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0. Introduction 

In this note I want to show how a careful analysis of Reider's beautiful constructions 
in [R ] leads to an Infinitesimal Torelli theorem for n-dimensional varieties having 
"enough" 1-forms (see Sect. 3 for precise statements) in dimensions greater than 
two. 

For clarity I have reformulated some essential constructions from Reider's 
paper in the framework of rank n-vector bundles over n-dimensional varieties in 
Sects. I and 2. In Sect. 3 1 apply these to the cotangent bundle. It is instructive to see 
how Reider's theorem follows from the main result, Theorem 3.3 since it then 
becomes clear how certain deep properties of surfaces of general type play a crucial 
r61e: the Miyaoka-Yau-inequality [B-P-V, p. 212] and the Castelnuovo-De Fran- 
chis theorem [B-P-V, p. 123]. 

I also give a theorem valid for threefolds which is very much analogous to 
Reider's theorem for surfaces. For higher dimensions there is still an inequality 
which remains to be proven before we have a true generalisation [inequality (7)]. ! 
refer to Sect. 3 for the precise statements. 

1. lndecomposable Zero-Cycle Incidence Maps 

Let X be a compact complex connected manifold of dimension n and ~ a rank n 
vector bundle on X. We assume that a generic section o f ~  has zero locus consisting 
of m = c,(~) distinct points. So, if 

I(~) = {([e], x) s ~'H~ (~) x X; e (x )  = 0} 

is the incidence variety, the projection induces a generically finite morphism 

n : I ( ~ )  ---*IPH ~ (o ~) . ( the  zero-cycle  inc idence-map)  . 

We want to make a geometric assumption which implies that n is inde- 
composable ,  meaning that n does not factor over two generically finite morphisms of 
degrees larger than one. 
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Property I. There exists apencil P of sections oJ" g vanishing simultaneously at exactly 
one point and the variety where two generic members of P are dependent is an 
irreducible curve. 

The fol lowing l emma is a trivial,  but  basic obse rva t ion :  

Lemma 1.1. I f  property I holds' 7r is indecomposable. 

Proof. Assume that lr is decomposab le ,  e.g. over  a Zar i sk i -open  subset  U of  
IPH ~ (eg)) we have a fac tor iza t ion  into 6tale maps :  

I (~ ) l  U ~-* T - - - ,  U (I)  

with deg/~ => 2 and deg v >= 2. Let  x be the po in t  in c o m m o n  to the zero-loci  Z(e), 
e ~ P. The zero-cycle Z~ defined b y / t - l p ( ( [ e ] ,  x)) conta ins  deg (/~) points ,  so at  
least one ext ra  point  besides x which has to vary in a curve C(P). Since by def ini t ion 
C(P) belongs to the var ie ty  S(P) of  points  where two generic members  of  P become 
dependent  - by a s sumpt ion  irreducible - we mus t  have C(P)=S(P) .  So, if 
yeZ(e ) \Z~  there mus t  be some [e']EP, [ e ' ]+  [e] with y~Z(e ' ) ,  but then  y=x .  
This con t rad ic t ion  shows that  Z(e) = Z ~ (e). But then we find : deg Z(e) = m = deg/~. 
degv>=2, degv=2, degZ~ which is impossible .  So 7z mus t  be indecom- 
posable.  [] 

The  fol lowing p ropos i t i on  describes a geometr ic  s i tuat ion in which Proper ty  I 
holds  

Proposit ion | . 2 .  Suppose that ~ is spanned by its sections and that the canonical map 
q)'lP(~ v) ~lPHO(~) v (which is well-defined) has degree one onto its image and 
contracts at most finitely many (n -1)-dimensional varieties. Then Property I hold~ 
and hence the zero-cycle incidence map is indecomposable. 

Definition. I f  ~ has the  proper t ies  ment ioned  in the preceding p ropos i t i on  we call ~o 
almost very ample. 

Before we start the  p roo f  o f  P ropos i t ion  1.2 we first in t roduce  some n o t a t i o n '  

V: = H ~  

5 ~" = universal  subbundle  on Gr  (n, V v) = Y . 

Now, since g is spanned  by sections, we have obvious  bundle  maps  

~ . - - - . S  c - ~  y x V v 

The canonica l  map ~o " p ( g , v )  ~IPVV is jus t  the compos i t ion  o f  the project ivi -  
za t ion of  these maps fol lowed by the pro jec t ion  of  Y x P V  ~ onto  the second factor. 
So we arrive at  a c o m m u t a t i v e  d i ag ram defining the Gauss-map y: 

r - - ~  o - - ~  

p(~) __~ p(,~)__-~(v ~) 

l l 
X ,Gr(n, V ~) 
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The degeneracy locus Z p for linearly independent sections is just 7-  a(f2), where f2 is 
a Schubert variety associated to the r-tuple (p,0,0,0 . . . .  0) (cf. IF, Example 14.3.2]). 
Now f2 is irreducible of  codimension p and hence if ~o has generically degree l, we 
expect Z p to be irreducible as well. In fact, given a (p - 1)-dimensional subvariety of  
Gr(n, V ~) we can find a Schubert variety f2 avoiding it, so if 7 contracts at most  a 
subscheme o fd imens ionp  we can move f2 away from the contracted scheme and Z p 
remains irreducible. Hence:  

Lemma 1.3. [['~ is' spanned by its sections, y has generically degree 1 and contracts at 
most a p-dimensional subscheme, the locus where n - p  + 1 generic sections become 
dependent is an irreducible variety of  codimension p. [] 

Proo/ofl .2.  Takingp  = n  - 1 in Lemma 1.3, we almost have Property I. We still need 
to see that we can find x so that for a generic pencil P o f  sections vanishing at x the 
c o m m o n  zero-locus of  sections in P consist of  x only. Let P~ be the vector space of  
sections vanishing at x and let s e P~ a generic section. Now, since q~ is a degree one 
morphism, for generic x a generic section t belonging to P~ is non-zero at all points 
where s vanishes. The pencil formed by s and t has the property we want. [] 

2. Cohomological Properties Implying Decomposability 
of the Zero-Cycle Incidence-Map 

Let X be a compact  complex connected manifold, Z an analytic subspace of  X 
(possibly non-reduced or reducible), ~ a locally free Cgx-module and z e  H~ 
having the property 

V f ~ H ~  3 g ~ H ~  with z ' f = g l Z  (2) 

Since g is unique up to elements in H ~ 1 7 4  the assignment f~---~g induces a 
linear map  H ~ 1 7 6 1 7 6  |  and hence a map 

A(Z,  z): H ~ 1 7 6  | 1 7 6 1 7 6  |  

We apply this to ~ = det (~), where g is as in Sect. 1, Z =p~ + ... +Pro the zero-locus 
o f  a generic section o f~ .  In case the linear system Idet g] is without base points there 
is the following interpretation of  H ~ 1 7 6  |  

Lemma 2.1. Let ~b : X ~ IP H ~ ( ~ ) v) be the canonical morph&m defined by the linear 
system I,~-I, where ~ = det g. The span of  r  . . . . .  ~(Pm) is the projectivization o/  
the annihilator q/" the subspace H ~  |  of  H ~  i.e. 

Span {r  . . . . .  r ~ F [ H ~ 1 7 6  |  v 

Moreover each of  the lines in H ~ 1 7 6  | ~ corresponding to r  belongs to 
an eigenspace q/" the tranLwose oJ'A (Z, z) and every eigenspace contains at least one 
such line. 

Proof See the p r o o f  of  Lemma 2.3 o f  [R]. [] 
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Next, we want to vary [e] E IPH~ and formulate a condition which makes it 
possible to choose z=z (e )~  H~ (almost) canonically so that we obtain an 
eigenspace decomposition of the dual of H ~ 1 7 6  |  depending on e 
only. 

Given a section e of do with zero-scheme Z = Z ( e )  the evaluation morphism 
factors as do ~ ' ~ z - - * C x .  In cohomology this leads to a commutative diagram 

0 

H~176 

H1 (do ~)---~ H~ (~r 

~X~H t (Cx) 
,L 
0 

(3) 

hence we arrive at a well defined map 

%(e) : Ke r (H  1 (do v) .e_~H 1 ((_gx)) _____~HO(Cz)/HO(Cx) (4) 

Property II. 33 ~ H I (do ~) in the kernel o['e s'uch that %(e)~ I(['ts to a non-constant 
junction z(e) satisj)'in9 (2). 

The ambiguity in z(e) is only slight : one can arbitrarily add a constant. This does 
not affect the eigenspace decomposition of A(Z,z ) ,  i.e. fixing r with property II 
A(Z(e),  z(e)) has an eigenspace decomposition 

k 

n ~ 1 7 6  | (~ Uj([c]) 
j = l  

depending only on [e] ~ IPH(do). If we vary this point in a suitable Zariski open 
neighbourhood U the k points in the respective Grassmannians of 
H ~ 1 7 6  | representing these eigenspaces define an &ale covering 
T~- ,  U. Since every x ~ Z(e) determines a unique eigenspace by Lemma 2.1, we have 
an obvious map I(do)] U v---~ T such that the composition is the zero-cycle incidence 
map. 

Since deg v=c,(do)/deg p and d e g # = k  satisfies the inequalities 

2 < k  < dim (H~ (det do)/H~ (det d ~ |  

we arrive at the following Lemma: 

Lemma 2.2. The zero-cycle incidence map is decomposable provided 
(i) property H holds. 

(ii) the Jollowin9 inequality is satisfied 

c,(do) >= 2 (dim (H ~ (det do ) /H ~ (det do | Jz))  (5) 
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The following cohomological  properties imply Proper ty  II 

Lemma 2.3. Assume 
a) The cup product map H 1 ((gx) - - * H o r n  (H~ ~),  H 1 (det Co)) is injective, 
b) H q ( A q + ~ v ) = O J b r q = l  . . . . .  n - - I  

then an), nonzero ~ in the kernel of  the cup product map 

6 : H 1 ($ v ) ---*Horn (H~ (det g) ,  H 1 (g  v |  g) )  

has Property II. 

Proq[~ For  brevity introduce 

To (e) = Ke r (H 1 (d ~ v ) ~ H 1 ((9)) , 

T1 (e) = Ker (H A (g  v |  g )  -----~ H 1 (det g) )  

We have a commutat ive  square 

To(e) ~ , Hom(H~ Tl(e)) 

l ro Hom(l,  (e)) (e) 71 

H~176 ---~Hom (H~ (det g) ,  H~ d ~ | (gz)/H~ (det g ) )  

where the vertical maps come from multiplication and the map zl(e) is defined in the 
same way as To(e). F rom this diagram we infer: 

I[' 0 # q ~ Ker 6 c~ To (e) and To (e) is injective 

~=zo(e)v/ sati,~es the requirements needed in Property 11 

So it suffices to show that zo(e) is injective and that Ker 6 ~ To(e). To prove the first 
statement we look at the Koszul resolution o f  d ~ defined by e: 

0 , A n ~  v _____~ An l ~ v  , , .  , A2 o~ v ____._. ~ v ___.~ 35z _______~ 0 

and we observe that b) implies that H 1 (g ~ ) ---~H 1 ( Jz )  is injective, so-recalling the 
definition of  zo(e) [(3) and (4)] we see that zo(e) is injective as well. 

The last statement follows f rom a) and the commutat ive  diagram 

Hl(g ~ ) T ~ H o m  (H~ g) ,  H~(g  ~ |  
l e ~e  

Hl( (gx ) - - -~Hom(H~ [] 

We introduce some useful notation" 
if , f  is any sheaf on X we let 

hJ = dim Hs(X, 5e) 

J 
~j(a~) = ~ ( -1)~h k 

k=O 

z j=h ~ if j < 0 .  
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Proposition 2.4. Inequality (5)followsjrom 

c.(g)=>2 ~ (--1)-iZj_z(A"--/g) . 
J 

ProoJi Break up the Koszul resolution 

O----~[OX~--~g--~ A2 ~---~ ... ~ An-l g----~Jz @ An~o ----~0 

into short exact sequences 

O---~.~r AJN----.~4j+I---.O , j = l  . . . . .  n--!  . 

with ~r = 6x and ~&, = Jz  | A"g, and add the inequalities 

hO(,~z | Ang) >hO( A n- 1 ~vo) __hO(~n - 1) 

0~(- -1)3[Xj  l ( '~n-j)--)~j  2(An-J(t~)~l-Xj 2('%~'n j+l)]  

We find 

and so 

h ~ 1 6 3  (--I)~zj-2(A" J~)) 
j=l  

C. A. M. Peters 

(6) 

h ~ 1 7 6 1 7 4  An~)~  ~ (--1)Jxj_2(A n J~o)) 
j-o 

and (6) implies (5). [] 

Remark 2.5. For a 2-bundle (6) reduces to 

c2 ($) ~ 2 [h~ - h ~  + 1] 

and for a 3-bundle to 

c3 (g) >2 [h~ A3~ ~) -h~ + h~ - 1 +h  I (Cx)] 

Summarising this section we have 

Theorem 2.6. Let Co be a rank n vector bundle on a complex projective variety X o[" 
dimension n. Assume that 

a) The cup product map Hl(6~)--*Hom(H~ Hl(detd~)) is injective, 
b) Hq(Aq+lCv)=0  &r q = l  . . . . .  n - - I  

d) The kernel o f  the cup product map 

~5 : H1(6 ~ )  , H o m ( H ~  v |  

is not injective 
then the zero cycle-incidence map is decomposable. 
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3. Applications to Infinitesimal Torelli-Problems 

Let us first observe that the results o f  Sects. 2 and 3 combined yield: 

Theorem 3.1. Let  do be a rank n vector bundle on a complex projective variety X o f  
dimension n. Assume that 

a) The cup product map Hl((gx)----*Hom(H~ Hl(detd~ is injective, 
b) H q ( A q + l d ~  q = l  . . . . .  n - 1  

c) c , (g )  > 2  --1)J)t~j-2(An-Jdo 

d) g is almost very ample (cf. Definition in Sect. 1), 
then the cup-product map 

6 : H I ( g  v) - - -~Hom(H~  g) ,  Hi(do v |  

is injective. 

Proof. By Lemma 1.1 Proper ty  I (a consequence of  d) by Proposi t ion 1.2)) 
guarantees the indecomposabil i ty of  the zero-cycle incidence map. If  6 would not  be 
injective a), b) and c) imply that the zero-cycle incidence map is decomposable  by 
Theorem 2.6. [] 

We want  to apply this theorem to d o = f2". The kernel o f  the cup product  map  in 
this case measures the extend to which the Infinitesimal Torelli theorem with respect 
to n-forms fails. 

Let us investigate the various conditions o f  the preceding theorem. 

Lemma 3.2. The.following properties o f  holomorphic 1-forms imply condition a) in 
Theorem 3.1 : 

l) A n y  non zero l - form can be complemented to a set o f  n linearly independent 
1 -Jorms, 

2) Any  n-form obtained by wedging n 1-forms is zero i f  and only i f  these 1-forms 
are linearly dependent. 

Proof. Condit ion a) follows if there does not  exist a holomorphic  1-form c~ ~ 0 such 
that 8/x/~ = 0 for all n -  1-forms/~. So suppose such a fo rm ~ = ~1 exists. Choose 
n - 1 additional l - forms 0~ 2 . . . . .  0~ n which together with cq form a linearly indepen- 
dent set. Since 0 = 81/~ c~2 ... /x c~,, we have 0 = (cq/x ~2-.- A ~.) A (~l /X ~z... /X ~,). So 
0( 1 A O( 2 . . .  / X 0 ~ n : 0  and hence cq . . . . .  c~, must be dependent,  contradict ing our 
assumption 2). [] 

Observing that  condit ion 1) is automatical ly satisfied if the cotangent  bundle is 
everywhere spanned by 1-forms, we look for conditions guaranteeing 2). 

Lemma 3.3 (Castelnuovo-De Franchis). Suppose that the cotangent bundle is 
everywhere spanned by its sections. Assume that f o r  all d with 1 <- d<_ n - 1 there does 
not exist a rational map f r o m  X onto a variety Y o f  dimension d with h~ Y) >=d + 1. 
Let  o91, (o 2 . . . . .  (D n be n l - forms with o91/x co 2 A . . .  A (,O n : O. Then 091, e)z . . . . .  ~o, are 
linearly dependent. 

Proof. (Compare  the p roo f  o f  Proposi t ion X.9 in [B]) The hypothesis implies that  
for some rational functions gi we have e.g. col :g2(o2  q-.. .  "t-gn6On. Since do) j=0,  
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we deduce that  COg depends  on d92 . . . . .  d9, (over the field of  ra t iona l  funct ions  of  X) 
and so 

092/', . . .  A oo,=hdg2 A . . .  Ad9,  

~tq A ... A ~ i . . .  AOg,= +gihdg2 A ... /',dg, 

N o w  d(~o: A ... A ~0,) = 0 = dh A d92 A .. . /x dg,,  hence h, g2 . . . . .  g, are a lgebraical ly  
dependent ,  so the ra t iona l  map  

X -  go+ IP"(Pw+(h(P), g2 (P) . . . . .  g.(P)) 

maps  on to  a var ie ty  o f  d imens ion  < n - 1 ,  say Z. By a sequence o f  blowings up  
e," ) ( - - -+X the compos i t ion  f =  ~ o q~ is a morphism,  which has a Stein-factor izat ion" 

f :  Y ~-+ Y g-+ Z c IP" 

If  x l ,  x2, x3 . . . . .  x ,  are the s t anda rd  affine coordinates ,  we have 

f * ( x l  dx2 A ... A dx . )=  e*(~o2 A . . . / x  co.) 

f * ( x ,  x idx l /x  ... Ad-~i... A d x , ) =  • A ... A o31... Am,)  

A local c o m p u t a t i o n  shows that  the forms h*(xldx2 i x . . . / xdx , )  and 
h*(xlxidxa/x  ... Ad, fi ... Adx , )  are regular  on Y and  - if we assume tha t  Z has 
d imens ion  n - 1 - l inear ly independent ,  hence h ~  1 ( y )  > n  con t rad ic t ing  our  
assumpt ion  in case d im Z = n -  1. The general  case goes similarly.  [] 

Remark.  In the case o f  surfaces, the condi t ion  of  the L e m m a  means  that  the surface 
does not  admi t  a ho lomorph ic  m a p  onto  a curve of  genus at least 2 and the s ta tement  
of  the l emma is the classical Castelnuovo-De Franchis-lemma, [B-P-V, p. 123]). 

As a direct  consequence o f  the preceding discussion we have 

Theorem 3.4. Assume 
a) For all d with 1 <_d<_n - 1 there does not exist a rational map f rom X onto a 

variety Y o f  dimension d with h~ >= d +  1. 
b) H q + " " - q ( K x ) = O  for q =  1 . . . .  ,n --1,1 

c) c,(f2xl)_->2 ( - 1 ) S ) O _ z ( ~ }  -s) , or  -equivalently 
J 

h1'"-1+ ... +h "-1'1 > 2  [h1'"-2 + . . .h  "-2"1] (n even)~ 

h i , ,  l + . . . + h , , O  ~ h X , , - 2 + . . . h  . 1,o ( n o d d )  J (7) 

d) The cotangent bundle is almost very ample, 
then the infinitesimal Torelli theorem with respect to n-forms holds for  X. 

Remarks  

Condition b) holds if  Kx is ample,  by N a k a n o ' s  vanishing theorem.  Fur the rmore ,  
h" '~176  as soon as Kx is "ne f  and  big"  as a consequence  of  the 

1 E.g., if the canonical bundle is ample (see the remarks after 3.4) 
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Kawamata-Viehweg vanishing theorem [K]. It follows that  for surfaces b) is a 
consequence of d). 

Condition c) for surfaces by Remark  2.5 we must have c2 ( X ) >  2 �9 Z((Px) whereas in 
fact c2(X)>3")~(6Jx) [B-P-V, p. 212]. Alternatively, (7) in this case simply means 
h 1'1 >2q. This can be proved in a more elementary fashion for surface without  
rational pencils as in [B-P-V, p. 125]. There we have the inequality h 1,1 > 2 q - 1, but 
in the KS.hler case one can modify the p roof  a bit by restricting to primitive forms 
yielding the slightly sharper inequality h 1'1 >2q .  

These remarks imply that  our  general theorem implies Reider's theorem: 

Corollary 3.5. I f  X is a surface o f  general type having the following properties: 
a) It does not admit a holomorphic map onto a curve o f  genus > 2, 
b) The cotangent bundle is almost very ample, then the Infinitesimal Torelli holds 

with respect to 2-Jbrms. [] 

For  threefolds we have:  

Theorem 3.6. Let X be a three[old having the Jbllowing properties." 
a) X has almost very ample cotangent bundle, 
b) H2'Z(Kx)=O, 

c) X admits no rational map onto a curve of  genus >= 2 or onto a surface with po >= 3, 
then the infinitesimal Torelli theorem with respect to 3-forms holds for X. 

Proog In view of  the preceding remarks, we only have to show that  in our case the 
inequality (7) holds, which now reads: 

h 3'0 + h  1'2 + h  2,t ~ h  2'0 + h  1'l (8) 

We use [G-L], Proposi t ion 3.4 applied to a 1-form co having 0-dimensional zero 
locus. We conclude : 

h2,1 ~h2, 0 

hi,2 >hi ,1 _hi ,0  

Now we consider the natural  map 

A 3 H~ (Q~) - - )  H~ (Q]) 

Using an argument  as in [B-P-V, p. 125] we find 

h 3 ' ~  1 ' ~  = 3 h  1 ' ~  

Adding up we find (8) since h 1 ' ~  because the cotangent  bundle is almost very 
ample. [] 
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