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1. I n t r o d u c t i o n  

A variation of polarized Hodge structures over a quasi-projective smooth complex man- 
ifold S can be thought  of as a holomorphic horizontal locally liftable map 

f : S --, r \ D ,  

where F is the monodromy-group of the variation and D is a period domain (see section 
2). In this note we find an upperbound on the rank of period maps which admit a 
non-trivial deformation in the case of weight one and two (our techniques only apply to 
these weights). See section 3 for precise results. Suffices to say that  this upperbound is 
sharp and the bound can be at tained using families of projective varieties. 

2. P r e p a r a t i o n s  

In order to make this note as self contained as possible, we shall recall a few relevant facts 
from [P]. First, we repeat  the definition of a polarized Hodge structure of weight w. We 
start  with 

- A free Z-module H := Hz of rank N,  

- A Hodge vector h = ( h ° , h l , . . . , h  ~) E N w+l with h j = h ~ - j ,  j = 0 , . . . w  and 
W ~ j = l  hi = N ,  

- An integral Z-bilinear form Q, which is ( -1 )~ - symmet r i c  and which has signature 

ET=l(-1) h 

A Hodge s t ructure  of weight w on H with Hodge vector h is a direct sum decomposition 

H c  := H ® C = ~t~=oHJ,w-J with H j 'w-j  = H~'-J 'J  and dim H j 'w- j  = h j.  The  form 
Q polarizes this Hodge structure if 

i. Q ( H  j 'w- j ,  H ~'-k,k) = 0 for j ~ k. 

ii. ( -1)J(J+l) /2(v/E-- f ) -~Q(h,  h) > 0 if h ¢ 0. 

The Hodge structures on H with Hodge vector h polarized by Q are parametr ized 
by points of a period domain D = D(h ,  Q). It is a homogeneous domain for the action 
of the Lie group GR of isometries (with respect to Q) of the vector space Hz ® R. The 
domain D is open in its compact dua l /9 ,  a projective variety homogeneous under the 
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group G of isometrics of Q acting on H c .  So, if we fix a reference Hodge s t ructure  
F E D and we let B be the isotropy group with respect to  G we have the principal 
fibration 

B --~ G --+ D. 

The  tangent  bundle o f / )  is the associated bundle under the adjoint representation of B 
on LieG/LieB.  To define the horizontal tangent bundle, observe that  the choice of the 

w i , w - - i  reference Hodge s t ructure  F corresponding to  the decomposition @i=0 H induces a 
weight zero Hodge s t ructure  on 

g = LieG 

by setting 
~J,-i = { X  ~ 9 I XH~'W-~ c H'+'/ '"- '--/}. 

The  horizontal tangent  space TFh°r(/)) is given by LieB + g - l , , / L i e B .  There  is an 
almost canonical identification 

g-l,  

which one gets by sending X E g-1,1 to exp( tX)  • F],=o. In the sequel we will always 
use this identification, e.g when we write down Lie-brackets of tangent vectors. 

Suppose that  we axe given a quasi-projective smooth complex variety S and a repre- 
sentation a : r l ( S )  --~ Gz whose image, the monodromy group, is denoted by F. From 
it we can form a locally constant system Hs  on S with fibres isomorphic to (H, Q). 
A polarized variation of Hodge structures of type h over S polarized by Q is given by 
a so-called period map, i.e. a holomorphic map f : S ---* F \ D  which comes from a 
a-equivaxiant holomorphic map ] from the universal cover S to D which is horizontal 
i.e whose derivative sends tangents along S to horizontal tangents along D, i.e for any 
s E S, setting F = ](s)  we have: 

Using the identification e, the subset (d f )T , (S )  of T~°r(D) defines a 
subspace a of g-1,1. 

In fact,  it follows [C-T, Proposit ion 5.2 ] that  a is an abelian subspace. 

Our next  topic is the curvature of the natural  Ge-invaxiant metric ( , )  on D which 
on horizontal tangents is given by (X, Y) = - T r a c e ( X Y * ) .  The asterisk means that  
one takes the transpose conjugate with respect to Q and the natural  complex s tructure 
on g. For a proof of the next Lemma, see [P, section 1]. 

(2.1) L e m m a  The holomorplaic bisectional curvature tensor H at F evMuated on 
commuting non zero horizontal vectors X and Y of length one is equM to 

-([x*,v], [x*,v]) 

and hence is non-positive. 
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Finally, we need to recall some facts related to (small) deformations of period maps. 

(2.2) Defini t ion A deformation of a period map f : S ~ F \D consists of a locally 
liftable horizontal map f : S x T --+ P \D  extending f in the obvious way. 

Every deformation of a period map f has its associated infinitesimal deformation 
6 E H ° ( f * T ( P \ D ) ) .  Now, since f is itself horizontal, using [C-T, Proposition 5.2 ] 
again, it follows that any two vectors tangent to S x T at (s, t) map to two commuting 
(horizontal) tangents in the tangent space to P \ D  at f(s , t ) .  So we can apply the 
curvature estimates not only to tangents which are images of tangents to S under the 
period map, but also to those tangents in F \D  which correspond to values of the sections 
in f * T ( P \ D )  which are infinitesimal deformations of f .  Indeed these values give certain 
tangent vectors to F\D.  We conclude that for all s E S, X E To(S) and any infinitesimal 
deformation 6 E H°(S, f * r ( r k D ) )  the holomorphic bisectional curvature H(X ,  6(u)) for 
the induced metric connection on f * T ( F \ D )  is non-positive. We now invoke 

(2.3) L e m m a  Suppose U, M are manifolds, f : U ~ M a holomorphic map and 6 E 
H°(U, f * ( U ) .  Fix a Riemannian metric g on M, inducing one on f * T ( M )  denoted by 
the same letter. Assume that 
(i) The function G(u) := g(~(u), 5(u) is bounded. 
(ii) U does not admit bounded plurisubharmonic functions. 
(iii) For all u, X E T~( U) the holomorphic bisectional curvature H ( X,  Y )  of the metric 
connection Xy for g in the directions X and Y := 6(u) is non-positive, 
then 
6 is a nat section and H(X ,  Y )  = 0. 

This follows immediately from the formula (we normalize so that X and Y have 
length one): 

ox xCl  = - H ( x ,  Y ) .  

From this lemma we can infer that the infinitesimal deformations are flat sections 
of the bundle f*EndTh°r(F\D) (see [P, Theorem 3.2]) and so, upon taking values at F,  
we get a subspace of g-1,1. Recalling that a corresponds to the full tangent space to S 
at a point of S, by lemma 2.1 this formula also shows : 

(2.4) C o r o l l a r y  The tangent space to deformations of a period map f : S --~ F \D is 
contained in 

[3 : :  { r  E ~-1,1 [ [ V. ,o . ]  : 0}. 
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3. The results 

Let us now introduce for any Y E ~-1,1 the following notat ion 

a ( Y )  := maximal abelian subspace a' of g-1,1 with [Y*, X] = 0 VX E a'. 
a ( Y )  := dim a(Y) 
a = a(g -x'x) := max a(Y) (maximum over Y E ~1-1'1, Y # 0). 

Clearly a ( Y )  is an upper  bound for the rank of a period map which admits non trivial 
deformations in the direction of Y and so a bounds the rank of period maps deformable 
in any direction. Consequently, any period map of rank _> a + 1 has to be rigid. 

In this note we determine the number a as a function of the Hodge numbers, but  
only for weight one and two. The result can be summarized as follows 

(3.1) T h e o r e m  (i) In weight one with Hodge vector (g,g) one has 

1 
a = ~g(g - 1). 

There exists a quasi-projective variation of rank a which has exactly 1 deformation 
parameter. 
(ii) In weight two with Hodge vector (p, q,p) we have 

1 i f p = l  
a =  q - - 1  i f p = 2  

( p _  1 1 ) [ ~ ( q - 1 ) ] + e  if  p>_3 

where e = 1 if q is even and e = 0 if  q is odd. 
There exists a quasi-projective variation of rank a which has exactly 1 deformation 
parameter. 
(iii) Any  period map having rank > a + 1 is rigid. 

R e m a r k .  The  variations of rank a can all be constructed from 2-cohomology of projec- 
tive families of smooth complex algebraic varieties. See the remark at the end of section 
6. 
R e m a r k .  Malcev's technique in principle only gives non-trivial bounds in weights one 
and two, because with this technique one cannot exploit the fact tha t  the deformation 
tangent vectors commute with the tangent vectors to the base of the parameter  space - 
al ter  suitable identifications with endomorphisms of H .  The method however works also 
for certain very degenerate sequences of Hodge numbers, e.g. in the even weight case if 
all Hodge numbers h '~-2j- l '2 j+l  vanish. The result in this case is almost identical; one 
has to view the number  a in the preceding theorem as a function of one, resp. two vari- 
ables for weight one, resp two and substi tute g = h re'm-1 , resp p = h m- i 'm+l ,  q = h m'ra 
if the weight is 2m - 1, resp. 2m. 

Examples 

- Any family of g-dimensional polarized abelian varieties having ½g(g - 1) + 1 or more 
moduli is rigid. 
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- Any family of K3-surfaces or Enriques surfaces, whose period map has rank two or 
more is rigid. 

R e m a r k .  Sunada in [S] considers holomorphic maps from a compact complex variety 
to a smooth compact quotient of a bounded symmetric domain by a discrete group. 
His results are formulated somewhat differently, but  it covers the two cases of the 
preceding theorem, where D is a bounded symmetric domain (but Sunada's techniques 
need that  S be projective and smooth).  More recently Noguchi in [N] used techniques 
from hyperbolic geometry to arrive at the bounds of the two previously given Examples. 

4. A v a r i a t i o n  o f  M a l e e v ' s  t h e o r e m  

In this section we derive our main technical tool, which is a variation of [C-K-T, Theorem 
3.1]. 

(4.1) T h e o r e m  Let g be a the complexitlcation of a ram semi-simple Lie algebra gu. 
Assume that there exists an ordering of the roots relative to some Caftan subalgebra 
such that complex conjugation maps the root space for a positive root a to the root 
space of - a .  Let ~ be a subalgebra of g which is a direct sum of positive root spaces 
and let a, b two abe/Jan subspaces of  ~ such that [a,b'] = 0, where the bar denotes 
complex conjugation. Then ~ contains two abe/fan subspaces A(a), )~(b) which are direct 
sums of positive root spaces with dim A(a) = dim a, dim )~(b) = dim b and such that 

A(b) ]  = 0. 

Proof." One has to modify the proof of [C-K-T, Theorem 3.1] slightly. Let { a l , . . . ,  an} 
be an ordering of the positive roots. We let Xj  be a root vector for the root  a 1. We 
can find a basis {A1, . . .  ,Aa}, resp. {B~, . . .  ,Bb} of a, resp. b such that  

A 1 = Xkj + linear combin, of root vectors for roots > akj 
l < k l < . . . < k , < n ,  

Bj  = X t  i + linear combin, of root vectors for roots < alj 
n ~ ll > . . .  :> Ib >__ 1, 

Since 0 = [Ai, Aj] = [Xk, ,Xkj]+ a linear combination of root vectors for roots > 
ak, + akj ,  it follows that  [Xk,, Xki ] = 0 and similarly we find that  [Xl~, Xti ] = 0. Fi- 
nally,__.since complex conjugation is assumed to reverse the sign of the roots,  we find 
[Ai, Bj] = [Xk,, Xtj ]+ root spaces belonging to roots > ak, - atj we can also conclude 

that  [Xkl, Xtj] = 0. In this last argument ki - lj can become 0 and then the corre- 
sponding vector [Xk~, Xij ] = 0 need not be a root vector, but  possibly lies in the Car tan 
subalgebra. For given Ai and Bj  this happens at most once and does not affect the 
argument.  We take now for A(a), resp. A(b) the space spanned by the Xk, ,  resp. Xh,  
i.e the space of the leading root vectors, resp. the terminal root vectors. • 

We apply Malcev's theorem (Theorem 4.1) to the real Lie algebra gR introduced in 
section 2. It is shown in [C-K-T, Section 5] that  a Car tan subalgebra exists which is 
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of Hodge type (0, 0) and that  there exists an ordering of the roots such that  for each 
p > 0, resp p < 0 the Hodge component gP'-P is a direct sum of root vectors of positive 
r o o t s ,  resp. negative roots and the complex conjugate of a root vector in gP'-P belongs 
to ~1 -p'p so that  we can indeed apply Malcev's theorem with n = g-l,X. Now a(Y) is 
the dimension of the largest abelian subspace a' consisting of vectors commuting with 
Y* = - Y .  The previous theorem allows us to assume that  Y is a root  vector and so we 
obtain: 

(4.2) C o r o l l a r y  We have a := m a x a ( Y )  (maximum over root vectors Y E g - l , a , y  
0). 

5. Bounds  for the rank of  non-rigid period maps 

We recall some conventions from [C-K-T]. If we choose any basis for H ® C  we decompose 
it in blocks according to the Hodge decomposition, where blocks range from (0, 0) (left 
upper  corner) to (w, w), w = 1 or 2 ( the lower right comer).  A matr ix  A placed in block 
(p, q) is denoted by Alp, q]. Eij  denotes a matr ix with 1 in position (i , j)  and no other 
non zero entries. In the course of deriving an upper  bound for a(g -1'1) we repeat  the 
computat ions from [C-K-T] for a good Hodge frame, a corresponding Car tan  subalgebra 
and root vectors for g- l ,a  . 
We first compute a in the weight one case. 

1 (5.1) L e m m a  a = 7 g ( g -  1) 

Proof:  There  is a Hodgeframe for H ® C, i.e. a basis of H ® C consisting of a 
basis { e l , . . . ,  %} for H °'1 and its complex conjugate for H 1'° such that  the matr ix  for 
x/rL-]'Q is equal to I a [ 0 , 1 ] -  I9[1,0]. Introduce for k = 1 , . . . g  the diagonal matrices 
Yk := Ekk[0,0] -- Ekk[1, 1]. These form a basis of the Cartaaa subalgebra of g .  The root 
vectors spanning g-l ,1 axe the + ½g(9 1) symmetric matrices ]~j = Eij[1,0] + Eji[1,0] 
since 

Now for every symmetric g x g-matrix X the condition [ X[1, 0], ]~j] = 0 is equivalent 
to X having zero i- th row (and column) and zero j - t h  row (and column). If i = j we 
find ½g(g - 1) for the maximal dimension of spaces of such X.  • 

Now we t reat  the case of weight two. A Hodge frame, in this case consists of a 
basis for H 2'°, its conjugate for H °'2 and a real basis for H 1'I such that  the matr ix  for 
Q has the form - Ip[0 ,  2] + Iq[1,1] - Ip[2, 0]. For our  purposes however it is be t te r  to 
use a different frame. Start ing from such a Hodge frame we modify the middle part ,  
say { f l , - . . ,  fq} as follows. If q = 2t, we take {f ,  + v/ '~f t+l , . . . ,  ft  -t- vrL-Tf2t, f l  - 
V/'L--Tft+l,...,ft - v/ -~f2 ,} .  In this case Q = - Ip[0,2]  + M[1,1] - Ip[2,01, where M=(O, h) 

I t  Ot " 
If q = 2t + 1 we do essentially the same except that  we retain one real basis vector for 
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H x,1 and it take as our last basis vector for H 1'1. 

formula slightly ; it becomes M = 0 0 . 
0 1 

We have 

This modifies M in the preceding 

(5.2) L e m m a  I f  q = 2t we have 

1 i f  p =  1 
a =  q - 1  i f  p = 2  

( p -  1 ) ( t -  1) + 1 i f p > 3 a n d q > 2  

P r o o f :  First observe that  in case p = 2 the bound from [C-K-T] gives the result by 
subtracting off one from their bound, allowing for the ext ra  deformation parameter .  
The  other less trivial bounds are obtained as follows. 
The  diagonal matrices 

and 

Yk(0) = Ekk[0,0] + Ekk[2,2], k = 1 , . . .  ,p 

Yk(1) = (Ek - Et+k)[1, II, k = 1 , . . .  , t  

give a basis for the Car tan  subalgebra and the matrices 

l~j = Eij[1,0] + Eji[2,1]M, i = 1 , . . . , p ,  j = 1 , . . . , q  

give a basis for the root vectors in g-1,1 since 

[Y~(j), l~j] = (6k~ - 6t+j k)1~i. 

The  complex conjugate of ]~j is equal to Yij = EjiM[O, 1] + Eij[1, 2] and if we have 
X '  = X[1, 0] + X T M [ 2 ,  1] 6 g -1'1, the condition that  [X ' ,~ i j ]  = 0 means that  X has 
zeros in rows i, t + i and column j except in the entry ( i , j ) .  In other  words, the problem 
reduces to the abelian subspace problem for Hodge numbers p - 1, 2t - 1, p - 1, and 
the main theorem of [C-K-T] tells us this maximum is (p - 1)(t - 1) + 1 if p > 3 and it 
is of course zero if p = 1. Taking into account the possibly non-zero entry ( i , j )  yields 
the desired upper  bound. • 

(5.3) L e m m a  I f  q = 2t + 1 we have 

0 /fq=l 
1 ffp= 1 

a~- 
q-I /fp=2 
( p -  1)t i f p > 3 a n d q > 3  
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Proof." The only change with the previous case is tha t  there is an extra  element Yq = 
Eq,q[1, 1] in the Car tan subalgebra which leads to extra  root vectors 

Yqi = Eqi[1, 0] + EiqM[2, 1], 

as one can easily check. The new root vectors however do not change any of the 
computat ions we did in the case where q is even. • 

6. C o n s t r u c t i o n  o f  n o n - r i g i d  p e r i o d  m a p s  o f  m a x i m a l  r a n k  

We introduce some basic variations. 

1) A weight one variation. 
We have the tautological variation Pig of weight one over ~g. If we take a torsion free 
subgroup P of finite index in SpgZ not containing -Id, this variation descends to a 
variation on •\Og, which quasi-projective by [B-B]. This variation we denote by ~g. 

2) A variation of weight 2 with p = 1. 
Let H be a lattice with form Q of signature (2, q) and consider the tautological variation 
Bq of weight two over 

Bq := {[r]  E P(H®C) IQ(F,F) = O,Q(F,F) > 0}. 

As in 1) this variation descends to a variation Bq over a suitable quasi-projective smooth 
quotient of Bq. 

3) A variation of weight 2 with Hodge numbers {p, 2q,p}. 
Over 

= { Z I -Zr z < } 

there exists a variation of weight 2 and this also descends to a variation Bp,q over a 
suitable quasi-projective quotient (see [C-K-T, Section 7]). 

The construction of a variation realizing the bound in Lemma 5.1 is easy. One 
takes the variation ~g--1 and takes the direct sum with a constant Hodge s t ructure  with 
Hodge numbers h °,1 = h 1,° = 1. This actually has 1 deformation parameter  (compare 
with the variation ~1). 

In case of weight two we use the following remark repeatedly. The  tensorproduct  of 
&l with a fixed weight one Hodge structure with Hodge vector (1, 1) gives a weight two 
variation with Hodge numbers (1, 2, 1) over a smooth quasi-projective curve and his has 

1 deformation parameter .  Let us denote this variation with B~. The  construction for 
the bound in Lemma 5.2 proceeds as follows. For p -- 1 and q > 2 we take the variation 

~1 and take the direct sum with q - 2 copies of the trivial Hodge s t ructure  of pure type  
(1, 1). For p = 2 and q > 2 we take Bq-2 which has a parameter  space of dimension q -  2 
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and Hodge numbers {1,q - 2, 1}. Now take the direct sum with B'. In total we have a 
base of dimension q -  1 and 1 deformation_ parameter. If p > 3 a similar construction 
applies: instead of Bq-2 one takes Bp-l,t-1 and then proceeds as before. 
In case of odd q (Lemma 5.3) the constructions are similar. The last construction needs 
a modification: one starts with Bp-l,t and takes the direct sum with a constant Hodge 
structure with Hodge numbers {1,1,1}. If we view it as a fibre of the 1-parameter 
variation B1 it is clear that also here we have an extra deformation parameter. 

R e m a r k  All of these variations occur as variations on primitive 2-cohomology of pro- 
jective families of smooth algebraic varieties. For the weight one variation this is trivial, 
and for Bq one can take families of K3-surfaces with Picard number q for q < 19 and 
products of these for higher values of q. For Bp,q one can realize them using a generalized 
Prym construction [C-S]. 
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