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0. Introduction

Inthis note I want to show how a careful analysis of Reider’s beautiful constructions
in [R]leads to an Infinitesimal Torelli theorem for n-dimensional varieties having
“enough” 1-forms (see Sect. 3 for precise statements) in dimensions greater than
two.

For clarity 1 have reformulated some essential constructions from Reider’s
paper in the framework of rank n-vector bundles over n-dimensional varieties in
Sects. 1 and 2. In Sect. 3 [ apply these to the cotangent bundle. It is instructive to see
how Reider’s theorem follows from the main result, Theorem 3.3 since it then
becomes clear how certain deep properties of surfaces of general type play a crucial
role: the Miyaoka-Yau-inequality [B-P-V, p. 212] and the Castelnuovo-De Fran-
chis theorem [B-P-V, p. 123].

I also give a theorem valid for threefolds which is very much analogous to
Reider’s theorem for surfaces. For higher dimensions there is still an inequality
which remains to be proven before we have a true generalisation [inequality (7)]. 1
refer to Sect. 3 for the precise statements.

1. Indecomposable Zero-Cycle Incidence Maps

Let X be a compact complex connected manifold of dimension » and & a rank »n
vector bundle on X. We assume that a generic section of & has zero locus consisting
of m=c,(&) distinct points. So, if

1(&)={([e], x) e PH®(8) x X; e(x) =0}
is the incidence variety, the projection induces a generically finite morphism
n: I(&)—IPH®(&) . (the zero-cycle incidence-map) .

We want to make a geometric assumption which implies that n is inde-
composable, meaning that = does not factor over two generically finite morphisms of
degrees larger than one.
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Property I. There exists a pencil P of sections of & vanishing simultaneously at exactly
one point and the variety where two generic members of P are dependent is an
irreducible curve.

The following lemma is a trivial, but basic observation:
Lemma 1.1. If property I holds = is indecomposable.

Proof. Assume that © is decomposable, e.g. over a Zariski-open subset U of
IPH® (£)) we have a factorization into étale maps:

IE)U-—T U (1)

with deg u=2 and degv=2. Let x be the point in common to the zero-loci Z(e),
ee P. The zero-cycle Z%(e) defined by p~ 'u(({e], x)) contains deg (u) points, so at
least one extra point besides x which has to vary in a curve C(P). Since by definition
C(P) belongs to the variety S(P) of points where two generic members of P become
dependent — by assumption irreducible — we must have C(P)=S(P). So, if
yeZ(e)\Z°(e) there must be some [e'] € P, [e’'] #[e] with y e Z(e"), but then y=x.
This contradiction shows that Z(e) = Z°(e). But then we find : deg Z(e) =m = deg u.
degv=>2.degv=2.deg Z°(e), which is impossible. So 7 must be indecom-
posable. O

The following proposition describes a geometric situation in which Property 1
holds

Proposition 1.2. Suppose that & is spanned by its sections and that the canonical map
@:P(8Y)—PH(&)Y (which is well-defined) has degree one onto its image and
contracts at most finitely many (n —1)-dimensional varieties. Then Property [ holds
and hence the zero-cycle incidence map is indecomposable.

Definition. If & has the properties mentioned in the preceding proposition we call &
almost very ample.

Before we start the proof of Proposition 1.2 we first introduce some notation:
V.=H%&)
& .=universal subbundle on Gr(n, VV)=Y .
Now, since & is spanned by sections, we have obvious bundle maps
6. —S YXVY

The canonical map ¢ :IP(8¥)— PV is just the composition of the projectivi-
zation of these maps followed by the projection of ¥ x PV ¥ onto the second factor.
So we arrive at a commutative diagram defining the Gauss-map y:

¢ )
P(&") — P(¥)—P(VY)

Lo

X—y—»Gr(n, V)
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The degeneracy locus Z? for linearly independent sections is just y ~1(£2), where Qs
a Schubert variety associated to the r-tuple (p,0,0,0...,0) (cf. [F, Example 14.3.2]).
Now Q 1s irreducible of codimension p and hence if ¢ has generically degree 1, we
expect Z7 to be irreducible as well. In fact, given a (p — 1)-dimensional subvariety of
Gr(n, V'¥) we can find a Schubert variety Q avoiding it, so if y contracts at most a
subscheme of dimension p we can move Q away from the contracted scheme and Z*
remains irreducible. Hence:

Lemma 1.3. If & is spanned by its sections, y has generically degree I and contracts at
most a p-dimensional subscheme, the locus where n —p + 1 generic sections become
dependent is an irreducible variety of codimension p. [

Proofof 1.2. Takingp=n —11in Lemma 1.3, we almost have Property 1. We still need
to see that we can find x so that for a generic pencil P of sections vanishing at x the
common zero-locus of sections in P consist of x only. Let P, be the vector space of
sections vanishing at x and let s € P, a generic section. Now, since ¢ is a degree one
morphism, for generic x a generic section ¢ belonging to P, is non-zero at all points
where s vanishes. The pencil formed by s and ¢ has the property we want. {7

2. Cohomological Properties Implying Decomposability
of the Zero-Cycle Incidence-Map

Let X be a compact complex connected manifold, Z an analytic subspace of X
(possibly non-reduced or reducible), # a locally free @x-module and ze H°((0,)
having the property

VieH(F), 3geH®’(F) with z-f=g|Z 2)

Since ¢ is unique up to elements in H°(F ®.#;), the assignment f+—g induces a
linear map H°(#F)— H°(F)/H°(F ®.%;) and hence a map
A(Z,2): HY(F ) H(F @ F,)— H(F)H(F ®.%,)

We apply thisto & =det (&), where £ isasinSect. 1,Z=p, + ... +p,, the zero-locus
of a generic section of &. In case the linear system |det & | is without base points there
is the following interpretation of H°(%)/H(F ® .4,).

Lemma 2.1. Let  : X — P H(F)") be the canonical morphism defined by the linear
system | F |, where F =det 8. The span of W(p1), ..., w(p.) is the projectivization of
the annihilator of the subspace H(F ® ;) of H°(F), i.e.

Span {/(p1), ..., Y (pm)} 2 PH(F ) H(F @ I7)]"
Moreover each of the lines in H(F)/H(F ® 4,)" corresponding to y(p;) belongs to
an eigenspace of the transpose of A(Z, z) and every eigenspace contains at least one

such line.

Proof. See the proof of Lemma 2.3 of [R]. O
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Next, we want to vary {e]e PH?(&) and formulate a condition which makes it
possible to choose z=z(e)e H°(0z,) (almost) canonically so that we obtain an
eigenspace decomposition of the dual of H°(F)/H(# ® #;.,) depending on e
only.

Given a section e of & with zero-scheme Z=Z(e) the evaluation morphism
factors as § ¥ — .4, — . In cohomology this leads to a commutative diagram

0
l
H(02)/H®(Ox)
!
H' (6")—H'(S7) (3)
e l
\H‘((Ox)
{
0

hence we arrive at a well defined map
To(e) : Ker (H' (6 ) — H' (0x)) — H(02)/H*(Ux) “4)

Property I1. 3¢ € H' (&) in the kernel of e such that 1,(e)& lifts to a non-constant
function z(e) satisfying (2).

The ambiguity in z(e) is only slight : one can arbitrarily add a constant. This does
not affect the eigenspace decomposition of A(Z,z), i.e. fixing ¢ with property 11
A(Z(e), z(e)) has an eigenspace decomposition

k
HUF)H(F @ Iy0)= @ Uj(leD

depending only on [e]e PH(&). If we vary this point in a suitable Zariski open
neighbourhood U the k points in the respective Grassmannians of
H(F)/H*(F ® #,.) representing these eigenspaces define an étale covering
TT U. Since every x € Z(e) determines a unique eigenspace by Lemma 2.1, we have
an obvious map I(&')|U-— T such that the composition is the zero-cycle incidence
map.

Since degv=c,(&)/deg u and deg u=*k satisfies the inequalities

25k <dim (H°(det &)/HO (det & ®.#2))
we arrive at the following Lemma:

Lemma 2.2. The zero-cycle incidence map is decomposable provided
(1) property II holds.
(11) the following inequality is satisfied

(&)= 2(dim (H° (det §)/HO (det & ® .77)) )
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The following cohomological properties imply Property II
Lemma 2.3. Assume

a) The cup product map H'(Ox)—Hom (H®(det &), H'(det &)) is injective,

b) HI(AT" E)=0 for g=1,...,n—1
then any nonzero & in the kernel of the cup product map

§:H' (6V)y—Hom (H(det &), H (£ ®det &)
has Property 1.
Proof. For brevity introduce
To(e)=Ker (H' (V) —H'(0)) ,
T,(e)=Ker(H'(§"¥ ®det &) — H'(det &))

We have a commutative square

To(e) — Hom (H°(det &), Ty (e))

é

T9(e) Hom (1, 7,(e))

H(0)/H(Oy) — Hom (H(det &), H°(det & ® O0,)/H (det &))
where the vertical maps come from multiplication and the map 7, (e) is defined in the
same way as ty(e). From this diagram we infer:
If O%£neKerdnTy(e) and t(e) is injective
E=1o(e)y satisfies the requirements needed in Property 11

So it suffices to show that 14(e) is injective and that Ker 6 = Ty (e). To prove the first
statement we look at the Koszul resolution of & defined by e:

0 ANEY - ATIEY 5 RET—EY I —0

and we observe that b) implies that H' (&£ ¥)— H'(#;) is injective, so-recalling the
definition of 74(e) [(3) and (4)] we see that t4(e) is injective as well.
The last statement follows from a) and the commutative diagram

H'(&¥) —Hom (H°(det £), H' (& ®@det §))
l e l .e
H'(Oy) — Hom (HO(det &), H' (det &)) . O

We introduce some useful notation:
if & is any sheaf on X we let

hi=dim Hj(X, S)
)= (—1pnt
k=0

L=h° if <0 .
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Proposition 2.4. Inequality (5) follows from

Cn(5)§2[z (—1)jxj—z(/\"‘jrf)} : (6)

j=0
Proof. Break up the Koszul resolution
0—0y =8> NE— ... >N 1EI,R0 NE—D
into short exact sequences
O—ﬂﬂj—_’/\j@@—’«dl+1—>0, j:1,...,n_1 .

with &/, =0y and o/,=.#, ® A"&, and add the inequalities

ho(Iz @ N'EYZRO(NTLE) —h® (el —1)

0=(— 1) [yj—1 (Ao j) —xj—2( NTIEY+yi—2 (i 1)]
We find
(I QN E)VZ =3, (= 1Yy (N6
j=1

J
and so

B(NE)~h (I @ NEVE Y (—1) g-2( A IE))
j=0
and (6) implies (5). O
Remark 2.5. For a 2-bundle (6) reduces to
Q(E)Z2[I°(NE)—h(8)+1]
and for a 3-bundle to

3 (E)YZ2[RO (N EY~hO (N E)V+R°(E) —1+h' (Oy)]

Summarising this section we have

Theorem 2.6. Let & be a rank n vector bundle on a complex projective variety X of
dimension n. Assume that

a) The cup product map H'(©)—Hom(H°(det&), H'(det &)) is injective,
b) HI( AT 1EY)Y=0 for g=1,....n—1

¢) ()22 [ > (—1)"x,~#z(/\"‘jéa):|
=0
d) The kerneljof the cup product map
d:HY (&")—Hom(H’(det&), H' (¢~ ®det&))

is not injective
then the zero cycle-incidence map is decomposable.
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3. Applications to Infinitesimal Torelli-Problems
Let us first observe that the results of Sects. 2 and 3 combined yield:

Theorem 3.1. Let & be a rank n vector bundle on a complex projective variety X of
dimension n. Assume that
a) The cup product map H'(0x) — Hom (H°(det &), H'(det&)) is injective,
b) HY(A1EY)=0 for q=1,...,n—1

c) Cn(éa)ézliz(—1)fXj_2(/\"*jéB)j|
j=0

=
d) & is almost very ample (cf. Definition in Sect. 1),
then the cup-product map

§:HY(&V)—Hom(H(det&), H (" ®det &)
is injective.
Proof. By Lemma 1.1 Property I (a consequence of d) by Proposition 1.2))
guarantees the indecomposability of the zero-cycle incidence map. If § would not be

injective a), b) and ¢) imply that the zero-cycle incidence map is decomposable by
Theorem 2.6. O

We want to apply this theorem to & = Q". The kernel of the cup product map in
this case measures the extend to which the Infinitesimal Torelli theorem with respect
to n-forms fails.

Let us investigate the various conditions of the preceding theorem.

Lemma 3.2. The following properties of holomorphic 1-forms imply condition a) in
Theorem 3.1:

1) Any non zero 1-form can be complemented to a set of n linearly independent
1-forms,

2) Any n-form obtained by wedging n 1-forms is zero if and only if these 1-forms
are linearly dependent.

Proof. Condition a) follows if there does not exist a holomorphic 1-form o3 0 such
that @ A =0 for all n—1-forms . So suppose such a form a=a, exists. Choose
n —1 additional 1-forms a5, ..., «, which together with a; form a linearly indepen-
dentset. Since 0=3&; Ao, ... Adt,, wehaveO=(o; Ady... A& A(E Al ... Ad,). SO
o Ady... Aa,=0 and hence a,,...,«, must be dependent, contradicting our
assumption 2). O

Observing that condition 1) is automatically satisfied if the cotangent bundle is
everywhere spanned by 1-forms, we look for conditions guaranteeing 2).

Lemma 3.3 (Castelnuovo-De Franchis). Suppose that the cotangent bundle is
everywhere spanned by its sections. Assume that for all d with 1 £d<n —1 there does
not exist a rational map from X onto a variety Y of dimension d with h>*(Y)=d+1.
Let wy,w,,...,m, be n 1-forms with wy Awy A ... Aw,=0. Then oy, w,,...,w, are
linearly dependent.

Proof. (Compare the proof of Proposition X.9 in [B]) The hypothesis implies that
for some rational functions g; we have e.g. 0y =g, w,+ ... +g,0,. Since dw;=0,
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we deduce that w; depends ondy,, ..., dg, (over the field of rational functions of X)
and so
Wy A ... Aw,=hdg, A ... Adg,

Wy Ao AD; ... Awy= Tg;hdg, A ... Adg,

Now d(w, A ... Aw,)=0=dh Andg, A ... Adg,, hence h,g,, ..., g, are algebraically
dependent, so the rational map

X->P*(p=>(h(p), g2(p) -, gu(P))

maps onto a variety of dimension =<n—1, say Z. By a sequence of blowings up
&: X — X the composition f=e¢o ¢ is a morphism, which has a Stein-factorization:

I X’g—» Yo ZcP"
If x;, x5, x3,..., X, are the standard affine coordinates, we have
SH(xsdxa Ao Adx) =X A ..o Awy)
SHrxpxidxy A coAdR o ndx) =T Oy A L AD; .. Awy)

A local computation shows that the forms A*(x;dx, A ... Adx,) and
h*(xyx;dxy A ... AdX; ... Adx,) are regular on Y and — if we assume that Z has
dimension n—1 - linearly independent, hence A%"~!(Y)=n contradicting our
assumption in case dim Z=n —1. The general case goes similarly. [J

Remark. In the case of surfaces, the condition of the Lemma means that the surface
does not admit a holomorphic map onto a curve of genus at least 2 and the statement
of the lemma is the classical Castelnuovo-De Franchis-lemma, [B-P-V, p. 123}).

As a direct consequence of the preceding discussion we have

Theorem 3.4. Assume

a) For all d with 1 £d<n—1 there does not exist a rational map from X onto a
variety Y of dimension d with h*(Y)=d+1.

by HI"'"4K)=0 for g=1,...,n 1!

<) c,,(Q}()gZ|: Y (—1)jxj_2(Q,’}‘j)} or -equivalently

j=1

R I ARt [ LIS U Lkl (n even)
hl’"71+...+h"’0 ghl,n—z_‘_.”hnfl,o (n Odd)

d) The cotangent bundle is almost very ample,
then the infinitesimal Torelli theorem with respect to n-forms holds for X.

Remarks

Condition b) holds if Ky is ample, by Nakano’s vanishing theorem. Furthermore,
h"°(Kx)=H°(K2?)=0 as soon as Ky is “nef and big” as a consequence of the

! E.g., if the canonical bundle is ample (see the remarks after 3.4)



Some Remarks About Reider’s Article 323

Kawamata-Viehweg vanishing theorem [K]. It follows that for surfaces b) is a
consequence of d).

Condition c) for surfaces by Remark 2.5 we must have ¢, (X)=2 - y(0x) whereas in
fact ¢, (X)=3-y(Oy) [B-P-V, p.212]. Alternatively, (7) in this case simply means
h'1 22q. This can be proved in a more elementary fashion for surface without
rational pencils as in [B-P-V, p. 125]. There we have the inequality A">! =224 —1, but
in the Kahler case one can modify the proof a bit by restricting to primitive forms
yielding the slightly sharper inequality A1 >2g.

These remarks imply that our general theorem implies Reider’s theorem:

Corollary 3.5. If X is a surface of general type having the following properties :

a) It does not admit a holomorphic map onto a curve of genus =2,

b) The cotangent bundle is almost very ample, then the Infinitesimal Torelli holds
with respect to 2-forms. O

For threefolds we have:

Theorem 3.6. Let X be a threefold having the following properties :
a) X has almost very ample cotangent bundle,
b) H*?(Ky)=0,

c) X admits no rational map onto a curve of genus =2 or onto asurface withp, =3,
then the infinitesimal Torelli theorem with respect to 3-forms holds for X.

Proof. In view of the preceding remarks, we only have to show that in our case the
inequality (7) holds, which now reads:

h3,0+h1,2 +h2'1§h2'0+h1‘1 (8)

We use [G-L], Proposition 3.4 applied to a 1-form » having 0-dimensional zero
locus. We conclude:

h* ! Zh*°
pl2 ghl_'l _pt0
Now we consider the natural map
N H®(Qx) — H°(Q3)
Using an argument as in [B-P-V, p.125] we find
h30=3(h*°=3)+1=3r""-8

Adding up we find (8) since #"'° 24 because the cotangent bundle is almost very
ample. O
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