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On Two Types of Surfaces of General Type 
with Vanishing Geometric Genus 

C. A. M. Peters* (Cambridge, Mass.) 

Notation and Terminology 

If S is a complex manifold we put 

Cs: the structure sheaf of S, 

0 s: the sheaf of germs of holomorphic vector fields on S, 

f2~: the sheaf of germs of holomorphic p-forms on S, 

Ks: the canonical bundle of S (i.e. the bundle of holomorphic m-forms, 
m = dimeS ) or also the canonical divisor on S. 

If F is any holomorphic vector bundle on S we let Cs(F ) be the corresponding 
sheaf of germs of holomorphic sections. For any coherent sheaf G on S we put 

hP(G) = dimeHP(S, G), 

x(G) = Euler characteristic of G. 

We use the standard notations 

pg(S)=h~ 
Pm(S)=h~ " ) 
q(S)=h~ 

m > 2  

(geometric genus), 

(m-th plurigenus), 

(irregularity). 

If S c l P  N we abbreviate (gs(F | H~)= (gs(F(l)) for H the hyperplane bundle of IP N. 
If D is any divisor on S let IDI be the corresponding linear system. If IDI 4: ~b 

we can pick a basis d o . . . .  , d, for h~ and define the rational map 40:  S---.IP" 
by assigning to the point x the point ~n(x) in IP" with homogeneous coordinates 
(do(x) . . . .  , d,(x)). We abbreviate CbmX = q~m and we say that S is of general type if 
(/)ra is birational onto its image for big m. Finally if S is a surface we let c 2 and c 2 
be the degrees of the Chern classex c 2, resp. c 2 and Tor(S) the torsion subgroup of 
the Neron Severi-group. 

* Supported by the Netherlands Organization for the Advancement of Pure Research (Z.W.O.). 
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w 0. Introduction 

The classical cri terion of Cas te lnuovo  for the rat ional i ty  of a complex  algebraic 
surface S states that  S is ra t ional  (i.e. birat ional ly equivalent  to IP 2) if and only if 
P2 = q  =0.  It is therefore natura l  to ask for the existence of non-ra t ional  surfaces 
with p g = q = 0 .  Perhaps  the oldest example  is due to Enriques and this surface 
still bears his name.  See Kodai ra ,  [-8] for more  details. Here  we only r emark  that  
c~ is zero for this surface. Campedel l i  seems to be the first to give examples  of 
non-ra t iona l  surfaces with pg = q = 0, but  c 2 > 0, P2:4= 0. See [6]. F r o m  the general 
classification theory of Koda i r a  [8] it follows that  such a surface is of  general 
type. La te r  on Godeaux  [7] constructed other  such surfaces. Unti l  very recently 
no other  surfaces of general  type with p g = q = 0  were known.  1 The study of the 
tors ion groups  however  led M. Reid to the cons t ruc t ion  of some new examples,  
see [10]. It turns out that  his ideas can be applied fruitfully to compare  the Campe-  
delli surface and one of the Godeaux  surfaces. Apa r t  f rom giving a modern  treat- 
men t  of the surfaces in question this is the main  purpose  of this paper.  We find that  
the Campedel l i  surface can be deformed into some Godeaux  surface. We derive 
this f rom a more  precise result concerning the deformat ions  of the Campedel l i  
surface (Theorem 6). 

In order  to mot iva te  the computa t ions  for the Godeaux  surface in question 
we constant ly  compa re  it with a much  simpler G o d e a u x  surface. 

We give the relevant  construct ions  in w 1. The mul t i -canonical  mappings  are 
studied in w 2. We confirm a conjecture of Bombieri ,  namely  that  ~b 3 is birat ional  
for the Campedel l i  surface. (See Bombieri ,  [2]). In w 3 we give the main  result 
connect ing the Campedel l i  and Godeaux  surfaces. As a by-produc t  we find the 
fundamenta l  g roup  of the Campedel l i  surface. In w 4 we study the deformat ions  of 
the various surfaces. 

Acknowledgements. I want to thank Ph. Griffiths and M. Cornalba for various stimulating and 
helpful conversations, D. Mumford for generously showing me his correspondence with M. Reid 
which provided me with the fundamental ideas underlying this paper, E. Horikawa for helpful criticism 
of some of my earlier ideas, and finally a referee for remarks concerning the history. 

w 1. Three Examples 

Example I. We follow Bombieri ,  [1] Section 7. The group  2~ 5 operates  on IP 3 
as follows. Let  e = exp (2 7~ i/5), put  

e(x 1, x a, x3, x4) = (xl,  e xz ,  e z x 3, e3 x4 ) 

This action has as fixed points  precisely the coordinate  vertices (1, 0, 0, 0), (0, l, 0, 0), 
(0, 0, l, 0), and (0, 0, 0, 1). Choose  any e- invariant  smoo th  surface S' of degree 5 
not  passing th rough  the coord ina te  vertices. The  group  7/s then operates  freely and 
wi thout  fixed points  on S', hence the quot ient  S is smooth.  We have pg(S')= 
h~ ,) = h~ ,) = 4 and q(S')= O. Because Z(Cs,)= 5)~((9s), one has that  Z((~s)= 1. 
N o w  q(S)=0,  hence pg(S)=0. To  calculate c~(S), observe that  Z((gs)=~)~((gs,), 

1 P. Burniat "Sur les surfaces de genre P~z > 0", Ann. Math. Pura Appl. (4) 7l (1966), claims to have 
constructed surfaces with pg=q=O, cf =2, 3, 4, 5, 6. 
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and c2(S)=~c2(S')-the latter being equal to the Euler-Poincar6 characteristic 
of the surface. So Riemann-Roch gives that 

c2(S) = ~c~ (S')=~(Hs,. Hs,)=�89 = 1. 

Remark I. M. Reid [10] points out how the construction of the Godeaux- 
surfaces is related to the torsion group. Let S be any surface with invariants 
pg=q=O, c12=1, Tor(S)=ag 5. Denote the elements of 77 s by 0,1,2,3,  and 4. 
Reid shows that h~ + i) =t=0 (i = 1 . . . . .  4). Choose non-zero sections xleH~ + i) 
(i= 1 . . . . .  4), then any 5-th degree monomial in the xl gives a section of 5 K s. By 
calculation of the respective numbers one shows that there is exactly one relation 
between these monomials. Ifzr: Y-+ X is the cyclic unbranched covering of degree 5 
associated to 2~ 5 and one denotes y~=n*(x~) then the y~ (i= 1 . . . . .  4) form a basis 
for H~ Kr) and they define the birational map ~1: Y--~Ip3- The image is a 5-th 
degree surface Y1 in IP 3. If Y is non-singular one recovers a Godeaux surface. We 
shall use such a construction in case of the Campedelli surface. 

Example 2 (cf. Godeaux, [7]). The group Z s operates in a similar way on IP 6 
with fixed points the coordinate vertices. We put G = Z  8. Let T be the complete 
intersection of 4 quadrics in IP 6 chosen in the following way: 

(1) no quadric passes through the coordinate vertices 

(2) the ideal generated by the 4 quadrics is G-invariant. As before the quotient 
T is a smooth surface and calculation of the invariants gives: 

pg(T)=q(T)=O, c2(T)=2.  

We shall show how to construct such a T explicitly. We choose 4 general quadrics 
F1, F2, F3, F 4 such that e(F,.)= e 2~-1. F, (v= 1 . . . . .  4), where e=exp(2ni/8).  We put 
H=FI+Fz+F3+F4. We take H,e(H),eZ(H), and e3(H) for the four quadrics. 
Then (2) is trivially fulfilled. We observe that F 1 is a linear combination of 

X2, X3XT,X4X6 and x2; F20f  
x 2 2 , x l x 3 , x s x 7  and x62; F30f 
x 2,x ix 5,x 2x 4 and x 2; f inal lyF 40 f  

xZ,xlx7,x2x6 and x3x s. 

So it is possible to let all squares appear in H and hence in e(H), eZ(H) and 
e3(H), so that (1) is fulfilled. Finally we have the equality of ideals 

(H, e(H), e2(H), e3(H))= (Ft, F2, V 3 , F4) 

and it is easy to see that Tis smooth in general. 

Example 2 bis. A similar construction is possible for the groups ~E4GZ 2 
and 7~ 2 O Z  2 O2~ z. See Reid, [10]. Because we want to compare the Campedelli 
surface X with torsion Z2 OZ20]E2  we give the construction of X explicitly. 
Denote the elements of G=2~2GT/2@Z 2 by 000, 100, 010, 001, 011, 101, 110 
and 111. Any non-zero section of H~  is denoted by x l, similarly 

x2~H~ x3~H~ yl~H~ y2~H~ 
Y36H~ and z~H~ 
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All squares  x 2 " 2 ( i =  1, 2, 3) and z z belong to H ~  and there must  be 4 i , Y i  
relat ions a m o n g  them. Let n: Y- -*X  be the G-cyclic covering of the surface in 
question, n* x i = 4i, n* Yi = th (i = 1, 2, 3) and n* z = ~. One finds that  H ~  has the 
4i, t/i, and ~ as a basis and the m a p  (b, gives a bi ra t ional  m a p  of Y onto  a complete  
intersection Y~ of 4 quadrics in IP 6. This m a p  is b iho lomorph ic  provided tKrl 
has no base points  and Ya is smooth.  The group G acts on IP 6 as follows: 

(100)(41, 42, ~3, t/l, t/2, t/3, ~ ) = ( - -  41, 42 ,43 ,  ~/1, --t /2,  --t/3, --~),  

(010)(~1, 42, 43, th, t/2, ~/3, ~) = (4x, - 42,43,  - t/l, t/2, - t/3, - ~, 

(001)(41, ~2, ~3, t/l, t/2, t/3, ~ )=  (41, 42, -- 43, -- t]l, -- t/2, t/3, -- ~)" 

We see that  the fixed set of G is 3-dimensional,  hence X can be chosen disjoint 
f rom this set and smoo th  by a construct ion similar to the one in Example  2. 

Our  third example  will be a double  covering of the projective plane branched  
a long a very specific 10-th degree curve. 

First  we need some prel iminaries  on b lown-up  planes. Let P =11P 2 and blow up 
P at the points  Pl, . . . ,  P,. Let  P~ be the resulting surface and let 7~ 1 : PI - ~ P  be the 
b lowing-down map.  We put  E i = ( n l )  -1 (Pi) ( i=  1 . . . . .  n) and we blow up P~ at the 
point  l i e E  i (i = 1 , . . . ,  n). We obtain  P2 and a m a p  n2: P2-*P1. Put F i = (n2) - l( l i) ,  
i = 1 . . . . .  n and denote  the p roper  t ransform on P2 of the curves E i by the same 
characters.  Final ly put n = nl o n2. Note  the following intersection number s  on Pz- 

(E i, El) = - 2 

( V,  , F, )  = - 1 

(F i, Ei) = (n* H,  n* H)  = 1 

(Ei,  n* H) = (F/, z~* H) = 0. (1) 

F r o m  now on we use n* H and H interchangeably.  We shall frequently use the 
following easily verified formula  for the canonical  divisor K 2 on  P2: 

n 

K a ~ ( - 3 H ) +  ~ (E/+2F~). (2) 
i=1 

Next,  assume that  we are given a curve C ' c P  of degree 2m with certain 
singularities P l , . . . ,  P,. Suppose  that  it is possible to blow up P at pl . . . .  , p,  and 
then/]1 at l~ . . . .  , I, etc., obta in ing a surface Pk such that  

(1) the strict t ransform CCPk of C' is smooth ,  
$ 

(2) the divisor C is linearly equivalent  to 2 F -  ~ G i, where G i are certain 
i = 1  

smoo th  curves which are all disjoint from C and f rom each other. 
s 

Then we can construct  a double  covering Q of Pk having C = C + ~ G i as 
i = l  

branch  locus. This we see as follows. Let {U~} be a coordinate  covering of Pk 
such that  C is given by the local equat ions {c~=0}. Let {f~} be a system of transi- 
t ion functions for the bundle  [F]  cor responding  to F, then, because of (2) c, = f ~  c 0 
on U, c~ Uo. Hence  we find a submanifo ld  Q ~ [F]  by the equat ions  ~o 2 = c~, where 
(o~ is a fibre coord ina te  of [F]]  U,. Because of ( l )  and (2), Q is smooth  and is a double 
cover  of Pk, b ranched  along C. 
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We apply this remark in case our singularities are triple points of type (3, 3), 
i.e. the three branches have a common tangent, which separates into three different 
lines after blowing up once. Assume that Pl, ..., P, are such singularities. Blowing 
up P at these points we let I~ eEi correspond to the common tangent of the branches 
of C at p~ and blowing up P~ at these points we obtain P2. One easily derives the 
following linear equivalence on P2, connecting the total transform and strict 
transform of C': 

n* C ' ~ C +  ~ (3Ei+ 6F~) 
i = 1  

Using (1) one sees that (C, E~)=0 (i = 1 . . . .  , n), hence C does not meet E~ and we 

may form the non-singular divisor C = C + ~ E~. Let us define: 
i = 1  

?1 

F = m H -  ~ (E~+ 3F~). (3) 
i = 1  

One sees that C ~ 2 F  and we may form the double covering Y' of P2 branched 
along C. Let p: Y'---, P2 be the branching map. The curves p-1 (El)= A~ are rational 
and moreover (At, A~)=�88 E i , p* E~)=�88 - 2  = - 1. Hence the At are exceptio- 
nal and may be blown down. We let Y be the blown down surface and a: Y'--* Y 
the blowing down map. Now we are ready to give our third example, due to 
Campedelli, [6]. 

Example 3. One constructs a 10-th degree curve in P with six singularities of 
type (3, 3) as follows. Let ~2 c P  obtained from P by deleting the line at infinity. 
Take in 112 2 two concentric circles C 1 and C 2 together with an ellipse C 3 touching 
them both. Together with the two circle points at infinity C 1 ~ C 2 u C 3 has six 
points of type (2, 2). It is easy to construct a 4-th degree curve C 4 touching this 
curve precisely at those six points. We let C ' =  C 1 w C 2 ~ C 3 ~ C 4. For  later use 
we remark that the six points do not lie on a conic. The surface Y' constructed by the 
above procedure has precisely 6 exceptional curves and we let Y be as before. The 
surface Y is the Campedelli surface. 

In order to explain why p~ = q = 0, c 2 = 2, one has to compare this example with 
the case where the curve has no singularities. We call this the corresponding 
smooth case. We shall prove below that in the smooth case corresponding to the 
Campedelli surface, one has pg=6,  q = 0  and c2=8.  We shall see that throwing 
in a triple point of type (3, 3) has the effect of lowering c 2 by 1. If the triple points 
are in general position, each time we insert a triple point p~ lowers 1 and q stays 
invariant. In our case "general posi t ion" exactly means that the six points Pl . . . . .  P6 
do not lie on a conic. Hence p~ = 0, q = 0, c 2 = 2. Now we give the details. 

We need two formulas which hold in case of a double covering p:Z--* X 
branched along a non-singular curve C c X  with C,,~2F: 

K z,.~ p* (K x + F), (4) 

HP(Z,p*(G))_~HP(X, G)OHv(X,  G |  -1) for any vector bundle G 
on X and any integer p. (5) 
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The first formula is easily verified using the construction of Z as given below 
formula (2). Formula (5) can be proved as Ibtlows: From the Leray spectral 
sequence it follows that HP(Z, p* G)~ HP(X, p.p* G) and 

p,p* G-~ G | p,p* 6~x~ G | (69x O Ox(- F)). 

The last equality comes from the splitting of p,p*~O x =p,O z in pieces invariant 
and anti-invariant under sheet-interchange. 

From (2), (3) and (4) one sees (m = 5, n = 6): 

/ \ 6 

K~ .... p* { 2 H -  ~F / )  (6) 
\ / = 1  I 

as a consequence one sees that c~ (Y')= (K)-, Kr , )=  - 4 ,  hence cf (Y)= - 4 +  6 = 2. 
Now use (5) and (6) to compute 

P~(Y)=P~(Y')=h~ ~I~)). 

6 ! 

We find that it is equal to h ~ ( P 2 , 2 H -  2 F~), i.e. the number of quadrics through 
\ i = l  ! 

Pt . . . . .  P6, hence equals zero. Hence pg(Y)=O, 
Finally one must compute 

q(Y) = q(Y') = h * (Or,) = h 1 (Pz, 6'),2) + h* (P2, g~e2( - F)) = h ~ (g)e2 ( - F)). 

W e  n o w  u s e  

Lemma 1. h i (O~h(- F))=0. 

6 

Proof By Serre-duality hI(Oe.(-F))--ht(Oe~(F + K,))=h ~ (2 H-  E F~) by (2) 
and (3), 

The exact sequence on P2 

6 6 

0--~ 2 H -  2F~-~2H-+@Cv,-,O 
i = 1  i = 1  

gives in cohomotogy: 

, 6 6 

. 

Now h ~ F~ is the number of conics through the six points pl . . . .  , P6, 

( ~ hence equals zero. Note h~  so by the above sequence h I 2 H -  ~, F~ =0. 
1 

Corollary. q(Y)=0. 

So we have proved the following proposition. 

Prol~sltion 2. For the Campedetti-smface Y (Example 3) we have p~(Y)= 
q(Y)=0,  c~(g)=2.  
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Remark 2. This does not imply that Y is of general type. However, in w 2 we 
prove that Pz(Y)=3, and then Kodaira 's  classification theory [8] implies that Y 
is of general type. 

Remark 3. If there exists a 10-th degree curve with six points (Pl . . . . .  P6) of type 
(3, 3) lying on a conic the same calculation shows that for the resulting double 
cover (after blowing down exceptional curves), we get pg = q = 1, c 2 = 2. It is not 
clear whether such a curve exists. 

Remark 4. One can prove that throwing in double points or triple points which 
resolve into double points or simple points after one blowing up do not change the 
invariants pg, q, and c~ 2 . 

w 2. The Multicanonical Mappings 

We recall the results in Bombieri [1] for the case of the Godeaux surface of 
Example 1. The calculations will be entirely similar for the second example and 
will be given only for the surface with torsion group G = ~  2 (~)~'2 ( ~ 2  of 
Example 2 bis. 

Theorem 1. For the Godeaux surface S of Example I the following holds: 

12 Ks[ has 4 base points, 

]3 Ks[ has 2 base points and cb 3 is not holomorphic at those points. 

q~ 4 is not biholomorphic at the 4 base points of]2Ks]. 

Proof From Remark  1 one sees that the sections of mK s are given by mono- 
mials Xix lxzi2x3i3x4i4 with i l+2 i2+3i3+4i4=Omod5 .  So a basis for ]inKs] is 
represented by: 

(x I x4, x z x3) for m = 2, 

(XI X22, X2 X3, X2 X2, X2 X4) for m -  3, 

(X1X3, X12 X42, X3X2,X1X2X3X4 , X2X2,X32X4,X3X3 ) for m = 4 .  

Using this the assertions of the theorem can easily be verified. We refer to Bombieri, 
[1] for details. 

Theorem 2. For the Godeaux surface X of Example 2 bis the following holds: 
(D 2 is a holomorphic 8:1 map onto IP 2 branched along 7 lines in general position. 
4 3 is holomorphic and birational. 

Proof From the way X is constructed we see that H~ mKx) is generated 
by monomials  

XT'Xn22Xn33yT1y~2y73zr (na +nz+n3+ml +m2+m3+r=m) 

with 

n 1 + n 2 + n 3 + r --- 0(2), 

nl +ml +nz +m2-O(2),  

n 1 -qt-m 1 + n  3 + m  3 ~-0(2). 
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We find the following explicit generators for low m: 

x2 .2 .2 yZ, yZ , y23 , z 2 for m = 2 ,  1 ~ 2 ~ A 3  , 

X 1 x 2 Y 3 , X 1 X 3 Y 2 , X 2 X 3 Y l ,  X l Y l Z ,  X2Y2Z, X3Y3Z, y l Y 2 Y  3 f o r  m = 3 .  

Because 4 relations between the 7 squares ~2 maps X holomorphically onto the 
intersection IP of 4 hyperplanes in IP 6 branched along the intersection of the 7 
coordinate hyperplanes with IP. Because P2 (X)= 7 there are no relations among 
the given generators for H~ 3Kx). One easily checks that ~3 is holomorphic 
and is everywhere 1 : 1, hence ~3 is a holomorphic birational map. Q.E.D. 

Remark. If ~3(X) is non-singular it follows from the above proof that ~3 
is biholomorphic. We have not checked this since the calculation it involves seems 
discouragingly large. 

Theorem 3. For the Campedelli surface Y we have 

(i) q~2 is an 8:1-holomorphie map onto IP 2 of which the set-theoretic branch 
locus consists of  7 lines. The position of these lines is as follows: three of the lines 
have their intersection points on three other lines and the 7-th line is arbitrary. 

(ii) ~3 is a birational holomorphic map. On Y the 3 curves coming from the original 
quadrics forming part of the branch locus of p: Y'--~IP 2 are rational curves with self  
intersection - 2 .  They are the only such curves on Y and every @m (m>__ 2) blows down 
these 3 curves into 3 normal rational double points. 

Proof (i) We assume that projective coordinates (x, y, z) are chosen in such a 
way that 

C1 ~ (x  2 + y2 _ r E z 2 ___ 0) ,  

C2=_-(x2 + y 2 - - R 2 z 2 = O ) ,  

C 3 ~- (R 2 x 2 + r2y 2 - R  2 r 2 2 2 = 0). 

Hence the six points of type (3, 3) on C' are the points (+r ,  0, 1), (0, _ R ,  1) and 
(1, _+i, 0). A basis for the 4-th degree curves touching the quadrics at these 6 
points is given by 

x 2C1 ,y2C2 and z 2C 3. 

Let z: P - ' , P  be the corresponding rational map, i.e. 

"c(x, y, z)=(x z C 1, y2 Cz ' y3 C3). 
The map z becomes well defined as a holomorphic map on P2. In the following 
we thus let ~: P2--~ P be the hotomorphic map corresponding to z. By an easy 
computation one shows 

(1) The map ~ is generically 4:1. 
(2) The set-theoretic banch locus of ~ consists of the three cordinate axes 

u =0, v=0,  w = 0  plus the lines 11, 12, 13, see Fig. 1. Here (u, v, w) are projective 
coordinates of P, the target of ~. 
A more accurate analysis shows that the proper transforms of C~, C2, and C 3 
on P2 map onto the points Pt, P2 resp. P3; the six curves F~ map in pairs onto the 
lines lj and finally the curves E~ map onto the points qj. 
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Fig. 1 

q3 

It 

13 \ 

In the rest of the proof we delete p* in front of divisors on Y' coming from P2. 
6 

To see the relation with ~2 we note that 2 K r , ~ 4 H -  ~ 2F~ and the sections 
/=a 

of the latter correspond in a 1 - 1 way with the quartics touching the quadrics 
C a, C 2, C 3 at the points Pa . . . . .  P6. First of all this shows that P2 = 3 and secondly 
one derives a commutative diagram 

Y ' \ ~  P2 

Y ~ P .  

(7) 

Because 7J(A,) is a point we see that ~2 is indeed holomorphic. 

To verify the statement about the branch locus of ~2 we remark that the branch 
locus of 7 ~ consists of the branch locus of ~, shown in Fig. 1, and the image under 

of the branch locus of p, hence consists of the points Pl, P2 and P3 and a general 
line in P. 

(ii) To prove that ~3 is birational we must prove that r separates points on a 
Zariski-dense set of Y. We can equally well prove that the three-canonical map 

6 
of Y' has this property. Now 3 K r , ~ 6 H - ~ 3 F  i and the sections of the latter 

i=a 
are linear combinations of the ones invariant under sheet interchange and the 
ones anti-invariant under this operation. Recall the discussion above (5). 

The invariant sections correspond to 6-tics having contact of order three 
with the conics C1, C 2 and C a at the points Pa . . . . .  P6. The anti-invariant sections 

6 6 
correspond to secti~176 a n d w e  have h~ =1 ! 

h~ We see that the invariant sections separate the fibres of the map p 
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away from the b ranch  locus and because there are ant i invar iant  sections they 
separa te  the 2 points  in the fibre. To  see that  ~3 is ho lomorphic ,  notice that  13 KI 
does not  have base  points,  because the ant i invar iant  sections of 3 K r, are sections 

6 
of H + ~ F~, hence do not  have base  points  on Y'. 

i=1 
Let (~ be the p rope r  t rans form on P2 of the curves C i (i = 1, 2, 3) and set D i=  

p - l ( ~ ) .  Then one has on Y' that  

(D~,D,) =~('  C,, Ci)=�89 C , ) - 8 ) = - 2 .  

Hence  D~ (i = 1, 2, 3) is a ra t ional  curve with self-intersection - 2 and the same holds 
for a(D 3, i = 1, 2, 3. It is easy to see that  on Y there are no other  such curves. 

In fact, any such curve D must  be b lown down to a point  under the ho lomorph ic  
m a p  ~2 ((D. 2 K) = 0) and the discussion under  (i) shows that  only the D~ (i = 1, 2, 3) 
are blown down to points, hence D must  he one of them. The  other  assert ions 
now follow f rom M u m f o r d  [9]. 

w 3. The Torsion Group and a Godeaux-Type Construction 
for the Campedelli Surface 

The object  of this section is to analyse the tors ion g roup  of the Campedel l i  sur- 
face and from this to obta in  ano ther  cons t ruc t ion  for it. 

L e m m a  2. The torsion group of Y contains G = Z 2 �9 7]" 2 @ 7~ 2 as a subgroup. 

Proof We n u m b e r  the curves Ei and F~ in such a way that  those arising from 
blowing up the two points  not lying on C~ (i = 1, 2, 3) we call Ezi , Ezi_l, resp. F2~ 
and Fzi_ 1. WeputD~=p-l(C~),(i = 1, 2, 3 ) , A j = p  ~(E)andBj=p I(Fj)( j= 1 . . . . .  6). 
On P2 we have the linear equivalences:  

C i ~ 2 H -  ~" (E2j+ Ezj_ 1 + 2F2j+ 2F2j_,) 
j*i 

Not ice  that  on Y' one has 

p*Ci~2Di, p*Ej~2Aj ,  and p*Fj~Bi 

we find: 

2Di~ 2 { H -  ~ (A2j + Azj-1 + Bzj-F Bzj_I)} 
j*i 

N o w  suppose tha t  

D i ~ H -  ~ (A2j+  A2j_ 1 + B2j "+" Bzj_I)  
j*i 

Then  h~ implies that  

h~ H -  Z ( A z j + A z j - 1  +B2j+B2j-1))4=O. 
j , i  

i = 1 , 2 , 3 .  

i =  1,2,3. 

i = 1 , 2 , 3 .  
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But the last number equals 

h~ H -  Z Bzj+ Bzj-l)=h~ Y', p*(H- ~, (F2j+ Fej_I))) 
j~-i j:r 

= h~ H - ( Z  F2j+F2j_I)) 
j * i  

by formula (5). But this is the number of lines through the four points pj lying on 
Ci, hence equals zero. This contradiction shows that 

D i - H +  2(A2j+A2j_I+B2j+Bzj_I)=gi i = l , 2 , 3  (8) 
j~-i 

are non-zero 7/i-torsion elements. Obviously the & are numerically independent, 
hence the g~ generate a 2~z0)ZzO2~ z torsion subgroup of Tor(Y'), hence of 
Tor (Y). 

Lemma 3. h ~  (i=1,2,3),  h ~  (i#j, i , j=1 ,2 ,3)  and 
h ~  1. 

Proof On Y: K+gi=H+Di+ ~(Azj+Azj_I)-(B21+B21_I) as we see from 
j=~i 

(6) and (8). Because all D~ and Aj have negative self-intersection: 

h~ +Di+ Z (A2j+ A2j_I)--B2i--B21_I) 
j * i  

= h~ (Bz~+ Bz~_l)) 

= the number of lines through the two points Pzi and Pz~-1, hence equals 1. 

The other equalities can be checked similarly. Q.E.D. 

We enumerate the elements in G and in H~ K + g) for g ~ 0, g r G as in example 
2 bis. We let 7t: Z ~ Y be the cyclic unbranched covering of Y corresponding to G 
and we enumerate the sections of H~ Kz) corresponding to sections of 
H~ K+g) for g =1:0, gr again in the same way as in example 2 bis. 

Lemma 4. pg(Z)=7, q(Z)=0. 

Proof Because Z((gz)=8 we only need to prove that q(Z)=0. But q(Z)= 
hl(Cz)=hX(E 7z, Cz)= ~ h'(Y, Cy(g)). 

geG 

Now for g+0 ,  hi(y, (gy(g))=0. Indeed h~ Cv(g))=O, because g is a torsion 
element, h2(y, Cy(g)=h~176 Ky+g)=l by Lemma3. Then 
ha(Y, Cy(g))=O by the Riemann Roch formula. 

Corollary. The elements ~1, ~2, ~3, r/l, ~lz, q3, ( form a basis of H~ Kz). The 
canonical ring R = ~  H~ m Kz) of Z is generated by these elements. There are 

m 
four relations between the squares ~ ,  ~z, 2 2 2 2 ~2 ~3, ql, r/2, ~/3 and and any other relation 
in R comes from these. Hence Spec (R)= ~l (Z)=,~ is a complete intersection of 4 

3 3 

quadrics in IP 6 of the form ~ a,~ 2 + ~, b,q 2 + c~ 2. Moreover Z has 24 rational 
i=1  i = l  

double points, namely the points coming from the curves a(D ~) (j = 1, 2, 3) on Y. 
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Proof Because pg(Z) = 7 and the elements r (i = 1, 2, 3) and ~ are independent, 
they form a basis of H~ Kz). Because Pz(Y)=3 and .z  .2 .z  .2 .2 .2 _2 ~1, A2~ d~3~ Yl~ .I/2, Y3' Z 
are all sections of 2 K r there must be 4 relations between them, hence there are 
4 relations between the corresponding elements of H~ 2Kz). Because P2(Z)= 

X((gz)+ �89 2 .1 .  c~(Z)=8 +16= 24 and there are ( 6 2 2 )  = 28 quadratic monomials 

generated by the ~ (i = 1, 2, 3), ~/i (J = 1, 2, 3) and ~ these 4 relations are the only 
ones. Likewise one may prove that all the relations between higher order mono- 
mials come from these 4 ones. This proves that Spec R = ~1 (Z) and the assertion 
about  the double points now follow from Mumford [9]. 

This corollary shows that we have proved the following theorem: 

Theorem 4. The Campedelli surface Y has G = 7~ 2 (~ ~-'2 (~ ~"2 in its torsion group. 
It can be realized as follows. Let I11 be the surface Y with the three c u r v e s  O i (i = 1, 2, 3) 
blown down. The group G acts on IP 6 (see Example 2) and Yt is the quotient under 
G of an intersection of 4 quadrics in ]t)6 each of which is G-invariant (i.e. a linear 
combination of the quadrics of the homogeneous coordinates in IP 6) and does not 
meet the fixed locuses of the generators of G. The intersection of the 4 quadrics has 
precisely 24 ordinary double points and no other singular points and they are dis- 
tributed over three G-orbits. 

Corollary. ~Zl (Y)~-~-- Z 2  t~) Z 2 (~ 77,2, hence Tor (Y)- -~Z 2 (~ 7~ 2 (~) 7~ 2 . 

Proof We prove that Z is simply connected. First of all there is a family of 
deformations { Z t } ( t ~ A )  2 s uc h  that for t+0 ,  Z t is a complete intersection of 4 
quadrics in IP 6 without singular points and Z o ,~ Z. Now one applies the results 

of Brieskorn [4] to see that there is a family of deformations {Zr} (tEA) such that 
each Z, is a minimal resolution Zt, i.e. Z t ,~Z  t for t4:0 and Z o ~ Z .  This means 
that Z t and Z are the same topologically, hence n l ( Z ) =  nt (Zt)= 0. 

w 4. Deformations of Godeaux Surfaces and Campedelli's Surface 

Theorem 5. The Godeaux surfaces with torsion groups 7Z5, 7/8, 714@Z 2 and 
Z2 �9 Z2 �9 712 all have smooth local moduli spaces. The first one has dimension 8, 
the last three have dimension 6. 

Proof Because the GodeauX surfaces are of general type h~  for them. 
If we can prove that h2(O)=0 as well we find first of all that 

h 1 (O) = - Z(O) = 102((9)- 2 c~ z 

hence equals 8 in the first case and 6 in the other three cases. Then the statement 
of the local moduli spaces is a well known consequence. 

We shall prove that hE(O)=0 for the last three surfaces, the proof  that hE(O)=0 
for the first one being similar but simpler. If T =  Q1 n Q2 c~ Q3 n Q4 is the complete 
intersection of 4 quadrics Qi(i= 1, 2, 3) in lP 6 the statement hZ(T, O r ) = 0  will 

2 As usual A is a small disc around the origin in C. 
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imply h2(O)=0 for the last three Godeaux surfaces. So we shall prove that 
h2(T, Or)=0. Remark that dually one must prove that h~174 KT)=0. We use 
the exact sequences: 

4 

0--~@ 6'r(-- I)---~ D-~(1)1T--~O~| 

and 
7 

0 ~ O~(1) 1 T - , @  6' r ~ (OT(1) --,0. 

The first one gives that h~174176 T). From the second one we 
have the inequality: 

h~  T)<= 7 -  7 + h~(O~,dl)t T). 

This reduces the proof to showing that h ~ (f~,6(1)t T)= 0. In fact we have a slightly 
more general vanishing theorem. 

Lemma 5. hl(f~6(1) I T)=O for l+ -8 .  

Proof We put Ql c~ Q2 n Q3 = Ti and QI ~ Q2 = Tz- We have exact sequences 
of the form: 

0-* rgo(k)-~ ~o(k  + 2)-~ O40(k + 2) 1Qt ~ 0, 

0-~ f2~,~(m)t Q i - '  O~(m+ 2) l Q~ --* g2~,(m+ 2)I T 2 -~0, 

0--~ f2~(n)t r 2 --~ O~(n+2)l  T2---, f2~(n+ 2) 1 T~ --,0 

and 

0--, f~s(r)[ T~ --, f2~(r + 2)I T~ -~ f2~(r+2)l W-~0. 

The first one and Bott's vanishing theorem (Bott, [3]) a special case of which 
states that hi(f2~6(k))=0 for k#:0, gives that h~(O~6(k)tQ1)=O all k for j > 2 ,  but 
h l(D~P~(k) lQ1) =0 for k ~ -2 .  Now we proceed by induction. Q,E.D. 

Theorem 6, For the Campedelli surface Y one has that h2(y, Or )=0  , hence Y 
has a smooth moduli space of dimension 6. Three dimensions come from the fact 
that the construction of the CampedeIti surface depends on 3 parameters. The 
remaining three parameters come from independently letting vanish the three curves 
D~(i = 1, 2, 3). 

Proof We closely follow the computation of the proof of Burns and Wahl, [5], 
Theorem (4.2). As before we let Z t be the intersection of 4 quadrics in Ip6= P 
given by F~=0(i = 1, 2, 3). Let Z be the minimal resolution of singularities. Note 
that G operates on Z and Z 1, the respective quotients being Y and Y1. The group 
G also operates on H~(Oz) and H~(Ozl). For any G-vector space H, we denote 
by H G the G-invariant subspace of it. Notice that H~(Oz)~-H a (Or) and H~(Oz,)~ 
Hi(Or1). 

We let p, q, r be the three singular points of Y~ and we use the same characters 
for three points on Z~ in the 3 different G-orbits. We have the following exact 
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sequences: 

0 --~ Oz, --* 0 e I Z1 ~ Nzl --~ O, 
4 

0 ~ N z I  ~ @ (QZI(2) ~" @([~g(p)-}'~g(q)~-~g(r))-~O, 
geG 
4 

0 ---, i(2) --, (9p(2) --. @ (C~(r) + r + r -~ 0. 
geG 

The meaning of these sequences is precisely analogous to the corresponding 
sequences in the proof  of Burns and Wahl, Theorem (4.2) ([5]). We let G operate 
on the corresponding cohomology groups to get 

h 1 (Or) = h~(Oz,) + 3 = h ~  3. 

Here we use that H~ Hl(Ozl)  is surjective because all locally trivial defor- 
mations of Z1 take place in IP 6 for reasons similar to the ones given in Burns and 
Wahl, [5]. 

Then 

h~ =4h~ 3 + 4 h~(i(2)) 

= 9 + 4 hi(l(2)). 

Hence hi (Or)= 6 + 4 h~(l(2)). The last sequence shows that h~(i(2))= 3 -  s, where 
s is the rank of the 3 x 7 matrix formed by the values of the seven G-invariant 
squares at the three points p, q and r. Because p, q and r are in general position 
s = 3 and h a (Or)= 6. Then, by Riemann Roch h2(Or)= 0 and Y is not obstructed, 
in fact the local moduli space of Y is smooth and of dimension 6. The curves D i 
can be independently made to vanish and contribute each 1 parameter to the 
moduli space, as follows from Burns and Wahl [5]. The remaining 3 parameters 
then obviously come from the construction of the Campedelli surface. Q.E.D. 

Corollary. The Campedelli surface can be deformed into a Godeaux surface with 
7~'2 (~ ~2 (~ Z2 as a torsion group. 
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