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1. I n t r o d u c t i o n  
A compact complex algebraic surface, for short surface, has a natural struc- 

ture of an oriented differentiable four-manifold. For simply connected surfaces 
Freedman's fundamental result [5] implies that the topological type is completely 
determined by H2(S, Z) together with its intersection form qs 6 Sym2H2(S, X). 
Hirzebruch's signature formula 1/3(c~(S) - 2c2(S)) shows that in addition to c2 
also c~ is a topological invariant. 

Recall that a unimodular indefinite lattice is classified by its parity, rank and 
signature. If S has an almost complex structure, Wu's formula implies that qs is 
even if cl(S) is 2-divisible in / - /2(S,Z)  and odd otherwise. It follows that for a 
simply connected complex surface S with indefinite intersection form, the Chern 
numbers together with the divisibility of cl mod 2 fix the topological type of S. 

Of crucial importance is to find some differentiable invariant which is finer 
than a topological invariant. A natural candidate for invariance is the canonical 
class. However, if S is a non-minimal surface, the exceptional curve E defines 
a reflection aE in cohomology (aE(X) = z + 2qs(z, E)E)  which is known to be 
realizable as a diffeomorphism. But cl is sent to cl - 2E and therefore is not 
preserved. For this reason we only consider minimal surfaces in the sequel. 

Using the Donaldson polynomials [2], Friedman, Morgan and Moishezon [61 
showed that for certain types of minimal surfaces the canonical class cl is indeed 
a differentiable invariant up to sign. These surfaces however form a very limited 
c lass .  

Our contribution consists of two parts. 
First we show that by a combination of Lefschetz theory and an elementary 

number theoretic observation we can compare surfaces whose cl is known to be 
invariant by [6] with surfaces in products of projective spaces and weighted pro- 
jective three space, thereby enlarging considerably the class of surfaces to look for 
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examples. 

Secondly, we observe that invariants of simply connected algebraic surfaces 
can be produced in prodigious numbers by considering complete intersections in 
multiprojective spaces. In particular there will be many types of surfaces crowded 
into slots with relatively small invariants. Although this observation may seem 
inane, it has provided the major  motivation for the work of this paper, and actually 
subsumed most of it as well in the time-consuming process of actual programming, 
a tiny portion of its output being added to the end of the paper. 

Using the list and the first observation we find indeed several dozens of small 
invariants which occur at least for two homeomorphic surfaces which cannot be 
diffeomorphic. The second observation also shows that this phenomenon is quite 
common in the world of surfaces and occurs for many -even small- invariants, 
contrary to what one might expect from [3], [10] or [13]. For the sake of record- 
hunters, of course the lowest world record of invariants is (cl, ci) = 0 and pg = 0 
and is realised by the Dolgachev surface and the 9-fold blown up plane. For pairs 
one of which is of general type the record is (cl, cl) = 1 and pg = 0 and is realised 
by the Barlow surface and the 8-fold blown up plane. See [8]. The rest of the 
paper exclusively deals with pairs of surfaces of general type. 

In [3] Ebeling uses this method for complete intersections, in [10] it is applied 
to repeated triple covers of IP I x F '1 and in [13] to repeated double covers of IP 2. 
The examples found have large characteristic numbers c~(S) and x(S). Ebeling 
has examples with c~ = 22 �9 39 �9 5 �9 72 = 19,289,340 (these have been discovered 
independently before him by Libgober and Wood [9]). The lowest first Chern 
class a surface in [10] has is 22 �9 38 �9 112 = 2,822,688. Salvetti 's examples have 
Chern numbers starting in a smaller range of magnitude c~ = 52. 34 = 2,025. Our 
surfaces have very small Chern numbers. They are all complete intersections in 
multiprojective spaces or smooth hypersurfaces in weighted projective spaces. 

Our list of genuine examples is at the moment rather small, but can be ex- 
tended to all of the pairs in the tables at the end of this note if indeed the canonical 
class would be a differentiable invariant up to sign. In fact, our list of examples 
would be too big to be published, and we may even venture to guess that  almost 
all Chern-invariants occur as examples of the phenomena of homeomorphic but 
non-diffeomorphic surfaces. In any case, the list contains the beginning of at least 
one infinite sequence of examples. This was mentioned to us by Kotschick. See 
Remark 2. 

On the topological side, we note that the fact that the invariants are small is 
potentially of interest for topologists since they could try to explicitly find some 
standard topological operation which passes from one member  of a pair in the 
table to the other one, like the logarithmic transformations in case of the elliptic 
surfaces. Also, it would be interesting to know whether both members of a pair 
have a big diffeomorphism group. It seems to us that this question is not likely to 
be resolved by algebro-geometric means only. 

If one is willing to leave the realm of complex surfaces, the recent results 
of Fintushel and Stern [7] imply that  many of the examples of surfaces with big 
diffeomorphism groups have infinitely many different differentiable structures. But 
the exotic structures are probably all non-algebraic. It remains a challenging 
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problem to determine how our examples fit in with theirs. Their constructions are 
of a differential topological nature and there is a priori no way of comparing the 
examples. 

Last~ but not least, we want to thank the various mathematicians whose 
advice has benefited us greatly. Foremost of those is of course D. Kotschik, who 
not only supplied the examples of Remark 2 and kindly allowed us to present them 
in this paper; but also read through the manuscript (although slips and mistakes 
still remain our sole responsibility) and contributed many a comment that saved 
us from potential embarrassment.  Conversations with R. Stern have also been 
of great value. Finally we also like to thank C. T. C. Wall for supplying some 
references. 

2. Big d i f f e o m o r p h i s m  g r o u p s  

The classical way of obtaining diffeomorphisms of an algebraic surface is to 
look at those induced by monodromy. Thus if S = St sits as a fibre in a family 

S---* P 

those cycles of S that extend to ,.q will be invariant under monodromy (and un- 
der additional assumptions we may conclude that  only those will be fixed). In 
particular we see that the canonical class is preserved. At this point it may be 
worthwhile to recall some facts from Lefschetz theory dealing with this situation. 

Let Y C pm be a smooth algebraic variety of dimension 2 + r and consider all 
complete intersection surfaces of Y with r hypersurfaces of fixed degrees. These 
will be paxametrised by some quasi-projective mardfold M. Loops in M based 
at the point corresponding to S define the monodromy representation on H2(S). 
The fixed lattice by definition is H~xed ---- I m ( H 2 ( y )  ~ H2(S)) and it is acted 
upon trivially by monodromy. Lefschetz theory shows that there is an orthogonal 
direct sum decomposition 

H2(S,Q) = H xed(S, �9  V ar(S, Q) 

into irreducible modules for the monodromy representation. Moreover, the variable 
part  does not contain any classes fixed by monodromy. 

Assume now that H2(Y,Z)  has rank one, that cl(S) 2 > 0 and that pg is 
odd. In this case the main result from [FMM, section 3] states that el(S) is a 
differentiable invariant up to sign. together with earlier results from Ebeling and 
Beauville (see e.g. [4] for references) imply that  cl(S) is a differentiable invariant 
up to sign. 

A much more detailed analysis actually reveals that one can dispense with the 
condition pg even under some additional hypothesis as we show now. If pg is odd 
so that the degree d(k) of the Donaldson polynomials ~k is even, O'Grady in [12] 

defines polynomials of degree d(k) and shows that  the coefficient of q~(k)/2-1cl(S ) 
is positive as soon as the surface contains a base point free pencil of curves of 
genus > 2. The main result of Morgan from [11] implies that the Donaldson- 
polynomials can be computed using Donaldson's prescription, but now carried out 
on Gieseker's compactification. But this is exactly the way O'Grady defined his 



] 76 PETERS-PERSSON 

polynomials. This implies as in [6] that cl is a differentiable invariant (up to sign). 
In case of odd pg and odd c 2 one can use the SO(3)-polynomials instead as shown 
in [4]. See also [151 . 

We can summarize the main point 

(2.1) P r o p o s i t i o n  / f  a minimM surface S with positive pg and with c'~ > 0 is 
a complete intersection surface in a projective manifold Y with b2(Y) -- 1, then 
cl ( S) is invariant (up to sign) by any orientation preserving diffeomorphism in 
each of the following cases 

i. pg is even, 
ii. pg is odd and S has a base point free pencil of curves of genus > 2, 

iii. pg is odd and c~ is odd. 

Note also that even in the case of big monodromy we cannot conclude that 
every diffeomorphism fixes (up to sign) every conceivable canonical class for al- 
gebraic realizations of the underlying differentiable manifold. But proposition 2.1 
will allow us to use the following Lemma. 

(2.2) L e m m a  Suppose that S and S t are two minimal simpJy connected surfaces 
of genera/ type with pg(S) and pg(S') positive. Suppose c,(S) is invariant up 
to sign under the group of diffeomorphisms of S. Let A t C H2(S t, Z)  be the 
largest sublattice acted upon trivially by a group of diffeomorphisms of S t. Write 
cl(S) = 7 �9 c with c primitive. I f  there is no primitive element c' E A t for which 
(c', c') = (c, c), then S and S' are not  oriented di~eomorphic.  

Proof Suppose that there is an oriented diffeomorphism f : S t ~ S. Then 
c' = f*(cl(S))  is left invariant by all oriented diffeomorphisms of S' and hence in 
particular it sits in the sublattice A'. But this contradicts our assumptions. 

Let us apply this to the case of the preceding proposition. We find: 

(2.3) C o r o l l a r y  Let S be a minimal simply connected surface with c2(S) > 0 
and pg( S) positive. Assume that cl(S) is invariant (up to sign) under the group 
of diffeomorphisms. Let S' be a simply connected surface which is the complete 
intersection of very ample divisors of a smooth projective variety. Write cl ( S) = 
7" c with c primitive. Suppose that H~xed (S') does not contain a primitive element 
c' with (c', c t) = (c, c). Then S and  S t are not  oriented diffeomorphic. 

Remark I. In particular, if b2(Y) = 1, the statement reduces to the assertion that 
the divisibility of the first Chern classes being distinct implies that the surfaces 
cannot be diffeomorphic. This is the situation of [FMM, section 3]. 

3. Homeomorphic non-diffeomorphic surfaces 
We are going to apply CoroUary 2.3. The candidate surfaces for S will be 

complete intersections of n hypersurfaces in projective space pn+2 or surfaces of 
degree dpq in weighted projective space of type P(1,1,p, q) with p and q relatively 
prime. The particular kind of weighted projective surfaces are smooth and the 
usual Lefschetz theory applies by [14]. Work of Cox in [1L] indicates that this can 
also be done for more general weighted hypersurfaces, but as those involve the 
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resolution of singularities to compute the Chern numbers we have not bothered to 
treat those. 

The candidates for S ~ are of the same type or else they can be complete 
intersections of n hypersurfaces in multiple projective spaces P=' x IP a= x . . .  x [~a~ 
with n + 2 = ~ aj. 

It is straightforward to compute Cl 2 and the divisibility of the canonical class. 
The intersection form on the fixed part  is also easy to compute, using as generators 
the hyperptane classes of the factors of the multiprojective spaces. Finally, the 
geometric genus pg(S) -- H~ can be computed from the standard goszul- 
resolution of the structure sheaf of a complete intersection S by hypersurfaces of 
multidegrees (djl, d12,... ,  d/k), j = 1 , . . . ,  n. In the following tables we collected 
some potentially interesting examples, found by computer. 

In the tables X = Pg + 1, type (3)(p, q) means weighted projective space P(1, 1, 
p,q) and ( a l , . . .  ,ak) means a product P=' x p~2 x . . .  x l? a~. The multidegree of 
any hypersurface in such a product is given by a k-tuple (all , . . . ,  dk) and they are 
collected in a n by k matrix. The last entry gives qs I H~xea(S) and qs I H~xed(S')" 

Observe that  proposition 2.1 can be applied to the surfaces of table 2. See 
e.g. [O-G] for the complete intersection case. The weighted projective case is more 
subtle, but here only the examples 2, 3 and 5 have even c~ and here a modification 
of the argument works. 

Inspecting this table, Corollary 2.5 and a little elementary number theory 
shows: 

(3.1) T h e o r e m  The pairs of suHaces numbered 3, 5, 7, 10, I2, I7 and 23 in the 
~rst table and the first seven pairs in the second table are homeomorphic but not 
diffeomorphic. 

Remark 2. Kotschick observes that the pair numbered 3 occurs in an infinite 
family. One the one hand one has a surface of degree 3k + 7 in p3 and on the other 
hand we have a surface in F '1 x p2 of bidegree (k + 3, 3k + 6). One can check that 
these give genuine examples of this kind, if k = 0, 2 mod 3 and k r 3 mod 4 (to 
ensure even pg). 

Remark 3. As observed before, all pairs in the tables would give genuine examples 
if it could be shown that cl is a differentiable invariant (up to sign), at least for 
the sort of surfaces we are considering here. 

At the time of writing P. Kronheimer and T. Mrowka announce a proof of a 
form of a conjecture due to R. Thorn: 

Let S be a surface with P9 odd and such that ]Ks[ contains a smooth curve of 
genus > 2 and let C be any algebraic curve with (C,C) > O. Then any compac~ 
differentiable surface differentiably embedded in S and homologous to C must have 
genus at least as big as the genus of C. 

It seems reasonable to expect that  the same methods give a slightly stronger 
statement where we allow C to be any effective divisor (where 'genus' now means 
arithmetic genus). If so, it is not hard to deduce from this that  indeed cl (up to 
sign) is a differentiable invariants for all surfaces in the second list. Of course, if 
the condition "pg odd" can be removed a similar remark applies to the first list. 
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Table of interesting Surfaces (pg even). 
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n o .  

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

c~ 
98 

108 

125 

147 

180 

225 

225 

242 

289 

294 

360 

405 

441 

X div type degjree s 
37 7 (3)(10,1) (20) 

1 (2,1,1) (2 8 2) 

1 (2,1) (6,4) 
35 5 (3)(2,1) (i0) 

1 (3,1,1) 1 
1 

43 7 (3) (15) 

~2,~,~ ( o ~ )  

45 3 (5) 2 

i (2,2) 
57 5 (3) (9) 

1 (3,2) (~ ~ \ 3  o/ 
61 11 (3)(5,2) (20) 

1 (3,1,1) 2 3 
1}2 71 7 (3)(2,1) ( ) 

1 (2,1) 3 
0 

85 6 (3) (10) 
2 (2,1) (9,4) 

95 9 (3)(3,1) (!4(115) ~) 

1 (3,1,1) 3 
2 

103 26 (3)(7,5)(2,2,1) ( i  2(35)31 O) 

form 
(2) 

i 1o o 

(12) 

(3) 

(20) 

(9) 

8 0 3 
11 3 0 

(1) 

(2) 

\ 2 3  3 0 
(1) 

(~ o~ ~), 
\ 2 8  4 0 

(6) 
c~8 ,8o :) 
\ 34 4 

(5) 

(1) 

Table of interesting Surfaces (P9 even) (II) 
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no. c~ X 
19 441 105 

20 '539 121 

21 578 133 

22 625 125 

23 648 141 

24 675 165 

{ 
25 700 147 

26 729 161 

L 
27 841 185 

'28 845 185 

29 900 177 

div. type degrees form 

211 (3)(9,4) (2,1,1) " ( ~ 45 5)(36) \17 3 (285/1~'3) 08 7 

'z (3) (11) ( 11 ) 

11 (3)(5,2) (20) ( 2 ) 

o 
19 3 

" 5 13 18 ~ 

�9 ~ 18 15 0 / 

\ - - /  

15 " "(3)(97i)" (27) ( 3 ) 

(~) ( 28 ) 

1 (3,1,1) | 1  1 31 18 0 \2 1/ _. 20 4 
27 (3)(7,6) (,~2) (1) ~ ) 
1 (3,1,1) 3 o 

2 \25 5 

13 (3)(4,1) ) (5) 

1 (3,1,U i 4 ~6 
1 1 20 3 

5 (5) (a6) 

/2  5 2~ ( 4  20 54) 
1 (3,1,1) 15  ~ o /  20 0 20 

\ 2  o o /  54 20 o 

Table of in%eres%ing Surfaces (p~ even) (III) 
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c~ 9 X div type degrees form 1~). 
1 (4) ( 9 ) 

2 32 16 4 (3)(7,1) (14) (2) 

2 0 2 (1,1,1) (6 4 2) 4 6 

4 81 26 9 (3)(7,3)) ( 21 ) ( 1 ) 

1 (4,1) \ 1  1 /  

5 128 46 8 (3)(11,1) (22) (2) 

4 (2,1,1) 4 0 10 ( ~ 0 ~ )  ~ ~0 0 
6 288 66 4 (4) 3 

(4,~) (22 (~ 102) 
7 320 70 4 (4) 4 

(~1) ( ~  ~-) 

8 384 86 4 (5) ( 24 ) 

~00 ~ ~ (~) (8) (1~) 
1 10 8 

Table of interesting Surfaces (pg odd) 
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