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Holomorphic Automorphisms of Compact Kiihler Surfaces
and Their Induced Actions in Cohomology

C.A. M. Peters*
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For any compact complex manifold X we may ask whether the group Aut(X) of
holomorphic automorphisms of X acts faithfully on the cohomology ring
H*(X; A) with values in some ring A. If the identity component of Aut(X)
contains elements g different from 1 then g acts trivially in cohomology. So the
answer is “no” if the Lie-algebra of Aut(X) doesn’t reduce to {0}- or equivalently
if X admits a non-zero holomorphic vectorfield. This happens if e.g. X is bi-
holomorphically isomorphic to Y x IP".

Now, let me look at the case dimX =1, i.e. X is a compact Riemann
surface. Because of the reason given before, if the genus of X is 0 or 1 the answer
is negative. However, a well-known theorem — going back to Hurwitz — states
that in all other cases, i.e. if the genus is at least 2, the group Aut(X) does
operate faithfully on H'(X, Z). It is instructive to look at the proof of this, since
it contains some of the ingredients of the main theorem stated below.

So, suppose X is a compact Riemann surface of genus =2, and assume
l#geAut X acts trivially on H!(X,Z). Now the canonical system on X is frec
of base points, so for any pe X there exists a holomorphic 1-form « which does
not vanish at p. Since the vector space of holomorphic 1-forms on X is a direct
factor of H'(X,C) we must have that g*w=w. In particular, if pe X were a
fixed point of g, the induced map on the cotangent space at p would be the
identity. But then g=1, contrary to our assumptions. So g acts fixed point free,
and the Lefschetz fixed point formula implies that Trace g*|H'(X,Z)=2. How-
ever g* =id, so Trace g*|H* (X, Z)=rank H'(X,Z)> 3, since the genus of X is at
least 2. This contradiction completes the proof.

Now we go over to the case of compact complex 2-dimensional manifolds, to
be called surfaces. For the sake of completeness let me recall what is known in
this situation.

For K3-surfaces X the group Aut(X) operates faithfully on H?(X,Z) (cf.
Burns-Rapoport, [2], Prop. 1.1) and a similar statement is true for Enriques
surfaces (cf. Ueno, [7]). Notice that, whereas in the first case H*(X,Z) has no
torsion, in the second case it does have torsion. In fact there exists an Enriques
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surface X for which Aut(X) does not operate faithfully on H?(X, Q). (Cf. the
example below.) Finally the only other case where Aut(X) was known to
operate faithfully on H*(X, Q) was if the canonical bundle K, is very ample.
Indeed, let PY=1P(H°(X,K,)") and X —IP" the resulting embedding. Since
HX,K,)=H?*° is a direct factor of H*(X, C)-by Hodge theory (cf. Weil, [8]),
any g which induces the identity on H*(X, @), acts trivially on H*°, hence on
IPY, so g is the identity.

Example (due to D. Lieberman). Let E be the elliptic curve of modulus izlf—l
and t the unique nonzero point of order 2 on E with it=r.

Let X, =ExE and let X, be the K-3 surface obtained by resolving the
Kummer surface (X;/+). The automorphism A4: (a,b)—=(a+1, —b+1) of X,
induces a fix point free involution on X, and the quotient by this action is X ,,
an Enriques surface. The automorphism g=(i, i) of X, induces automorphisms
of X, and X, and we claim that g induces the identity on H*(X ;, Q). This is
easily seen by identifying H?(X ,, Q) with the subspace of H?(X ,, Q) invariant
under 4. A basis for this subspace is provided by algebraic cycles of the form (E/
+)x0, 0x(E/+) and C;+C,, , where C; is the exceptional curve on X,
associated with the point of order 2, j on X,. These cycles are g-invariant.

Let me now state the main result:

Theorem. Let X be a Kdhler surface with H*(X, Ty)=0 and such that |K,| is
without base points and fixed components. Suppose ge Aut(X) acts trivially on
H*(X, Q). Then g=1 unless X is a surface of general type and either

() 2(X)=2c,(X) and g is a power of 2, or
1 2

(i) ¢H(X)=3c,(X), g is a power of 3 and moreover g acts trivially on all
H*(X, Q).

Here Ty is the holomorphic tangent bundle and K, as before det(Ty"), the
canonical bundle. The numbers c3(X), resp. ¢,(X) are as usual the Chern
numbers of X.

First a remark concerning the exceptions mentioned in the theorem. The first
exception really occurs: take the direct product of two hyperelliptic curves and
let g act as the hyperelliptic involution on each factor. Then g*=id on H”.
However g*= —id on H' and I have not been able to find a surface X with
c2(X)=2c,(X) carrying an involution which acts trivially on all of H*(X, @Q).
Also [ do not know whether the second exception really occurs.

Before 1 give the proof of the theorem let me first give an application: In
general, if X is a polarized algebraic variety (that is, in addition to being a
smooth K&hler manifold) Popp has shown ([5], Lecture 10) that there exists a
fine moduli space (in the category of algebraic spaces) for the set of isomorphy
classes of polarized algebraic varieties over € having the same Hilbert poly-
nomial as X together with a so-called “level n-structure”-provided Aut(X)
operates faithfully on the free part of H*(X,Z). In particular this applies to the
algebraic surfaces satisfying the conditions of our theorem.

The following notation is employed throughout. If ge Aut(X) acts on a
vector space V we let V'™ be the invariant subspace. We set:
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e(X)=the Euler-Poincare characteristic of X.
bi(X)=dimy H'(X, Q),
b (X)=dimg H'(X, Q)™,
¢(X)=dimg H" °=dim. H!, where H?% are the Hodge-components — cf.
Weil, [8],
3X)=q(X)—dimg {H"°}",
1(X)=1-q(X)+dimgH?>°.

In the sequel ! will be a fixed prime number and p will be a fixed primitive /-th
root of unity.

Lemma 1. g has finite order.

Proof. Since X is Kéhler, a result of Lieberman ([4], Prop. 2.2) applies which
states that the subgroup G of Aut(X) fixing a Kéhler class has only finitely
many components. Since H°(X, Ty)=0, this implies that G and hence ge G has
finite order.

Lemma 2. Let g(=1) have prime order . The fixed point set of g consists of
finitely many points. If p is a fixed point, local coordinates (&, &,) centered at p
can be found such that the action of g is given by (&,,E,)—>(p*E,, p*E&,) with
k+0mod L. In particular p is an isolated simple transversal fixed point.

Proof. Let p be a fixed point of g. Since |K 4| does not have fixed points or fixed
components there exists a holomorphic 2-form @ on X which does not vanish at
p. Now H?*" is a direct factor of H*(X,C), by Hodge theory (cf. Weil, [8], Ch.
V) and can be identified with the vector space of holomorphic 2-forms on X (loc.
cit. p. 70 Coll. 3). So g*w=w and in particular the jacobian of g at p equals 1.
Moreover, one can linearize the action of g around p (cf. [9], p.97) and by a
further linear change of coordinates one can diagonalize this action to obtain
the coordinates (£,, &,). Together with the previous remark this implies that p is
a simple isolated transversal fixed point.

Lemma 3. Under the assumptions of Lemma 2, the number n of fixed points of g

equals ¢,(X)+4 (l—%) o(X).

Proof. We apply the Lefschetz fixed point formula:
4
2, (= 1) Trace (g*| H*(X, Q) =n. (h
k=0

We first compute the action on H'(X, Q). Observe that HY(X,Q)=H'(X,
Q)™ @V, where V is a direct sum of dimension (I—1)-dimensional repre-
sentations of trace — 1. So we find that
Tr(g*|HY)=b —(1/I—=1)(b, —b}™)
by~ (I~ 1)(b, —b™)=b, ~(21/1— )6,
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where the last equality follows since H! @ € the direct sum of the G-stable
subspace H''? and its complex conjugate H%!. Since g*|H?*(X,®)=1, we find
for the left hand side of (1):

[ l
2—2b1+b2+4m5=e+4m5
Here we used, that H' and H’ are dual G-vector spaces. Since e(X)=c¢,(X), the
lemma follows.

Lemma 4. Still under the assumptions that g1, #g=1 we have

[
cf(X)—lcz(X)=4ﬁ(l—2)~5(X).
Proof. We apply the holomorphic Lefschetz fixed point formula (Atiyah-Bott,
[1]) for k+0mod!I:

I=Tr(@H")+TrgH™?)= Y 1/{det(1—d,(g"}" 2)

rlgp)=p

where dp(g"): T,(X)—T,(X) is the action induced by g* on the tangent space at a

fixed point p.
Now add these equalities for k=1,...,/—1 and finally add 1—dimH®'

-1
+dimH%2=%(X) to both sides. Observe that dim V'™ =(1/) } Tr(g"|V) for
k=0
any g-module V. So the left hand side of (2) sums up to
I(1 —dim (H® 'y + dim (H> 2)™) =1 {3(X) + 5(X)}. (3)

For the right hand side we need the following equality

Y d=p 1 =p Y =1 - 1)/12]. 4

! Observe that the fixed point sets of g and g* (k+0 mod /) are equal, since [ is prime
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and
-1

= 2 (P =D 2= ()=0-1({-5).
k=1
Adding both equalities one gets the identity (4).

Using (4) and the value of n found in Lemma 3 we find that the right hand
side sums up to:

~X+lz_1[-+4 L5 5
1)+ [eatd 6 )
Comparing the right hand side of (3) with (5) and using the Riemann-Roch
formula for surfaces:

1(X)=1z[ci+c,]
(after some elementary manipulations) we find the equality stated in the Lemma.

Proof of the Main Theorem. Fix an automorphism g of X which acts trivially on
H*(X, Q). Replacing g by a suitable power, we may assume that |g| =/, a prime
number, and we reduce the statement of the theorem to:

If g#1, then X is of general type and either =2 and ci=2c, or I=3 and c?
=3¢c,, 0=0.

Secondly, the assumptions on |K,| imply that X is minimal, in fact, any
exceptional curve is contained in the fixed part of the canonical system.

Thirdly, we observe that |[K4| defines a holomorphic map f: X —»Y, where Y
is a point, a curve or a surface. If Y is a point, i.e. Ky is trivial, we argue as
follows: X is either a K-3 surface or a torus (cf. Kodaira, On the Structure of
Compact Complex Analytic Surfaces 1, Am. Journal of Math. 86 (1964), p. 1423).
Since a torus has vectorfields, the last case is ruled out. For a K-3 surface ¢, (X)
=24 (cf. [2]), whereas Lemma 4 shows that ¢,(X)=<0. So this case is ruled out as
well. The remaining two cases are treated separately as follows:

Case l. Y is a curve.

We shall see that X is in fact a minimal elliptic surface®. Since K is the
inverse image of a line bundle on Y we have that 0=(K,, Ky)=c}(X) and
moreover (K, F)=0, where F’' is a general fibre of f. Now apply Stein
factorization to f to obtain a connected holomorphic map p: X —C, whose
general fibre F still satisfies (K y, F)=0. The adjunction formula gives that F is a
smooth elliptic curve, so X is indeed (minimal) elliptic and p is an elliptic
fibration.

Let me compute the Euler number e(X) in terms of this fibration. If F,

=p~1(t) is any fibre over te C the result is: e(X)= ) e(F), where S is the
teS

projection onto C of the points where p is not of maximal rank. So ¢,(X)
=e(X)=0 with equality if and only if p has only multiple non-singular fibres
over S. On the other hand the equality of Lemma 4 gives ¢,(X) <0, so indeed we
have equality.

* This also follows by the classification theory of surfaces
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Claim. X carries a non-zero vector field.

This we see as follows. First suppose p: X — C has a section - so in particular
has no multiple fibres. Then X is a smooth elliptic curve over C and admits a
translation invariant non-trivial vector field parallel to the fibres of p. The
general case can be reduced to this situation as follows. First, if p has no
multiple fibre, but not necessarily a section we reduce to the case where p has a
section by a “cutting and repasting”-procedure which preserves the local fibre
structure, as described in Kodaira [3], §9. Secondly, if p has multiple fibres C
admits a branched covering C’ such that the resulting fibration p’: X'— C’ is free
from multiple fibres (Loc. cit. Thm 6.3). Since X' has been shown to admit a
non-trivial vector field parallel to the fibres of p’ the image under the covering
map X'—X will be a non-trivial vector field on X. This completes the proof of
the Claim.

But this would imply that H°(X, Ty)#0, contrary to the assumptions. This
settles Case 1.

Case 2. Y is a surface.

By definition, then X is a (minimal) surface of general type. We have thus the
fundamental bound

cE(X)E3c,(X)

due to Miyaoka, [6].

Together with Lemma 4 this implies that /=2 and ¢}=2c, or =3 and ¢}
=3c¢,, 6=0.

This completes the proof in this case.
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