = [f−1W ] =
∑

ni[Zi] ∈ H2c
|Z|(X)(c).

3. We can refine the fundamental class of Z, a purely c-codimensional subscheme
ofX to a class in the Chow group An−c(X), n = dim(X). The Chow group An−c(Z)
is generated by the Chow cycle classes [Zi] of the irreducible components of Z. If
the generic point of Zi has multiplicity ni then the fundamental class of Z is given
by

[Z] =
∑

ni[Zi] ∈ An−c(Z).

There is a push forward map

A·(Z)→ A·(X)

and a cycle class map
Ak(Z)→ HBM

2k (Z)(−k)

sending the Chow cycle of Z to [Z]. Composing this map with Poincaré duality for
Borel–Moore homology, which reads

HBM
` (Z)

∼−→ H2n−`
Z (n)

and taking ` = 2k, we obtain the cycle class map

Ak(Z)→ H2n−2k
Z (X)(n− k).

Abusing notation, we denote the Chow cycle also by [Z]. This is especially useful
if Z is the scheme of zeros of a section s of a vector bundle E over X. In fact, if
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s : E → X is the zero section with image, say {0}, there is a Gysin isomorphism
s∗ : A·(E)→ A·(X)[−r] with the property

An(E) 3 [{0}] s∗7−→ cr(X) ∈ An−r(X).

See [5, Example 3.3.2]. This Gysin map is in fact the inverse of the isomorphism

π∗ : An−r(X)
∼−→ An(E).

5. The Cohomology Ring of the General Linear Group

We turn to G = Gn = GLn(C), n ≥ 1. In this case, by [2], H·(G) is the

exterior algebra with generators η
(n)
` in all odd degrees 2` − 1, ` = 1, . . . , n. In

other words r1 = 1, r2 = 2, . . . , rn = n. Since Gn is contained in the vector space
Mn = Matn(C), we have an identification of mixed Hodge structures

H·(G)
∼−→ H·Dn(Mn)[1],

where
Dn = {A ∈Mn : det(A) = 0} = Mn \Gn,

and so η
(n)
` corresponds to some class in H2`

Dn
(Mn). The goal is to find explicit

descriptions of this class as fundamental class of the subvariety Dn,` ⊂ Dn to be
defined below. This will turn out to be essential for the next section. We are going

to show this by first defining classes η
(n)
` that clearly have this property. Then we

prove that these classes do generate H·(G) as an exterior algebra.
We introduce the following notation:

• Dn,` ⊂ Dn: the subvariety consisting of those matrices for which the first
n+ 1− ` columns are linearly dependent. Note that Dn,` has codimension
` in Mn.
• D̃n = {(A, p) ∈ Dn×Pn−1(C) : [p] ⊂ Ker(A)} (where [p] stands for the line

in Cn corresponding to p) and πn : D̃n → Dn is the projection to the first
factor.
• Qn = {(x, y) ∈ Cn × Cn : xy = 1}.
• αn : Mn−1 →Mn is the inclusion which maps a matrix A to

(
1 0
0 A

)
.

• h: the hyperplane class in H2(Pn(C)).

Note that the projection to the second factor turns D̃n into a vector bundle of rank
n2−n over Pn−1(C), so D̃n is smooth and πn is a resolution of singularities of Dn.

Lemma 4. Let X be a smooth variety, D ⊂ X a subvariety of codimension k
and π : D̃ → D a resolution of singularities. Then there are natural Gysin maps
β` : H`−2k(D̃)(−k)→ H`

D(X) which are morphisms of mixed Hodge structures.

Proof. Let n = dim(X). As D̃ is smooth, cup product with the fundamental class

[D̃] induces an isomorphism

H`−2k(D̃)(−k)→ HBM
2n−`(D̃)(−n).

As Borel–Moore homology is covariant for proper morphisms we have natural maps

HBM
2n−`(D̃)(−n)→ HBM

2n−`(D)(−n).
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Because X is smooth, Poincaré duality for Borel–Moore homology gives an isomor-
phism of mixed Hodge structures

HBM
2n−`(D)(−n) ' H`

D(X).

by [5, Section 19.1]. The map β` is obtained as the composition of these maps. �

Let us apply this to the situation of D̃n → Dn ↪→Mn. We obtain maps

β
(n)
` : H2`−2(Pn−1(C))(−1)→ H2`

Dn(Mn)) ' H2`−1(Gn)

and define for ` = 1, . . . , n:

η
(n)
` := β

(n)
`

(
h`−1

2πi

)
∈ H2`−1(Gn).

We observe that the class in H2`
Dn

(Mn) corresponding to η
(n)
` is indeed the fun-

damental class of Dn,` ⊂ Dn.

Lemma 5. The map α : Mn−1 →Mn maps Dn−1 and Gn−1 to Dn and Gn respec-

tively and α∗(η(n)
` ) = η

(n−1)
` for ` = 1, . . . , n− 1 while α∗(η(n)

n ) = 0.

Proof. Observe that α−1(Dn,`) = Dn−1,`. One checks that this holds not only set
theoretically, but even as schemes. Then the lemma follows from property 2 from
Section 4. �

Because the classes η
(n)
` are of odd degree, they have square zero and anti-

commute, so we have a homomorphism of graded algebras

Rn : Λ(z1, . . . , zn)→ H∗(Gn).

Here Λ(z1, . . . , zn) is the exterior algebra on n generators z1, . . . , zn with zi of

degree 2i− 1, and Rn(z`) = η
(n)
` .

Theorem 6. The map Rn is an isomorphism. Moreover, the generators ηn` ∈
H2`−1(Gn) have pure type (`, `) and map to the fundamental classes Dn,` under
the identification H2`−1(Gn) ' H2`

Dn
(Mn).

Proof. By induction on n. For n = 1 everything is clear. Suppose the map Rn−1

is an isomorphism. We consider the map

ρ : Gn → Qn, ρ(g) = (g(e1), tg−1(e1)).

This is the orbit map of a transitive action of Gn on Qn and α(Gn−1) is the
isotropy subgroup of (e1, e1) ∈ Qn. Therefore, ρ is also the quotient map for the

action of Gn−1 on Gn by left translation via α. As the classes η
(n−1)
` generate

the cohomology ring of Gn−1 and are images of classes on Gn, the restriction
maps α∗ : Hi(Gn) → Hi(Gn−1) are surjective. Hence by Theorem 2 we have an
isomorphism

H∗(Qn)⊗H∗(Gn−1) ' H∗(Gn).

The variety Qn is homotopy equivalent to a sphere of dimension 2n − 1 (in fact
to its subvariety consisting of pairs (x, y) with y = x̄). Moreover, a generator of

H2n−1(Qn) is mapped to a non-zero multiple of η
(n)
n by the map ρ∗. This implies

the surjectivity and hence bijectivity of Rn. �
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Remark. For any Lie group G, the map g 7→ g−1 induces multiplication by −1 on
the Lie algebra, hence on Hk(G) it induces multiplication by (−1)k. The involution

σ : Gn → Gn given by σ(g) = tg−1 has σ∗(η(n)
n ) = (−1)nη

(n)
n . Indeed, if we let

σ : Qn → Qn be given by σ(x, y) = (y, x) then ρ becomes equivariant, and it is an
easy exercise to see that σ∗ = (−1)n on H2n−1(Qn). We conclude that transposition

τ on Gn induces τ∗(η(n)
n ) = (−1)n−1η

(n)
n . As the inclusion Gn−1 → Gn commutes

with transposition, we conclude that τ ∗(η(n)
` ) = (−1)`−1η

(n)
` for all ` ≤ n.

6. Moduli of Smooth Hypersurfaces

We let Πn,d = C[x0, . . . , xn]d denote the vector space of homogeneous polyno-
mials of degree d in n+ 1 variables over C. We let

Σn,d = {f ∈ Πn,d : f has a critical point outside 0}.
There exists an irreducible polynomial ∆ in the coefficients of f ∈ Πn,d such
that f ∈ Σn,d if and only if ∆(f) = 0. Moreover, ∆ is homogeneous of degree
(n+ 1)(d− 1)n.

We let Un,d = Πn,d \ Σn,d. The group GLn+1(C) acts on Un,d. For d ≤ 2 or
d = 3, n = 1 it acts transitively, but in the remaining cases it acts with finite
isotropy groups, so the action is closed. As Un,d is affine, by [11, p. 30] we have a
geometric quotient Mn,d which is a coarse moduli space for non-singular projective
hypersurfaces of degree d in Pn(C). In our situation we fix a particular f = fn,d ∈
Un,d, the Fermat hypersurface:

fn,d = xd0 + · · ·+ xdn,

and the orbit map then extends to a map

rn : Mn+1 → Πn,d, A 7→ fn,d ◦A.
It induces maps for cohomology with supports:

H2`
Σn,d

(Πn,d)
r∗n−→ H2`

Dn+1
(Mn+1).

Let e0, . . . , en denote the standard basis vectors of Cn+1. Define for ` = 1, . . . , n+1

Σ
(`)
n,d = {f ∈ Πn,d : V (f)sing ∩ P[e0, . . . , en−`+1] 6= ∅}.

Then Σ
(`)
n,d ⊂ Σn,d has codimension ` in Πn,d. Below we shall prove:

Lemma 7. The class r∗n([Σ
(`)
n,d]) is a non-zero multiple of [Dn+1,`].

Recall from the previous section that [Dn+1,`] corresponds to the generator η
(n)
` ∈

H2`−2(G) and we now apply Theorem 3 to deduce:

Theorem 8. Let d ≥ 3. Then the Leray spectral sequence in rational cohomology
for the quotient map Un,d →Mn,d degenerates at E2.

Let us proceed to give a proof of Lemma 7. We want to do this by induction on
n, so we fix an embedding ι : Πn−1,d ↪→ Πn,d by posing

ι(h) = xd0 + h(x1, . . . , xn).
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Note that ι(fn−1,d) = fn,d and that ι(Πn−1,d)∩Σn,d = ι(Σn−1,d). The intersection
multiplicity however is equal to d− 1. Indeed, the multiplicity of a stratum of the
discriminant corresponding to hypersurfaces with isolated singularities is equal to
the sum of their Milnor numbers, and adding the term xd0 multiplies the Milnor
numbers by d− 1. We obtain a commutative diagram

Mn

rn−1 //

α

��

Πn−1,d

ι

��
Mn+1

rn // Πn,d.

We have a corresponding diagram in cohomology with supports

H2`
Σn,d

(Πn,d)
r∗n //

ι∗

��

H2`
Dn+1

(Mn+1)

α∗

��
H2`

Σn−1,d
(Πn−1,d)

r∗n // H2`
Dn

(Mn).

Observe that ι∗([Σ(`)
n,d]) = ν

(`)
n,d[Σ

(`)
n−1,d] where ν

(`)
n,d is the intersection multiplicity of

Σ
(`)
n,d with ι(Πn−1,d) in Πn,d. In particular, ν

(`)
n,d is a positive integer.

We can now prove the lemma by induction on n using the above diagram, pro-
vided we check the case ` = n+ 1 for each n.

The variety S = Σ
(n+1)
n,d is the linear space of all polynomials singular at e0. Its

pre-image under rn has two irreducible components: one consists of the matrices
whose first column is zero, i.e. with A(e0) = 0; this component is exactly T1 =
Dn+1,n+1. The other component, T2, which has the same dimension, is the closure
of

{A ∈Mn+1 : 0 6= A(e0) ∈ V (fn,d), Im(A) = TA(e0)V (fn,d)}.
The component T2 has multiplicity one, whereas T1 has multiplicity d(d− 1)n. We
have the commutative diagram

H2n+2
S (Πn,d) //

r∗n
��

H2n+2
Σn,d

(Πn,d)

��
H2n+2
T1∪T2

(Mn+1) // H2n+2
Dn+1

(Mn+1)

and therefore

r∗n([S]) = d(d− 1)n[T1] + [T2] (1)

by property 1 in Section 4.

Claim. We have

[T2] = (−1)n(1− (1− d)n)[T1] in H2n+2
Dn+1

(Mn+1).
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Combining the claim with (1) we find:

r∗n[S] = d(d− 1)n[T1] + [T2] = ((d− 1)n+1 + (−1)n)[T1] 6= 0,

which proves the lemma.
It remains to prove the claim. Let T ′2 denote the image of T2 under the trans-

position map τ . Then

[T2] = (−1)n[T ′2] (2)

in H2n+2
Dn+1

(Mn+1) by the remark at the end of Section 5. Let T̃1 = T1×{e0} ⊂ D̃n+1.

Write X = V (fn,d) ⊂ Pn and let γ : X → Pn be the Gauss map, which associates
to a point p ∈ X the coordinates of its tangent hyperplane, i. e. γ(p) = ∇fn,d(p).

The space D̃n+1 is the total space of a vector bundle E over Pn of rank r =
n(n+ 1). Let

T̃ := {(A, p) ∈Mn+1 ×X : (df0)p ◦ tA = 0 and tA(e0) = p}.
Then T̃ is the total space of a vector bundle F over X of rank r− n+ 1 which is a
subbundle of γ∗(E), because (A, p) ∈ T̃ implies that A(γ(p)) = 0. The projection

of T̃ in Mn+1 is precisely T ′2.
We will carry out our calculations in Chow groups instead of cohomology groups,

using property 3 in Section 4. Consider the diagram

F ↪ //

��

γ∗(E)
γ̃ //

π′

��

E

π

��
X = X

γ // Pn.

We let s be the 0-section of E, and s′ that of γ∗E and recall from Section 4,
property 3, that these induce Gysin maps in Chow groups.

The strategy is to compare the classes T̃1 and T̃ by pushing them to Pn. We
get two 0-cycles on Pn whose degrees we compare. Clearly deg s∗[T̃1] = 1 and so it
suffices to calculate the degree of

s∗γ̃∗([F ]) ∈ A0(Pn).

By [5, Proposition 1.7] we find that

γ̃∗π
′∗α = π∗γ∗α ∈ Ai+r(E)

for any α ∈ Ai(X). Applying this to α = s′∗[F ] we find

γ̃∗[F ] = π∗γ∗s
′∗[F ].

Next, applying s∗ to both sides and using that the Gysin map s∗ is in fact the
inverse of the isomorphism induced by the bundle projection π : E → Pn, and
similarly for s′, we get

s∗γ̃∗[F ] = γ∗s
′∗[F ].

We next compute s′∗[F ] ∈ A0(X). By [5, Example 3.3.2] applied to the vector
bundle γ∗(E)/F we get

s′∗[F ] = cn−1(γ∗(E)/F ).
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On Pn we have the exact sequence

0→ E → O(n+1)2 → O(1)n+1 → 0

showing that c(E) = (1 + h)−n−1 where h = c1(O(1)). As γ∗O(1) = OX(d− 1) we
get

c(γ∗E) = (1 + (d− 1)hX)−n−1

where hX = c1(OX(1)). For the bundle F we have the exact sequences

0→ F → O(n+1)2

X → QX ⊕OX(d− 1)n → 0,

0→ OX(−1)→ On+1
X → QX → 0

so QX is the restriction of the universal quotient bundle to X. Hence we find

c(F ) = (1 + (d− 1)hX)−nc(QX)−1 = (1 + (d− 1)hX)−n(1− hX)−1

so

c(γ∗E/F ) = (1 + (d− 1)hX)−1(1− hX)−1.

We find

cn−1(γ∗E/F ) =

(
1− (1− d)n

d

)
hn−1
X

which has degree equal to 1 − (1 − d)n. Combining this with (2), the claim then
follows. �
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