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For  any compac t  complex manifold X we may  ask whether  the group  Aut (X)  of 
ho lomorph ic  au tomorph i sms  of X acts faithfully on the cohomology  ring 
H*(X;  A) with values in some ring A. If the identity componen t  of  Aut (X)  
contains elements g different from 1 then g acts trivially in cohomology.  So the 
answer is "no"  if the Lie-algebra  of Aut(X) doesn ' t  reduce to {0}- or equivalently 
if X admits  a non-zero  ho lomorph ic  vectorfield. This happens  if e.g. X is bi- 
ho lomorphica l ly  i somorphic  to Y x IP'. 

Now, let me look at the case d i m r  i.e. X is a compac t  R iemann  
surface. Because of the reason given before, if the genus of X is 0 or  1 the answer 
is negative. However ,  a wel l -known theorem - going back to Hurwi tz  states 
that  in all other cases, i.e. if the genus is at least 2, the group Aut (X)  does 
operate  faithfully on H t (X, 7/). It is instructive to look at the p roof  of  this, since 
it contains some of the ingredients of the main theorem stated below. 

So, suppose X is a compac t  R iemann  surface of genus >2,  and assume 
1 4 = g e A u t X  acts trivially on H I ( x , 7 / ) .  N o w  the canonical  system on X is free 
of base points, so for any p e X there exists a ho lomorph ic  l - form e) which does 
not vanish at p. Since the vector space of ho lomorph ic  1-forms on X is a direct 
factor of  HI(X,r we must  have that  g*o)=eg.  In particular,  if peX  were a 
fixed point  of g, the induced m a p  on the cotangent  space at p would be the 
identity. But then g =  1, contrary  to our  assumptions.  So g acts fixed point  free, 
and the Lefschetz fixed point  formula  implies that  Trace g* l Hl  (X, 7/)=2.  How-  
ever g* = id, so Trace  g* lH  1 (X, 7/) = rank H 1 (X, 71) > 3, since the genus of X is at 
least 2. This contradic t ion completes  the proof. 

Now we go over  to the case of  compac t  complex 2-dimensional  manifolds,  to 
be called surfaces. For  the sake of completeness  let me recall what  is known in 
this situation. 

For  K3-surfaces  X the group  Aut (X)  operates  faithfully on HZ(x, 7/) (cf. 
Burns-Rapopor t ,  [2], Prop. 1.1) and a similar s ta tement  is true for Enriques 
surfaces (cf. Ueno,  [7]). Not ice  that, whereas in the first case H2(X, 7/) has no 
torsion, in the second case it does have torsion. In fact there exists an Enriques 
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surface X for which Aut(X) does not operate faithfully on H2(X, II~). (Cf. the 
example below.) Finally the only other case where Aut(X) was known to 
operate faithfully on H2(X, I1~) was if the canonical bundle K x is very ample. 
Indeed, let IpN=IP(H~ Kx) v) and X ~ I P  u the resulting embedding. Since 
H~ Kx)=H 2'~ is a direct factor of HZ(x, C)-by Hodge theory (cf. Weil, [8]), 
any g which induces the identity on H2(X,Q), acts trivially on H 2'~ hence on 
IP N, so g is the identity. 

Example (due to D. Lieberman). Let E be the elliptic curve of modulus i=]/-22 1 
and r the unique nonzero point of order 2 on E with i r = r .  

Let X I = E x E  and let X 2 be the K-3 surface obtained by resolving the 
Kummer surface (X1/+_). The automorphism 2: (a,b)-.(a+~, - b + z )  of X 1 
induces a fix point free involution on X 2 and the quotient by this action is X3, 
an Enriques surface. The automorphism g=(i ,  i) of X 1 induces automorphisms 
of X 2 and X 3 and we claim that g induces the identity on H2(X3, I1~). This is 
easily seen by identifying HZ(x3, Q) with the subspace of H2(X2, Q) invariant 
under 2. A basis for this subspace is provided by algebraic cycles of the form (E/ 
_+)x0, 0• and Cj+Ci(~,~) where Cj is the exceptional curve on X 2 
associated with the point of order 2, j on X 1. These cycles are g-invariant. 

Let me now state the main result: 

Theorem. Let X be a Kiihler surface with H~ Tx)=0 and such that ]Kxl is 
without base points and fixed components. Suppose geA u t (X )  acts trivially on 
HZ(x, {l~). Then g =  1 unless X is a surface of general type and either 

(i) c2(X)=2c2(X) and ~g  is a power of 2, or 

(ii) c2I(X)=3cz(X), :~g is a power of 3 and moreover g acts trivially on all 
H* (x,  r 

Here T x is the holomorphic tangent bundle and K x as before det(Tx~), the 
canonical bundle. The numbers c2(X), resp. c2(X ) are as usual the Chern 
numbers of X. 

First a remark concerning the exceptions mentioned in the theorem. The first 
exception really occurs: take the direct product of two hyperelliptic curves and 
let g act as the hyperelliptic involution on each factor. Then g* = id  on H 2. 
However g * = - i d  on H 1 and I have not been able to find a surface X with 
c2(X)=2c2(X) carrying an involution which acts trivially on all of H*(X, Q). 
Also I do not know whether the second exception really occurs. 

Before I give the proof of the theorem let me first give an application: In 
general, if X is a polarized algebraic variety (that is, in addition to being a 
smooth K~ihler manifold) Popp has shown ([5], Lecture 10) that there exists a 
fine moduli space (in the category of algebraic spaces) for the set of isomorphy 
classes of polarized algebraic varieties over C having the same Hilbert poly- 
nomial as X together with a so-called "level n-structure"-provided Aut(X) 
operates faithfully on the free part of H*(X, g). In particular this applies to the 
algebraic surfaces satisfying the conditions of our theorem. 

The following notation is employed throughout. If g eA u t (X )  acts on a 
vector space V we let V inV be the invariant subspace. We set: 
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e ( X ) = t h e  Euler-Poincare  characterist ic of X. 

bi(X ) = dirr~ Hi(X, I1~), 
b~'v(x) = dirnQ HqX, I1~) i'v, 

q(X)=dimeHl"~162176 where H p'q are the Hodge-componen t s  cf. 
Weil, [8], 

6(X) = q (X) -  dim~. {H ~' 0}i,v, 

z ( X ) =  1 -q(X)+dim~,H 2'~ 

In the sequel 1 will be a fixed pr ime number  and p will be a fixed primit ive l-th 
root  of unity. 

L e m m a  1. g has finite order. 

Pro@ Since X is K~ihler, a result of L ieberman ([4], Prop. 2.2) applies which 
states that  the subgroup  G of Aut (X)  fixing a K~ihler class has only finitely 
many  components .  Since H~ Tx)=0,  this implies that G and hence g~G has 
finite order. 

L e m m a  2. Let g( #: 1) have prime order 1. The fixed point set of g consists of 
finitely many points. I f  p is a fixed point, local coordinates (~-1,32) centered at p 
can be ,found such that the action of g is given by (~i, ~2)---~(Pk~l, P-k~2) with 
k =t = 0 lnod I. In particular p is an isolated simple transversal ,fixed point. 

Pro@ Let p be a fixed point  of g. Since IKxl does not have fixed points or fixed 
componen t s  there exists a ho lomorph ic  2-form (a on X which does not vanish at 
p. Now H 2'~ is a direct factor of  He(X,  II2), by Hodge  theory (cf. Weil, [8], Ch. 
V) and can be identified with the vector  space of ho lomorph ic  2-forms on X (loc. 
cit. p. 70 Coll. 3). So g* co = co and in part icular  the jacobian  of g at p equals 1. 
Moreover,  one can linearize the action of g a round p (cf. [9], p. 97) and by a 
further linear change of coordinates  one can diagonalize this act ion to obtain  
the coordinates  ( ~ ,  ~2). Together  with the previous remark  this implies that  p is 
a simple isolated transversal  fixed point. 

L e m m a  3. Under the assumptions of Lemma 2, the number n of Ji'xed points of g 

equals c2(X)+4 ( l ~ - )  cS(X). 

Proof. We apply the Lefschetz fixed point  formula:  

4- 

( -  1) k Trace (g* IHk(X, II))) = n. (1) 
k=0 

We first compute  the act ion on H~(X, ff)). Observe that  H~(X, II))=HI(X, 
II))~"vov, where V is a direct sum of dimension ( / - 1 ) -d imens iona l  repre- 
sentations of  trace - 1 .  So we find that  

T r ( g * l H 1 ) = b i ? v - ( i / l  - 1)(b 1 - b i ~  v) 

=b, - ( I / l -1 ) (b  I - b'?V) = b ,  - (21 / l -  1)6, 
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where the last equality follows since H I |  the direct sum of the G-stable 
subspace H 1'~ and its complex conjugate H ~ t. Since g*IHZ(x, Q )=  1, we find 
for the left hand side of (1): 

2 - 2 b 1 + b z + 4 L d = e + 4 L 6 .  

Here we used, that H 1 and H 3 are dual G-vector spaces. Since e(X)=cz(X), the 
lemma follows. 

Lemma 4. Still under the assumptions that g =t: l, 4+ g = l we have 

e ~ ( X ) - l c 2 ( X ) = 4 1 ~ ( I -  2 ). 6(X). 

Proof. We apply the holomorphic Lefschetz fixed point formula (Atiyah-Bott, 
[1]) for k + 0 m o d l :  

1--Tr(gklH~176 ~ 1/{det(1-dp(gk)} I (2) 
PIg(P)=P 

where dp(gk): Tp(X)---*Tp(X) is the action induced by gk on the tangent space at a 
fixed point p. 

Now add these equalities for k=  1 . . . .  , l - 1  and finally add 1 - d i m H  ~ 
l 1 

+dimH~ ) to both sides. Observe that dim vinv=(1/l) ~ Tr(gkl V) for 
k=O 

any g-module V. So the left hand side of (2) sums up to 

/(1 - dim (H ~ l)inv + dim (H ~ 2)inv) =/{z(X)  + 6(X)}. (3) 

For the right hand side we need the following equality 

l - - I  

(1 _pk)-~(1 _p-k ) - t  =E(/2 _ 1)112] . (4) 
k = l  

This, one can prove as follows. Consider 

1 d 
f ( z ) =  ~ (z--ok) -I=dzz 1og(z '- '  + Z ' - 2 + - - ' +  1) 

k = l  

= Z(Jz~ l) {? 1 + ? - 2 + . . . + 1 } - 1  
~j= 1 

N O W  

l - I  
_ ~ (pU_ 1)-1 = f ( 1 ) = l ( l _  1) 

k = l  

1 Observe tha t  the fixed poin t  sets of g and  gk (k + 0  rood I) are  equal,  since l is p r ime  
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and 
l - - 1  

- ~, ( t / ' - l ) - - 2 = f ' ( 1 ) = l ~ 2 ( l - - l ) ( l - 5 ) .  
k = l  

Adding both equalities one gets the identity (4). 
Using (4) and the value of n found in L e m m a  3 we find that  the right hand 

side sums up to: 

X 12-  l 
(5) 

Compar ing  the right hand  side of  (3) with (5) and using the R i e m a n n - R o c h  
formula  for surfaces: 

z(X) =,�89 [Cl ~ + cA 

(after some e lementary  manipulat ions)  we find the equality stated in the Lemma.  

Proof of the Main Theorem. Fix an au tomorph i sm g of X which acts trivially on 
H2(X, Q). Replacing g by a suitable power,  we may  assume that  Igl =1, a pr ime 
number ,  and we reduce the s ta tement  of  the theorem to: 

/ f  g# : l ,  then X is of general type and either l = 2  and c~=2c 2 or l = 3  and c 2 
=3C2, c~ ---= 0. 

Secondly, the assumpt ions  on IKxL imply that  X is minimal,  in fact, any 
exceptional  curve is contained in the fixed par t  of  the canonical  system. 

Thirdly, we observe that  IKxl defines a ho lomorph ic  map  f :  X ~ K  where Y 
is a point, a curve or a surface. If Y is a point, i.e. K x is trivial, we argue as 
follows: X is either a K-3 surface or a torus (cf. Kodai ra ,  On the Structure of 
C om pa c t  Complex  Analyt ic  Surfaces I, Am. Journal  of Math.  86 (1964), p. 1423). 
Since a torus has vectorfields, the last case is ruled out. For  a K-3 surface c2(X ) 
= 24 (cf. [2]), whereas L e m m a  4 shows that  c 2 ( X ) <  0. So this case is ruled out  as 
well. The  remaining two cases are t reated separately as follows: 

Case 1. Y is a curve. 

We shall see that  X is in fact a minimal  elliptic surface 2. Since K x is the 
inverse image of a line bundle on Y we have that O=(Kx, Kx)=c~(X)  and 
moreover  (Kx, F')=O , where F' is a general fibre of  f .  N o w  apply Stein 
factorizat ion to f to obta in  a connected ho lomorph ic  m a p  p: X ~ C ,  whose 
general fibre F still satisfies (K x, F ) = 0 .  The  adjunction formula  gives that  F is a 
smooth  elliptic curve, so X is indeed (minimal) elliptic and p is an elliptic 
fibration. 

Let me compute  the Euler n u m b e r  e(X) in terms of this fibration. If F t 
= p  1(0 is any fibre over  t ~ C  the result is: e ( X ) = y e ( F t ) ,  where S is the 

t e S  

project ion onto C of the points where p is not  of maximal  rank. So c2(X ) 
=e(X) >=0 with equality if and only if p has only mult iple non-singular  fibres 
over S. On the other  hand the equality of L e m m a  4 gives c2(X )__<0, so indeed we 
have equality. 

2 This also follows by the classification theory of surfaces 
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Claim. X carries a non-zero  vector field. 

This we see as follows. First  suppose p: X - * C  has a section - so in part icular  
has no mult iple  fibres. Then  X is a smooth elliptic curve over C and admits  a 
t rans la t ion invar iant  non-tr ivial  vector field parallel to the fibres of p. The 
general case can be reduced to this s i tuat ion as follows. First, if p has no 
mult iple fibre, but no t  necessarily a section we reduce to the case where p has a 
section by a "cut t ing  and repast ing"-procedure  which preserves the local fibre 
structure, as described in Koda i ra  [3], w Secondly, if p has mult iple fibres C 
admits  a branched covering C' such that the resulting fibration p': X ' ~ C '  is free 
from mult iple fibres (Loc. cit. Thin  6.3). Since X'  has been shown to admit  a 
non-tr ivial  vector field parallel  to the fibres of p' the image under  the covering 
map X ' - * X  will be a non-t r ivia l  vector field on X. This completes the proof of 
the Claim. 

But this would imply that  H~ Tx)q:O, contrary to the assumptions.  This 
settles Case 1. 

Case 2. Y is a surface. 

By definition, then X is a (minimal) surface of general type. We have thus the 
fundamenta l  b o u n d  

c~(X)<3cz(X)  

due to Miyaoka,  I-6]. 
Together  with L e m m a 4  this implies that l = 2  and c ~ : 2 c  2 or / = 3  and c 2 

: 3 c 2 ,  ~ : 0 .  
This completes the proof in this case. 
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