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The Hasse zeta function of a K3 surface
related to the number of words of weight 5
in the Melas codes
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0. Introduction

In a paper on weight distributions of codes R. Schoof and M. van der Vlugt derive
formulas for the binary Melas codes [S-V], Table 6.4. Their method is rather round-
about. First, the weight distribution for the dual code is determined. Then they apply the
MacWilliams identities and the Eichler-Selberg trace formula for Hecke operators. The final
results then follow after involved computations.

Itis natural to ask whether these formulas can be derived in a more direct way. In trying
to do so for the number w; of words of weight 5, an interesting K 3-surface X defined over
@, came up. It is the minimal resolution of singularities of the surface in P* given by the
two equations

X;+ X+ X3+ X, +x5=0,

Xy X3XqXs+ X X3 X4 X5+ X X3X4 X5+ X X, X3X5 + X, X, X3%, =0.

This K 3-surface turns out to have maximal Picard number and we have been able to
compute its Hasse zeta function over its field of definition Q.

To put this result into perspective we recall some results from [S-I] where K 3-sur-
faces Y with maximal Picard number are classified. One supposes that Y is defined over an
algebraic number field L which is large enough so that all twenty algebraic cycles are defined
over L. Then the zeta function of the reduction Y (p) of Y at a good prime ideal p of L, is
of the form

YZ(Y, 1) =1 -1 -¢*)(1 —q1)*°Q,(1), g =Normygp,

where the quadratic polynomial Q, () can be found using the geometry of the situation, as
we sketch now. Canonically associated to Y we have an elliptic curve E, with complex

multiplication by @(‘/3), where d denotes the discriminant of the Néron-Severi group.
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Assuming L is large enough (so that various geometric objects needed in the proof given in
[S-I] are defined over L) the zeta function of Ey (p) completely determines the polynomial
0, (). In fact Q, () = (1 — B2t)(1 — B*t), where B and B are the roots of Frobenius at p
acting on the Tate module of E}. In particular, the Tate conjecture [Ta], Conjecture 2, p. 104,
now follows for Y (p).

In our situation X is defined over @ and d = —22 - 15, but the preceding results only
apply after replacing @ by some extension of @ which we don’t know explicitly. It is
therefore interesting to show that for X the results of [S-I] can be made precise in every
detail.

Using the geometry of X and the Weil conjectures we determine the zeta function Z(¢)
of the (non-singular) reduction of X modulo a prime p + 3,5. We find

1/Z@) =1 — ) — p*t)(1 — p1)'® (1 - (g) pt>4 (1 — A1+ (%) 212> .

The interesting factor in the zeta function for X(p), p + 3,5 is the degree two polynomial

0, (¢) which in this case is equal to 1 — 4,7+ <%> prt2.

It remains to determine the numbers 4,. To do this, we first construct an elliptic curve

E over @([/g) isogenous to Eg and show that the polynomial Q,(#) coincides with the
corresponding polynomial Q;(¢) for the reduction mod p of the Weil-restriction 4 of E

from @(l/g) to @. This is an abelian surface.

The most direct way to prove this would have been by means of some algebraic
correspondence between 4 and X defined over a small explicitly given field. We have not been
able to do this. Instead, we have applied a method due to Faltings, Serre and Livné (cf.
[L]) to the L-function with local factors corresponding to the polynomials Q,(#). In our
case this method provides a small list of primes with the property that this L-function is
completely determined by the local factors at the primes of the list. Since in our case these
local factors Q,(#) and Q;(¢) are the same, equality of the L-functions follows.

Moreover, we show that our L-function can be described in a completely different way
as the L-function associated to a Hecke eigenform in S, (15, (75)). The essential step in
proving this consists in showing that our L-function satisfies a functional equation. This
functional equation is in perfect agreement with conjecture C. 5.1 of Serre in [Se 2]. Our main
result is also in accordance with a generalisation of the Taniyama-Weil conjecture, which fits
into Langlands program (see [G] for an excellent introduction).

The main result can now be stated as follows:

(0.1) Theorem. The number of [,-rational points of the K 3-surface X(p+3,95is

equal to
1+p2+p~(16+4<§>> +4,,
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where the number A, is the coefficient of q® in the g-expansion of

( Z qm2+mn+4n2> q- l:[ (1 _ qr)(l __qu)(l _ qu)(1 _ qISr) X

m,neZ r=1

Now it is easy to find back the formula for w, from [S-V], Table 6.4:

-1 1
Ws = %(q2_14q+41 + (=1 (—64q+30)+ B,), B,:=a)’+cb',co==§(1 + |/ —15).

Namely, the shape of the zeta function tells us that the number of £,-rational points

of X determines the number N, of points of X over F, with g = p". Geometric considera-

tions which we present in detail in section 1, show that the number wj is related to N, with
q = 2" in a straightforward manner and we find back the above formula.

We employ the following notation throughout:

For any variety X defined over the integers, we let X(p) be its reduction modulo p and
we let N, (X) be the number of points defined over the field £, ¢ = p’, of a variety X in
characteristic p or of the reduction X (p) if X is defined over the integers.

We want to thank Bas Edixhoven, Torsten Ekedahl, Ron Livné, Ulf Persson and René
Schoof for various enlightening conversations. Also, we want to thank J.-P. Serre for helpful
correspondence.

1. Melas codes

Recall that a linear code & over F, is a subspace of the vector space F", ¢ = p". The
number 7 is called the length of the code and dim % is called its dimension. Its elements are
called words and the weight of a word is the number of its non-zero coordinates. The weight
enumerator polynomial is

Y w;ti, w;:={the number of words in € of weight j}.
j
With « a generator of the multiplicative group F*, consider the f-code of length g —1
given by
(355 )
The p-ary Melas code .#(q) is the restriction to £, of this code so that its words are:
{(cos - s Cq-n)EFETY] ;ij =0, ;cjxj_1 =0},

where x;,j =0, ..., ¢ — 2 are the ¢ — 1 distinct non-zero elements in F, taken in some order.
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We are interested in the number wg of words of weight 5 in binary Melas codes. Note
that in characteristic two, code words of weight k are points on the affine variety in x-space
given by

X,:::{(xl,xz,...,xk)e(Fq*)"lz)cJ.:O, le_l=0}
j j

Only points with all coordinates different actually give code words. To count their number
geometrically, we first consider the projective variety

Xo={(x, X3, ..., ) EP* x4 - +x,=0,

XpXy Xt Xy Xg o X4 Xy Xy Xy = 0}

The affine variety is obtained from X, by deleting the hyperplanes “at infinity” x; = 0,
Jj =1, ..., k, which gives us the projective variety P (X;) of lines in X;. A point of X, with
one coordinate equal to zero automatically has two coordinates equal to zero and belongs
to the hyperplane x, + ‘- + x;, = 0. Conversely, every point on this hyperplane of weight
at most k — 2 is a point on the intersection of X, with a hyperplane at infinity. We denote
by N,(Y) the number of points of a variety Y with all coordinates in F,. A combinatorial
argument then gives:

k-2 k —1 r—1 —1)
@y New-NEap+ g (F) et ey

r

Let us now specify to k = 5. Then X is a surface. The ten points which form the &;-orbit
of (1, —1,0,0,0) are all singular on Xj; in fact they are ordinary double points which
become smooth after one blow up. The resulting surface X is smooth. Since every singular
point is defined over the ground field F, and is replaced by a projective line upon blowing
up, we derive

N,(X5) = N,(P(X})) +20q—10.

The number w; is the number of S, orbits of points on X with all coordinates different.
These points belong to
X=X\ (xi+x,=0),

i%j

-1 . .
and we find wg = qT . Nq(P(XS”)). The configuration A given by the intersection in
P (X5) of the union of the planes H;; with equations x; +x;=0 for i+ j,i,j=1,...,5
can be studied easily. They do not contain points over F,, if r is odd and if r is even an easy
counting argument gives N, (A) = 20(g — 3). Combining this with the previous formula we
deduce:

(1.2) Proposition. With q = 2" we have
Nq(X’s) =5!(q—1)ws+30g—40 +(—1)"(10g — 30) .

In order to find the formula for wj in a direct way we must compute N, (X;) directly.
Note that if we use the result for wg from [S-V], Table 6.4, we get
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1.3) N,(X5)=1+¢*+q(16 + (-1)4) + B,

where 1
B, =w"+ ®" with == |/ —15).
="+ 0" wi w 5 a+ 15)

Since the variety Xj is defined by equations having integral coefficients, we can study it in
any characteristic; we set

Xe=X; = {(x1, X3, X3, %4, X5) € P*|x; + X, + X3+ x4+ x5 =0,
X3X3X4 X5+ X1 X3 Xy X5 + X1 X X4 X5 + X1 X X3 X5 + X1 X5 X34 = 0} .
and
X := the blow up of X; in the S;-orbit of (1, —1,0,0,0).

This surface is considered to be defined over @. It is non-singular and reduces to a non-
singular surface X(p) in all finite characteristics p except 3 and 5.

From now on we assume that:

the characteristic p is different from 3 and 5.

2. The Neron-Severi group

The Néron-Severi group NS(Y) of a non-singular algebraic variety Y over a field k is
the group of its divisors (over an algebraic closure of k) modulo numerical equivalence. This
is a group of finite rank g(Y'), the Picard number. If Y is a surface, intersection-pairing
induces on NS(Y) modulo torsion the structure of a Z-lattice, which is called the Picard-
lattice. In characteristic zero, we can find back this lattice inside H2(Y, Z) as the sublat-
tice generated by classes of (1,1)-type. See e.g. [B-P-V], Chapter 1.6. It follows that
0 < h*1(Y), where h''1(Y) is the dimension of the Hodge component H* (Y). Later we
shall work with /-adic cohomology. In characteristic zero we shall embed the Picard lattice
in the vector space HZ(Y, @,) and we write

Hi (Y, Q)

for the subspace it generates. In finite characteristics we only consider reductions of
varieties defined over some number field k and for those H2, denotes the subspace of HZ
generated by classes of cycles which are reductions of cycles defined over an algebraic
closure of k. In both cases we define the transcendental subspace by

I{tfc(Y’ @l) = Hazlg(ya 01)_L < Hézt(Ya 01) .

If Y is a K 3-surface in characteristic zero, it is well-known that A*-! = 20 (see [B-P-V],
Chapter VIII, 3). So in characteristic zero ¢(Y) < 20. In positive characteristic p we only
have @(Y) < b,(Y) = 22, where b,(Y) = dim H2(Y, @), | # p. In fact, if o(Y) > 20, it
must be equal to 22 and the K 3-surface is called supersingular. See [A] for details.
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In this section we set:
X=X,, Yi=X3, Z:=X,, l=2Xg.
In projective three-space with these coordinates the equation of our singular surface X is:
x+y+z+t)(xyz + xyt+ xzt+ yzt) — xyzt =0.

Recall that the surface X'is obtained from X by blowing up the 10 points which form the
S;-orbit of (1, —1,0,0,0) (in the ‘old’ coordinates x;). One easily checks that in any
characteristic these are ordinary double points and that in all characteristics different from
3 and 5 there are no other singular points. So X as well as the reductions X(p), p + 3,5
are non-singular.

(2.1) Proposition. X is a K 3-surface.

Proof. Infact, any surface which is the minimal resolution of singularities of a surface
given by a degree four equation in projective space with at most rational double points is a
K 3-surface. We see this as follows. First of all, the usual Lefschetz theorem on hyperplane
sections [M], section 7, shows that X is simply connected. Since there are finitely many
ordinary double points it follows that also the resolution of singularities X of X is simply
connected. Secondly, the adjunction formula [B-P-V], Chapter I, Proposition 6.3, shows
that the canonical bundle is trivial. O

To understand the Néron-Severi-group of a K 3-surface it is useful to have an elliptic
fibration. To produce one, we consider the following picture, where P,; are the double points
of the surface X and where we have drawn all the lines passing through 3 of the singular
points. These lines all lie in X.

Py, =(0,0,0,1)

<
SSQ NP, =(0,0,1,—1)

Pz4 =(0,1,

0,—1) ‘~~§.

P35 =(0,1,—1,0)

~

Pi3=(1,0,—-1,0)

-

-
Foy =(1,0,0,0)
\02 _ (0, 1,0, 0)

P, =(1,-1,0,0)
Figure 1. Special lines

Consider the pencil s, t = s,z of planes through L, := {t = 0 = z}, one of these lines.
For simplicity, we set s = s,/s, € C U 00. Each of these planes cuts X in L,u C,, with C,
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a curve of degree 3, which for most values of s is non-singular and thus defines an elliptic
curve. This gives the desired elliptic fibration

f: X - Pl).
The equation of the fibre C, in the x, y, z-plane is given by:
sx+yPz+A+s+sHxyz+s+8)(x+)z22+ A +8)xp(x+y)=0.
This curve has a flex at (1, —1, 0) with tangent line given by
x+y+uz=0, u=>1+s+s)/1+5).

Now transform this line to infinity, such that the flex becomes (0, 1, 0) by introducing new
coordinates

X=x+y,

Y=—y,

vZ=x+y+uz, v=s*/(1+s+s?)>2.
We arrive at the following Weierstrass-equation for the cubic curve

X3+ a,X*Z+a,XZ* = Y*Z+XYZ,

o (s7'+3+5) o (s7'+2+5)
2 (s—1+1+s)2’ 4_(s—1+1+s)4'
Note that the coefficients a, and a, are functions of s~* + s, which makes the computation
of the discriminant A := a2[(1 + 4a,)*> — 64a,] (see [Si], p. 46) a lot easier. In fact, we find in
homogeneous coordinates

_ (S0 + 51)*(505,)® (53 — 7505, + 57)

A
(Sg + S8y + s%)g

Consequently, one has singular fibres C, for s = 0, o0, —1, g, 02, 7, G, where ¢ is a primi-
tive third root of unity, while ¢ and & are the roots of x> —7x+ 1= 0. As a first step
towards the computation of the Néron-Severi group we shall classify these singular fibres
according to Kodaira’s classification (cf. [B-P-V], Chapter V.7).

2.2.) Lemma. The singular fibres are all of type 1,.

(i) Type I occurs over s =0 and s = oo, type 1, over s = —1, type 1, over s = ¢ and
s = 02 and finally over o and G we have an 1,-fibre.

(i) For the reduction X(p), p odd, the components of the reducible fibres are of the

same type. They are defined over the ground field precisely when <§> =1.If (g—) = —1,

11 Journal fiir Mathematik. Band 432
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Frobenius interchanges the two fibres of type 1, componentwise. Moreover, only two of the
four components of the 1,-fibre are defined over the ground field in this case, the other two
components are interchanged by Frobenius. The components of the other reducible fibres are
all defined over the ground field.

(iii) If p = 2, there are no type 1,-fibres and the two 1;-fibres reduce to fibres of
type IV.

Proof. (i) Inspection of Fig. 1 immediately shows the nature of the singular fibres
over 0 and over co. The fibre over —1 consists of the component coming from blowing up
P,,, the line t =0 = z and the two lines {(oy, 0*u, A, —A)} and {(0*u, op, 4, —A)} with
(A, p) € P*. The fibre over g consists of the three lines through the three points (1,1, g, 02),
(1, —1,0,0% and (—1,1, 0, 0% and a similar property holds for the fibre over g2. The
discriminant A has a simple zero for ¢ and & so that the planes ¢t = 0z and ¢t = 6z are
simply tangent to the surface X and hence the corresponding singular fibre has precisely one
node, which means that it is an I,-fibre.

(ii) and (iii) Note that g = ¢ if and only if p = 2. It follows that after reduction, the
fibre types remain the same, except maybe if p = 2. The components of the I,-fibres remain
distinct after reduction modulo 2, but the three points of intersection come together, creating
a type IV singular fibre. The assertions about the fields of definition of the fibral com-
ponents and about the action of Frobenius are clear. O

Remark. From the singular fibres we see that the Euler number of the non-singular
model X for Xisequalto 2-6+ 4+ 2-3+2-1 = 24, as could be expected, since X is a
K 3-surface. A similar remark applies to X(p), p + 3, 5.

Having studied the fibres, we now consider sections of the elliptic fibration f, i.e.
rational points of the corresponding elliptic curve defined over the field of rational functions
in s.

Let us first observe that the preceding computation shows that the zero section S,
corresponds to the blown up point P, ,.

Next, we note that by Shioda’s theorem [Sh], Cor. 1.5, the group of sections of f has
rank atmost 20 —2 —2+ 5—3 — 22 = 1. Moreover, if the rank is 1, it follows at the same
time that the Néron-Severi group has maximal rank, i.e. 20. This is indeed the case, namely
we show that the following two lines are sections of infinite order:

Si= {(92#3 _A"{"ﬂ)l('{,ﬂ)e Pl}’ §'= {(Qﬂ’ _A';A,#)I(l,#)epl}

(2.3) Lemma. The sections S and S’ have infinite order and hence, the Picard number
of X is maximal, i.e. 20. In X (p) the cycles S and S’ are defined over the ground field precisely

when <§> =1 and over F,; otherwise.
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Proof. We show that the order of the point which S defines on the special fibre for
s = g is infinite. A similar reasoning can be given for S’. The smooth points on this special
fibre (over the complex numbers) form a group isomorphic to Z/3Z x C*. In fact, the
component through the zero-section is the line L?:=(x +y = 0) N (t = gz). We take z/x
as inhomogeneous coordinate on this line. Then the zero-section corresponds to 0 and the
points Q,, Q, of intersection of LY with the two other fibre components correspond to >
and —g?. If we send these three points to 1, co, 0 respectively, we get an explicit iso-

morphism from L\{Q,, Q,} to C* sending the “origin” to 1. Under this isomorphism, a
point with inhomogeneous coordinate b maps to

a=D(a,1,0,0)=D(b,0,—0%0*) = —(b+¢»)/(b—0?,

where D is the cross ratio. In particular, since the section S meets the fibre in (1, —1,1, 9)

oy . -3 . P
with inhomogeneous coordinate b =1, we get a = g, which has infinite order. 0O

Having determined the rank of the Néron-Severi group, we want to give generators and
relations. In order to do so, we need the torsion sections.

(2.4) Lemma. The torsion subgroup T of the group of all sections of f is isomorphic
to Z|6Z. It is given by the three exceptional curves of self intersection —2 coming from
resolving the three double points P, P,, and P,, (the last curve in fact corresponds to the
zero section in the Weierstrass-model) and the three lines through P,, which are drawn more
heavily in Fig. 1. These sections are defined over Z.

Proof. Let us rewrite the Weierstrass-form as

XX =X, Z)(X - X,Z)=Y*Z+ YXZ,
52 s(s+1)*

LT AT T T Arsrer

Let S,=(0,1,0), S,=(X,0,1), S,=(X,;,0,1), S3 =(0,0,1), S,=(X,—X;, 1),
Ss = (X,, —X,,1). These points precisely correspond to the six given curves. The follow-
ing relations can be checked:

28, =8p, 28,=8,=-S5;, S;+8;=5;, S;+8;=35,.

From these relations it follows that the given curves define a torsion group isomorphic to
Z/6Z. Now, we use [M-P], table 4.5, to see that the only possible torsion group T which
contains Z/6 Z in our case (which corresponds to y = 2, R < 1 in the cited table) must be
Z|6Z. O
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Figure 2. The special fibres at 0, co and — 1

Now we come to the main result of this section:

(2.5) Theorem. The Néron-Severi group of the K 3-surface X is generated by the
Sfollowing divisor classes:

— The class f of a fibre,

— the classes s, Sg, S Of the zero-section S, the section Sg of order six defined by P,
and the infinite order section S,

— the classes I, of the components of the special fibres
Li (s=0,00,—-1,0,0% Jorjw =1,2,3,4,5, j_1=1,2,3, jujp=12)
not meeting the zero-section. See Fig.2 and Fig. 3.
The only relation between these classes is:
—3(s6—50) = =6+ L+ 21D+ (. +21%) + (g + 213 + 313 + 415 + 215)
+ (L +212 + 313 +41% 4+ 213).

The discriminant of the Picard-lattice is equal to —4 - 15.
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Proof. Let N be the lattice generated by the classes mentioned in the statement of the
theorem and let N’ be the sublattice of N spanned by s, s, f and the fibre components. As

in the proof of [Sh], theorem 1.1, the given relation holds and is the only one. So N’ has
index 3 in N.

The intersection matrix of the given generators of N’ can be found easily using the fact
that the self intersection of any rational curve is —2 (see [B-P-V], Chapter VIII, Pro-
position 3.6), the self intersection of a fibre is zero and the intersection of s with the reducible
fibres is as given in Fig.2 and Fig. 3.

/

(1,1,¢%0)

(1, —1,0% 0)

Figure 3. The special fibres at p, p?

When the 20 generators of N’ are given in the order s,, s, f, the components of two
fibres of type I, not meeting s,, then similarly those for the fibre of type I, and the two
fibres of type I we find for this matrix

-2010 0 0 0 00 00 0 0 0 0 0 OOOTUOFWO
6-2190 0 1 01 0 0 0 1 0 0 0 1 0 0 0 O
1 100 0 0 0 0 0 0 0 0 0600 0 0 0 0 0
06 00-21 0 0 0 000 0 0 0 0 0 0 0 0 o
06 001 -20 0 0 0 0 0 0 0 0 0 0 0 0 0 o
06100 0-21 00 00 0 0 0 0 0 0 0 0 o0
o 000 01 -20000 0 0 0 0 00 O0 00O
06100 0 0 0-21 00 00 0 0 0 0 o0 0O
o 000 0 0 0 t-21 000 0 0 0 00 0O
0o 000 00 0 01 -20 0 0 0 0 O0 00 00
o 000 0 O O O O O0-210 0 0 0 0 0 00
06 100 0 0 0 O0 0 01 -21 0 0 00 0 00O
o 000 0 0 0 0 0 0 0 1-21 0000 00
o 000 00 0 OO0 0 0 01 -21 010 0 00
06 000 00 0 0 0 0 0 0 01 -2020 90900
6 100 0 0O OOOOOOOUOO-2110 00
0o 000 00 0 0 0 00 0 0 0 01 -21200
o 000 0 O O OOOOUOOOOTUOTI1I -210
o 000 0 0 0 000 0 0 0 0 0 0 o0 1 -21
o 000 0 0 000 0 0 00 0 0 0 0 0 1 -2



162 Peters, Top and van der Viugt, The Hasse zeta function of a K3 surface

The determinant of this matrix is —62-15 and hence the discriminant of N equals
—22-15. It follows that either N is the full Néron-Severi lattice or is of index 2 in it. Let
us now consider the group M W of sections for the fibration f. In the latter case we would
have that in this group at least one of the elements S+ kSq, k=0, ..., 5 belongs to 2 M W.
Restricting sections to the fibre at 0 gives a homomorphism MW — Z/6Z x C*. Since
however any section of the form S + kS maps to an element which is not 2-divisible (see
Figure 2) this yields a contradiction. So N = NS. O

3. The zeta function

If X' is a smooth projective variety of dimension n defined over F,, ¢ = p’, the numbers
N,.(X) are collected in the zeta function

Z()=Z(X/F, t)==exp<§ %t‘).

We summarize a few facts concerning the zeta function ([Ha], Appendix C).

The zeta function can be written as

Pi(t) - Py,_(1)

0= 0 P

with P,(f) = det(1 — tF,| H/ (X, @))), where F, denotes the induced Frobenius operator
in cohomology. We always have P,(f) =1 —t and P,,(t) =1 — ¢"¢. The polynomials P,()
have integer coefficients and their degree is equal to the i-th Betti number

b,«=dimHéll(X, 01)’ l*p.

We have P,(1)=]](1— a;;t) where the reciprocal roots «;; are algebraic numbers with

. J . .
loy;| = q''%. Finally, the map o+ ¢"/a gives a bijection between the reciprocal roots of
P,(¢) and those of P,,_;(?).

Using the equation

e o]

—(td/dt)log(1 —a;t) = Y of;t*,

s=1

we find from the definition of the zeta function that

N.= % ga?j— PIPIHE

ieven iodd j

As a final remark, we recall (cf. [Ta], p.97) that on the subspace of H2 generated
by algebraic cycles defined over F,, Frobenius acts as multiplication by g.
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. Example. Forasurface with b, = b, = 0 the only relevant factor of the zeta function
is P, (t). If the surface is the reduction of a characteristic zero surface, we find

N,= 14+¢*+ TtF|H2, + Tt F,|HZ, .
If we apply this formula to our K3-surface in characteristic 2 (g = 2") and compare the
result with formula (1.3), we should have 16 algebraic cycles over the ground field F, with
Frobenius acting on them by multiplication by g and 4 algebraic cycles which are only

defined over a quadratic extension and which are Galois-conjugate. Finally, the number B,
must be the trace of Frobenius on the two-dimensional transcendental space.

Now we determine the factor P, (¢) of the zeta function of X(p).

(3.1) Proposition. For the surface X(p) with p % 3,5, we have

P,(0) = (1 —pt)“(l - <§> pt) 0,

with Q,(t) a quadratic polynomial.

Proof. If <§) =1, by Theorem 2.5, Lemma 2.2 and Lemma 2.3 there are twenty

independent cycles defined over the ground field with Frobenius acting on them by multi-

plication by p and hence P,(¢) contains a factor of the form (1 — pt)2°. If g = —1,
Lemma 2.2 shows that six fibral components Li, L}, L}, L%, L2, L2 (see Fig.2 and

Fig. 3), are not defined over the base field and Frobenius interchanges them pairwise. Now
Lemma 2.3 shows that the section S is not defined over the ground field. Its Galois conjugate
is the section S’ and it is easily seen that the six fibral components together with S and S’
span an eight dimensional subspace which is invariant under Frobenius F,. In this sub-
space det(1 —tF,) = (1 —p?t?)*. In the 12-dimensional orthogonal complement (with
respect to intersection pairing) of this subspace within the Néron-Severi group Frobenius
acts by multiplication by p, since it has a basis consisting of cycles defined over the ground
field. O

(3.2) Remark. If P,(¢) has the form (1 — p0)** (1 + pr)*2Q,(¢) with
0, =0-pA-p'neZ[i]
then the number N, of F -rational points of X (p), with g = p, is

N,=1+q"+q(k,+(—1)k) + 4,,
where 4, = B"+ B'".
The properties of the polynomials P;(¢) imply that in case Q, (¢) is irreducible, we have
B- B’ = p? and hence:
Q,()=1—A,t+p*t*.
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(3.3) Proposition. Let X’ be the variety obtained from X by deleting the hyperplanes
x;=0,i=1,...,5.

(i) We have the following relation between A, and the number N, of points of X'(q):

Aq=Nq’+4q(1——— <§>)~q2—11.

(ii) The quadratic factor Q,(t) is of the form

0,()=1—A,1+ <-1£5—>p2t2

and A, = 0 precisely when ({LS) = —1.

Proof (suggested by R. Livné). Observe that by Remark 3.2 we have

N,I(Y)=1+q2+q<16+4(§>> +4,.

In section 1 we have seen that for p = 2 the collection of lines at infinity (X \ X”) (q) consists
of 204 — 10 points. This computation is also valid in any characteristic different from 3 or
5 and the formula for 4, follows.

In order to prove part (ii), we compute modulo 5. The symmetric group S, acts on
X'(p) and points whose orbitsize is not divisible by 5 are fixed by the 5-cycle (12345).
The only such points on X’(q) are the points (1, , {2, {3, {*) with { a primitive 5-th root
of unity. Such a root belongs to F, precisely when ¢ =1mod 5 and so we find that
N; = —1mod 5 in this case and N, = 0 mod 5 otherwise. An elegant way of saying this is
N, =149 +q* + ¢>mod 5 and then we find that

=o((5) roress=((3) « 5)) s

1
The product of the eigenvalues f, f’ of Frobenius at p can be written as 2 (Af, — A,). So
modulo 5 this product is equal to <%> p? and this fixes the sign of the coefficient + p?
of t2.
The ‘only if’-part of the last assertion follows from the congruence modulo 5 for 4,,.
Conversely, if <1‘%) = —1 then Q,(f) =1— A,t— p*t* has real roots +p and hence
4,=0. O

If we combine the results of this section we get:
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(3.4) Theorem. For p + 3,5 the zeta function of the K 3-surface X(p) is given by
7\ \* P
1/Z() =1 —-1)(1 — p?t)(1 — pr)'e (1 -~ <§) pt) <1 —A,1+ <E> p’t’) .

4. The L -function

First we introduce some notation which will be used throughout this section.

K: a number field,

K: an algebraic closure of K,

Gy: the Galois group Gal (K| K),

Oyt the ring of integers in K,

v, W: a (finite or infinite) valuation of K,
2y the set of finite valuations of K,
K,: the completion of K at v,

0,: local valuation ring for the valuation v,
o): units of o,

P, maximal ideal in o,,

M, a uniformising element of p,,

k,: the residue class field o,/(x,),

Nv = Np,: the number of elements in k,,

Ax: the group of idéles of K with the usual topology.

In this section we want to identify the L-functions attached to two systems of 2-dimensional
Galois representations of G,. The first L-function is associated to the transcendental
subspace of H2(X,@,) and the other L-function to the transcendental subspace of
H?(A4, @), where A is an abelian surface defined over Q.

_ Starting with our K 3-surface X over @ we have a system ¢ = (g,) of 2-dimensional
l-adic representations of G, namely

0,:G, » AutH7 (X, Q).

For the basic notions on l-adic Galois representations of Gy in a finite dimensional Q-
vector space ¥, we refer to [Sel], [Se2].

(4.1) Proposition. The system ¢ = (g,) has an L-function

1
Lis,9= ]I 5 .
p*3,5 1 _App—s + (__)pr“ZS

15
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Proof. From [Se2], section 2.1, we deduce that for primes p #+ 3, 5 the characteristic
polynomial of Frobenius F,,, ! # p, is independent of /. In particular, the system g is
strictly compatible. This implies that we may associate an L-function to g:

1
L(s,0) = B =
pl—é[,s Pp,q(p )

with P, ,(¢t) = det(1 — tF, .| H% (X (p), @))). From Theorem 3.4 it follows that

Q1

Pp,o(t)=1—Apt+<1£5> 22 ifp+3,5 O

Let us indicate how we shall proceed in identifying L (s, ¢) with another L-function.
From the Cebotarev density theorem [Se1], 2.2, and from the fact that a semi-simple
representation in a characteristic zero vector space is determined by its traces we deduce the
following essential tool for identifying L-functions.

(4.2) Lemma. Let g,,0,: G, — AutV, be two rational I-adic representations with
Tt F, ,, = Tt F, ,, for a set of primes p of density one (e.g. for all but finitely many primes).
If o, and g, fit into two strictly compatible systems, the L-functions associated to these
systems are the same.

One of the crucial ideas of [F] is that one can replace the set on which one has to check
equality of traces by a finite set. This has been made effective by Serre in certain cases and
elaborated on by Livné in [L]. For brevity, we introduce the following.

Definition. A finite set T of primes is said to be an effective test set for a rational
Galois representation g,: G, — Aut ¥, if Lemma 4.2 holds with the set of density one
replaced by T.

Before we formulate a simple instance of Livné’s criterion for effective test sets [L],
section 4, we introduce a map f on sets of primes. Let S be a finite subset of 2, of cardi-
nality r. For se S":=Su {—1} and an arbitrary odd prime ¢ we set

-1 )

If T < X, is disjoint from S, we define f: T — (Z/22Z)"*! by f(t) = (f.(1)

seS’*

(4.3) Proposition'). Let ¢ and @' be two 2-adic Gg-representations which are
unramified outside a finite set S of primes, with Tt F, ,=TrF, , = 0mod 2 and

detF, ,=detF, ,mod2 for p¢ SU{2}.

1) Serre remarks that this Proposition is exactly the content of the criterion he communicated to Livné.
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Any finite set T of rational primes disjoint from S such that f(T) = (Z/2Z)"** — {0} is an
effective test set for ¢ with respect to o’'.

Go'ing b.ack to the system ¢ = (g,), we remark that the congruence properties which
are required in the preceding Proposition can be checked for any prime / # p, since the
system is strictly compatible. For the trace we first prove:

(4.4) Lemma (Compare [L], proposition 3.1). - For all primes p > 5 Frobenius F, , at
p has even trace.

Proof. We employ the notation used in Proposition 3.3 and we notice that
A, = N,mod2. Any point of X'(p) with odd orbitsize under S5 must be fixed by a 2-
Sylow subgroup, which we can take to be the dihedral group generated by (1234) and
(12)(34). It easily follows that there are no such points on X’(p) and thus 4, = 0mod2. O

- Next, we note that the Galois representation g is ramified at most in 3 and 5, since
X (p) is singular for only these primes. So the exceptional set S consists of the two primes
3 and 5. A quick computation reveals that the set of primes 7= {11,13,17,19, 23,29, 61}
satisfies the condition on effective test sets from Proposition 4.3. Using Proposition 3.3 and
a computer we found a table of the traces 4, of Frobenius of our representation for p
belonging to the above set T; we have added the trace at 2:

Prime p A,
2 1
7,11,13,14 mod 15 0
17 —14
19 -22
23 34
61 —118

Table 1. Traces of Frobenius

On the other hand, we will consider the L-function associated to the strictly compatible
system g’ associated to the transcendental subspace of H?(4, Q,), where 4 is the abelian
surface defined over @ obtained as the Weil restriction from @ (1/5) to @ of an elliptic curve
E over @(]/g) with complex multiplication by the ring of integers in @()/ —15). The local
factors of this L-function can be explicitly calculated. We then want to use Proposition 4.3
to deduce equality of both L-functions. L-functions of elliptic curves with complex multi-
plication are completely described by L-functions of Hecke characters.

A Hecke character for any number field K is a continuous homomorphism
x: Ax/K* —» C*,
where we give C* the usual topology. We denote the local characters associated to x by

x,- For the elementary properties of Hecke characters we refer to [La], Ch.XIV and [T],
Ch. 2. Given any Hecke character y, the L-function of y with conductor { by definition is
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1
1—y,(m,) - No)™’

L, 0 =11

where the product is over all finite v with p, t f.

The relation between Hecke characters and the L-function can be made explicit in the
following way (see [Gr], 8.2).

(4.5) Proposition. Let E be an elliptic curve over a number field H such that
(1) E has complex multiplication by K:= End (F) ®, @,
(ii) All endomorphisms are defined over H.
Then H'(Eg, Q) =~ K®,Q,.
Furthermore, there exists a Hecke character

1:Ay/H* - C*

with the following properties:
() x,(H}Y) <K for all finite places v of H.

(ii) At a place v where E has good reduction a Frobenius element F, € Gy acts on
K ®q, Q, by multiplication by x,(n,).

Since the set of Frobenius elements F, is dense in Gy ([Sel], 1.2) the preceding
Proposition indeed determines the action of G, on H'(Eg, @,) completely.

Before we specialize to our situation, we prove a lemma on algebraic number fields.

(4.6) Lemma. Fix two odd prime numbers p and q with p = 3mod 4 and g = 1 mod 4.
If K== Q(}/ —pq) has class number 2, then H = Q(}/ —p, ]/5) is the Hilbert class field of K.

Proof. Since the quadratic subfields F:= @(\/&) resp. F' := Q(]/ —p) have relatively
prime discriminants g, resp. —p, we infer that discr (H/Q) = p%q* (see [La], Ch.III).
From discr (H/ Q) = discr? (K/ @) N, o (discr (H/K)) it follows that discr (H/K) = o.
This implies that the extension H/K is unramified. Since K has class number 2, H is the
maximal unramified abelian extension of K and Gal(H/K) =~ Z/2Z. O

From the theory of complex multiplication of elliptic curves it follows that there exists

an elliptic curve E defined over the Hilbert class field H = @ (l/—_p, l/a) of K=Q(/—-pr9
with complex multiplication by the ring of integers of K. In fact we may assume that E is
defined over the maximal real subfield F = @ (1/(}) of H. The Hecke character correspond-
ing to E according to Proposition 4.5 depends on the chosen model over F of our elliptic
curve. However, following [Gr], section 11, there is an ‘optimal’ model which has bad
reduction only at the primes dividing p and ¢g. Denote such a model again by E and its Hecke
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character by x (Gross denotesit by y, with D = pgin our case). We will state the properties of
%> which we need (see [Gr], 11.2):

(4.7) Proposition. (i) The conductor of x is equal to (/ —r9).
(i) If v is a place of H where E has good reduction, then Xy (m,) is an element of

1 _
p,N Z[ﬂ:l of norm Nv.

2

(i) At the two infinite places v of H, after normalization, the local character is
-1
LX) =x"1

(iv) At a place v dividing p or g, the restriction of ¥, to the units o is the unique non-
trivial character with values {+1}.

From y we construct another Hecke-character

p: Ax/K* - C*,
by setting

v, () =[] 6.

wlv
(4.8) Lemma. The character y has the following properties:
(@) The conductor of v is (1).
1
(®) v (2) = .
z
(c) At a finite place v of K we have that y,(zn,) is a generator of the principal ideal p?.
Proof. (a) If the place v of K above p; = p or g splits in H, this follows directly from
Proposition 4.7 (iv). In the other case, there is a unique w extending v, and the image of
F¥/(F¥)? = o}/(0})* in o}/(0})* = ﬂ-;’l;‘/(ﬂ-;";‘)z is clearly trivial.
The properties (b) and (c) follow from the properties of y listed above. 0O
We show that these properties leave very little choice for .
(4.9) Proposition. Let r be any rational prime different from p or q decomposing in
o into non-principal ideals (r) = t - T and let t* = (g). Let v, be the valuation corresponding

to t. There are exactly two Hecke characters p: Ax/K* — C* which satisfy (a), (b) and
(c) above. They are distinguished by the sign of the local character at p,,:

wvio (nvo) = i Q *

The values of the other local characters at v with p, not dividing pq are:
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@) if p, = (s) then p,(n,) =y, (s) = s?,
1
Yo (1)

(ii) if p, is non-principal and t - p,=: (t) we have y,(n,) = y,(t) = 12"

Proof. We first remark that y, (n, ) = ¢ since +1 are the only units in K.

Next, we shall show that the local character at all places v of K are determined by
the value of y, (n,,). In case (i) we have 1 = y,(s) -y, (s) and hence y,(s) = s> In the
remaining case we have 1 = y, (1) - ,(7) - t~ 2, which proves (ii). O

We will now indicate a geometric interpretation of the Hecke character y. The Artin
isomorphism of class field theory ([La]) implies that y corresponds to a 1-dimensional
continuous representation of Gy. On the other hand, we can look at the 2-dimensional G,-
representation on H2 (A45), where A is the Weil-restriction from F to @ of E.

(4.10) Proposition. Let A = A* be the Weil-restriction from F to Q of E and let A~
be the Weil-restriction from F to Q of E*, where 1 + 1€ Gal(F| Q). Both A* and A~ are
abelian surfaces defined over Q. The model E can be chosen in such a way that the restriction
to Gy of the Gy-representation on HZ.(A}) coincides with the Gy-representation p=*.

Proof. The restriction of the Gg-representation defined by y to Gal (H|H) corre-
sponds to the Hecke character

1P"Nﬁrm:)(z-

Recall that y determines the representation on H' = H!(Eg, @,): the eigenvalues of
Frobenius at a ‘good’ place v of H are given by y,(w,) and its complex conjugate. Hence, on
the tensor product H! ® H! such a Frobenius has two eigenvalues equal to Nv and the
eigenvalues y2(n,), x2(n,). The latter two are precisely the eigenvalues of Frobenius on the
Galois-invariant subspace H2 (E x E) of H! ® H!. To see this, note that the cycle classes
of the graphs of elements in End (E) generate a two-dimensional piece in H! ® H! on
which Frobenius acts by multiplication by Nv. Thus, the other two eigenvalues belong to
eigenvectors in the orthogonal complement with respect to the intersection pairing, i.e.
HZ.(Ex E). Now the surface A over F is isomorphic to E x E*. In fact E and E* are
isogenous, with an isogeny defined over H ([Gr], (11.1.1) and (11.2.5)). Hence the
restriction to Gal (@|H) of the representation on HZ (4y) is H2, (E x E|H), which corre-
sponds to the Hecke character y2.

It follows that y and HZ2 (4 /K) give the same representation of Gy up to a character
of Gal (H|K). We have two possibilities for y which differ by such a character and two
possible abelian surfaces 4 = A* and 4~. These two surfaces become isomorphic over F
and they are quadratic twists of each other over K. We can choose E in such a way that
p?* corresponds to A*. O

We now consider the special case which is of interest to us, namely p = 3 and ¢ = 5.
We let v, be the valuation corresponding to the prime ideal r = (2,w) above (2) in

K = Q()/ —15). We list some values of the Hecke characters w? in this case.
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(4.11) Proposition. With the notation as above we have

@) wiEL)=viQ@ =+, where 0 =1(1+)/~15),

i) wiG+)/-15)=—(£3),

(iii) v (/—15) = £5.

Proof. (i) We easily verify that r?> = (w) and we apply Proposition 4.9.

(ii) Since (3) = (3,)/—15)?, a uniformizer is 3 +}/—15 = 2- (1 + w). From

1=, G+ =15 9,8 +)/=15) 1,3 +)/=15) - 9,3 +]/=15)

=9, B +)/=15) 1,2 %, D% ;3 +)/—15)

we derive the stated result.

(iii) In this case |/ —15 is a uniformizer and we can argue as in (ii) to obtain the
desired expression. O

The values of y (,) can be explicitly computed by means of the procedure outlined
above. We collect some values of their traces A;—” = Trg,q¥," (n,) in the following table:

Prime p Ay A,

2 1 -1
7,11,13,14 mod 15 0 0
17 —14 14

19 —-22 —-22

23 34 —-34

61 —118 —118

Table 2. Traces of Frobenius for y*

(4.12) Proposition. The local factors of the L-function corresponding to the Gg,-re-
presentation H2 (A3) can be described as follows.

() If p=17,11,13,14 mod 15 the local factor is the value at t = p~° of the quadratic
polynomial 1 — p? 2.

(i) If p=1,2,4,8mod 15 this polynomial is
1—AFt+pt?

with A = Trg, o0t (n,). All A} are even.
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(iii) At 3, resp.5 we have the polynomial 1+ +3¢, resp. 1 — +5t¢.

Proof. In (i) we have the condition that p remains prime in @(}/ —15) and hence
[T =wE(x,)t) =1—p? 2 In (i) the prime splits and [] (1 — v (n,)?) is the indicated

vlp v|p
polynomial. Since AF =y, (n,)+ vy (n,)=2a+b if pF(n,)=a+bw and since

wE(n,) - wE(n,) = a® + ab+ 4b* = p? is odd, we easily conclude that 47 is even. The
last case is immediate. O

Remark. The numbers 4, for p + 3,5 and p % 1,2,4,8mod 15 can be computed
by means of the following algorithm.

(i) If p =1o0r 4mod 15, find an integral solution of the equation x2 + xy + 4% = p.
Then 4, = 2x*> — 7y* + 2xy.

(i) If p=2 or 8 mod 15, find an integral solution of 2x% + xy + 2y% = p. In this
case A, = x>+ 8xy + %

We now can state our main result:

(4.13) Theorem. There exists an elliptic curve E over 0([5) which has complex
multiplication by the ring of integers in Q(|/ —15) and which has bad reduction at 3 and 5 only.
If we consider the Weil restriction A to Q of E, which is an Abelian surface defined over Q
then

(i) the restriction of the two-dimensional l-adic Gy-representation HZ,(A) to Gog/~ts)
is unramified outside of 1,

(i) the L-series is the same as the L-series for the two-dimensional Gy-space HZ2, (X)
for the K 3-surface X.

Proof. The statement (i) follows from Lemma 4.8 (a). To prove (ii) we apply
Proposition 4.3. By Proposition 4.12 (ii) and Lemma 4.4 we see that the first condition is met
for both Galois representations, while the second is obvious. The tables give the same
answers for the traces of Frobenius at p in the test set and so the two L-functions must be
the same. O

Remark. By means of this theorem one can show that both 4 (p) and X(p) are
supersingular if and only if 4, = 0.

5. Modular forms and the main result

The L-functions of Hecke characters of imaginary quadratic number fields are
strongly related to L-functions associated to modular forms, as has already been pointed
out by Hecke [H], no.23,27. Before we study this relation for our Hecke L-functions
L(s, p*) we recall some facts about modular forms. For the basic notions and properties
we refer the reader to [K]. For any natural number N we have
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a b
IL(N) = e d €SL(2,Z)lc=0modN;.

A holomorphic function f(z) on the upper half plane is a modular form f of weight k for
I, (N) with Dirichlet character «: Z/NZ - C* if

1) f(yz) = a(d)(cz+ d)f(z) forall y = (‘Cz Z) eIL(N)
and
(ii) f(z) is ‘holomorphic at the cusps’ (see [K], II.3, for more details).
In particular f(z) = f(z + 1) and we have a g-expansion at infinity:
f@=a,+aq+a,q*+ ..., q=e*"
and similarly at the other cusps. We let M, (N, a) denote this set of functions.

The function f is called a cusp form if it vanishes at all cusps. The space of all cusp
forms of weight k for I}, (N) and with character a is a finite dimensional complex vector space
which is denoted by S, (N, a). For each natural number n the Hecke operators 7, act on this

space. Let us recall their definition. If f= ) a,q™€ S, (N, a), we let

m=1

];lf: i ( Z a(d)dk_lamn/lﬁ) qm'
m=1

= d|m,n

There exists a basis of simultaneous eigenvectors of 7, for n coprime with N (see [K],
II1.5). If the corresponding eigenspaces are one-dimensional, we even have a basis of
eigenforms for all 7,. Such eigenforms will be called Hecke eigenforms.

Let f(q9) = q+a,q*>+ ... be a normalized Hecke eigenform, then 7, f= q, f and
the L-series

L(s, )= i a,n”*,

now has an Euler product

1
[T =——= with Q,()=1—a,t+a(p)p* 't>.
pprime Qp(p ) i i

By means of [T], Ch.2, we prove the following proposition.

(5.1) Proposition. The L-functions L(s,p*) attached to the Hecke characters p* of
Ag/K*, with K = Q(}/ —15) coincide with the L-functions L(s, f *) attached to the Hecke
eigenforms f*e S,(15, (13))-

12 Journal fiir Mathematik. Band 432
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Proof. 1tis sufficient to prove this for y:= p*. From Corollary 4.6 and Theorem 4.7
we infer that

1 1 1

L , _ . . T Tl
(s, w) 14335 1—-55"° ,,L[,s Q2,(P™)

with Q, (1) =1— A4,t+ (%) p*t*. The Hecke L-function satisfies the following func-
tional equation

Loo(s’ W)L(SJP) = S(S’W)Lw(1 —S,W_I)L(i —S,V’_l) .

Here L (s,y) depends only on vy, . Since y,(z) =z"2 we get L (s,p) = 2n) *I'(s)
and L, (s, ") = (2n)">7*I'(s + 2). Next, because the two roots of the polynomial 0, ,(¢)
are B and p?/B, we have L(s, ') = L(s + 2, ). Finally, the e-factor turns out to be equal
to 153/27% (see [T], 2.2). Combining all of this, we can rewrite the functional equation in
the form

Qm)~* T (s)L(s,p) =153275Qn)* " 3r3—s)LB —s,vy) .

From [T], Theorem 2.4.2, it then follows that L(s,y) = L(s, f) for a modular form
fe M;(15, (55))- To prove that f is a cusp form, we look at convergence of the series

L(s,p)= ) A;n~°.
n=1

For a prime number p, 4, occurs in the polynomial
1—At+(@Et* =0 —-a,0)1—ayt).

Now a, and a,, are roots of Frobenius acting on (part of) the 2-cohomology of a smooth
variety over F,, and so the Weil conjectures imply |a,| < p and |a,| < p. Consequently
|A4,| = 2p and it follows that |4,| < a,(n) - n, where o, (n) is the number of divisors of n
(see [K], p. 96). So 4, = O(n'**) for every positive ¢ and the series converges for Res > 2.
This means that f is a cusp form. The Euler product for L(s, ) from the beginning of the
proof implies that f is a Hecke eigenform. 0O

Remark. The functional equation which we derived in the preceding proof provides
an example where Serre’s conjecture C. 5.1. in [Se 2] is true. This can be seen as follows. The
Hecke eigenforms in S, (I (15), (75)) mentioned above, which are newforms, determine
our Galois representation. For such representations arising from newforms a general
theorem of Carayol [C], Théoréme (A), implies that all the local factors in the L-series agree
with the ones prescribed by Serre’s recipe.

The following way of constructing an explicit basis of S, (15, (75)) consisting of Hecke
eigenforms has been communicated to us by René Schoof. One starts with the theta-
functions
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01= Z qm2+mn+4n2=1+2q+ 6q4+

m,neZ

and

02= Z q2m2+mn+2n2=1+4q2+2q3+“”

m,neZ

Note that the quadratic forms in the exponents represent the two SL(2, Z)-equivalence
classes of positive definite binary quadratic forms of discriminant —15. We conclude from

[O], Ch.V, that 6,,0, e M, (15, (15)). Next, we consider the function on the upper half
plane given by

g(@)=n@@nB2)n(52)n15z2),

where 7(z) is the Dedekind eta-function defined by

1@ =" [] a-q).

The g-expansion of the function g(z) starts with g(z) =q—¢?> —¢*—q¢*+4¢° + .... From
[Li], p.28-31, we infer that g(z) e S,(15,1), where 1 is the trivial Dirichlet character
mod 15. We find the following identification for f*.

(5.2) Proposition. We have f* = g0, and f~ = g0,.

Proof. Applying [S-V], Cor.2.2, we find that the space S:=S,(15,(55)) is two-
dimensional. Set F;,=gf,, i=1,2. Since T,F, =F, and T,F, = —F, it follows that
{F,, F,} is a basis of S consisting of Hecke eigenforms. Since 47 =1 and 4; = —1 (see
Table 2) we necessarily have F;, = f* and F,=f". O

Combining the results of this section with Theorem 3.4 and Theorem 4.13, we obtain
our main result.

(5.3) Theorem. The number of F,-rational points of the K 3-surface X(p+3,9is

equal to
1+p2+p~<16+4<£>>+A
3 P’

where the number A, is the coefficient of q” in the q-expansion of the Hecke eigenform

( ) q"‘“'""”"z)'q [T -2 - g —g*) (1 —g*).
r=1

m,neZ

Remark. Note that the formulas for 4, from the remark following Proposition 4.12

yield a fast algorithm to determine the g-expansion of f*.
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