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Introduction 

The following conjecture plays a central r61e in the birational classification of 
complex projective varieties. 

Conjecture C,,,,. Let X ,  resp. Y be an n-dimensional, resp. m-dimensional 
nonsingular complex projective variety and let f : X--* Y be a surjective morphism, 
whose general fibre F is connected. Then sub-additivity for the Kodaira-dimensions 
holds: 

x(X) > ~c( Y) + ~c(F) . 

For the definition of the Kodaira-dimension as well as for a discussion of the 
conjecture Cn,m I refer to the Bourbaki-talk by Esnault [7]. Here, I only want to 
say that C,,n- ~ and Cn, 1 are true, and that for applications to Albanese mappings a 
stronger version of Cn,m is needed, which in [7] is called "Conjecture C+m ''. If 
m----- 1, it merely says that in addition to the validity of Cn, ~, in the special case when 
Y is an elliptic curve and K(X) = ~(F) = 0, there should exist a surjective morphism 
Y'-~ Y such that the fibre product X x Y' is birational to a product Y' x F. For  

u 
n=2,  m =  1 this last requirement follows from a result of Arakelov [1, Theorem 
1.1] which implies that deg(f . tox/r)>0 and equality holds if and only if f is 
"isotrivial", i.e. after a finite covering of Y, the fibre product is birational to a 
product. (Here COx~ r is the relative dualizing sheaf, see Sect. 5.1). 

Kawamata 's  proof of C.. ~ as presented in [13] depends on a result of Fujita 
[11] about  line bundle-quotients of f . t O x / r ( d i m Y = l  ). Very roughly, Fujita's 
result says that Arakelov's inequality generalizes to the case when dimX is 
arbitrary (but still dim Y = 1). Here, I want to look more closely to what happens if 
deg(f.O2x/r)=0. The natural framework for this question is Griffith's theory of 
variations of Hodge structure. Our  main result is the following. 

Main Theorem ( =  Theorem 4.1). Let C be a smooth projective curve and Co C C a 
Zariski-open subset on which one has a (real) variation of Hodge structure 
t/'= ojo D . . . 3 D ~ "  D 0 of weight m. Let ' ~  J be the canonical extension of ~ J and let 
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J'f('3r = @  (det'~J). We have (i) deg('~ TM) ~ 0 and equality holds if and only if o ~ "  
j x 

is a f lat  subbundle of "U and the local monodromies are unipotent on ~ " ,  (ii) 
degJ{'('3r >0  and equality holds if and only if all the Hodge bundles o ~ j  are f lat  
subbundles of ~U and all local monodromies are unipotent. 

This theorem can directly be translated in the "geometric situation", where the 
variation of Hodge structure comes from the usual Hodge filtration on the 
primitive cohomologygroups H~(Xt, tE) (n = dim Xt) of the smooth fibres Xt of a 
surjective holomorphic map f :  X--*C with X a compact K/ihler manifold; the 
Zariski-open subset Co is precisely the set of regular values off. This translation is 
Proposition 5.1.1. Loosely speaking it says that deg(f.COx/c)> 0 if and only if the 
variation of Hodge-structure given by H'o(Xt, IE) 3 H~ is non-trivial, i.e. if and 
only if the periods of the holomorphic n-forms of the fibres Xt are not constant. 
Obviously, to draw any geometric conclusion in case these periods are constant, 
one needs to know that constant periods imply that the fibres are isomorphic (see 
5.1.2 for a precise statement). So, if this property holds, deg(f. COx/c)= 0 implies that 
fir-1(Co) is a fibre bundle in the complex-analytic sense (Theorem 5.1.3). To 
extend the bundle over the punctures, I make use of certain results of Fujiki about 
the properness of the relative Chow-scheme (see Sect. 5.2). The final geometric 
result is stated as Theorem 5.3.1, which is indeed a generalization of Arakelov's 
result: 

Theorem. Let X be a compact connected Kiihler-manifold, C a smooth curve and 
f : X ~ C  a proper surjective holomorphic map with connected fibres. Then 
d = degf.oOx/c > O. I f  d = 0 and if moreover the Torelli-property (5.1.2) holds, f is a 
fibre bundle over Co = set of non-critical values o f f  There exists a finite cover ~ : D 

C, branched at most in critical values o f f  and one further point, such that the fibre 
product X x D is bimeromorphic to a fibre bundle over D with typical fibre F. I f  

C 

moreover the automorphisms ofF act faithfully on H"'~ we can take g = id, i.e. f 
itself is bimeromorphically a fibre bundle. 

As a consequence, I prove C + 1 under the assumption that the Torelli-property 
holds for the generic fibre. It is probably possible to remove the Torelli-property, 
using Viehweg's techniques from [24]. 

I want to make two remarks concerning the above theorem. First ofallit is stated 
in the setting of K/ihler-geometry and as such appears to be new. Secondly, ifX is not 
assumed to be K/ihler, the inequality d > 0 does not hold as demonstrated by an 
example of Blanchard [2], as was kindly pointed out to me by K. Ueno. 

Finally, some remarks about the content of this paper. Whereas the main 
theorem in Sect. 4 and its geometric consequences in Sect. 5 have been mentioned 
already, some justification should be given for the inclusion of Sects. 1-3, which 
contain results, more or less known to the expert. There are two reasons to include 
this material, apart from the desire to be as self-contained as possible. The first one 
is, that the results I need are rather hard to locate in the literature. For example the 
asymptotic behaviour of the Hodge metric near a puncture is only barely outlined 
in [25]. The second reason is that it is quite crucial to know this behaviour in 
detail, since one must first of all show that f 051ogh j converges [h j is the Hodge 

Co 
metric on det(~i)] and secondly one has to interpret the residues of h ~ near the 
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punctures in case this integral vanishes (see Proposition 2.2.1 and the proof of the 
Main Theorem in Sect. 4). 

1. Variations of Hodge Structure 

1.1. Basic Definitions 

We start with the following data. 
(i) A real vector space V of finite dimension, 
(ii) A non-negative integer m, 
(iii) A non-degenerate real-valued bilinear form Q on V such that 
Q(v, w) = ( - l)mQ(w, v) for all v, w s V, 
(iv) A connected complex manifold B, 
(v) A representation of the fundamental group on V: 

p:TtI(B)~Aut(V,Q) '=G~ (monodromy-representation) . 

These data determine a locally constant sheaf V R oll B in the usual way: the 
fundamental group rq(B) acts as covering transformations of the universal cover 
/~--*B of B and VB is the quotient of the constant sheaf V• on/~ by the action 
of 7q(B) given by 

~'.(v,z)=(~(~')v,~-lz), ~e~I(B), (v,z)eV• 

The vectorbundle VB (~)(gB = ~/" admits the canonical flat connection 
C 

It is characterized by the property that its sheaf of fiat sections is exactly the locally 
constant sheaf VB| 

The bilinear form Q defines a flat bilinear form on ~ with real values on VB. 
We shall denote it also by Q. 

Now we come to the main definition. 
By a (real) variation of Hodge structure of weight m on B underlying (~U, Q) we 

mean a filtration of V by holomorphic subbundles ~'P (the Hodge bundles) 

~/" =~-o D~x D ... DF'nD~ m+l =0  

which satisfies the horizontality condition 

V ~  p C f 2 ~ |  p- 1 

and the following polarization conditions 

(i) There is a Q-orthogonal direct sum decomposition 

~//"= ( ~  ~ " q  ~ " q = ~ P n ~  --~ (Hodge-decomposition), 
p + q = n  

where the bar denotes complex conjugation with respect to the real structure 
coming from the one on V |  
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(ii) If np, q : ~ o ~  p' q is the projection with respect to the 
Hodge-decomposition and if C =  ~ iP-qTgp, q the hermitian form h on 

p+q=m 
defined by 

h(v, w) = Q(Cv, ~) (Hodge metric) 

is positive definite. 
The following situation, referred to as "geometric situation", gives a standard 

example. Let X, B be connected K/ihler manifolds and 

f :X--*B 

a smooth, surjective and proper holomorphic map. Let c0 be a K/ihler class of X 
and consider on each fibre Xb=f- l (b )  the primitive cohomology groups 
H"d(Xb, fig) with respect to cOlXb. Since f is locally trivial in the C~-sense, fixing a 
base point * ~ B there is a representation of rq(B, *) on Hm(X,, fig) as well as on 
H'd(X,, fig). So the preceding construction gives a fiat vector bundle (o~ m' V), whose 
fiber over b e B is H"d(Xb, fig ). It carries the usual Hodge filtration, which fits 
together to a filtration ocg" = o ~ ~  3. . .  3 ~m 3 0. It is a basic result, due to Griffiths, 
that these subbundles ~ p  are in fact holomorphic subbundles and that they satisfy 
the horizontality condition above. The polarization conditions follow from the 
usual Hodge-Riemann bilinear relations, since we work with primitive 
cohomology. We refer to I-5] for proofs of these statements and for references to 
the original papers. 

1.2. The Period Map 

A given variation of Hodge structures (~/P, Q, ~ )  induces on each fiber J~b of 
~(b~B)  a polarized (real) Hodge structure, whose Hodge numbers 
h P ' q = d i m c ~  'q are constant on B. This leads us to consider polarized Hodge 
structures on V with given Hodge numbers h p'q. To describe this set, we use the 
language of Hodge-frames. Given a decomposition 

V c :  p+~q=m Hp'q , H P ' q : H  q'p, dimcHp,q=hp,q 

an hermitian form h can be defined as in 1.1. and we only consider those 
decompositions that are h-orthogonal and for which h is positive definite. A 
Hodge-frame adapted to such a decomposition, by definition is an (m + 1)-tuple 
{e ~ . . . . .  e m} where each e / is a set 

e d = {e~ .... , e~) k~ = h J' m- j 

of vectors giving an orthonormal  basis for H ; 'm-j and where ~ = e k " - L  The 
manifold of Hodge frames can be identified with the real Liegroup G w So, if we fix 
a reference Hodge structure we obtain a representation of the set of polarized 
Hodge structures on V of weight m and with given Hodge numbers h p'q as a 
homogeneous manifold 

D = G~t/K, 
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where K is the (compact) isotropy group of the reference Hodge structure. The 
manifold D is an open submanifold in its compact dual 

= ~ / I r  

where Gr = Aut(V o Q) a n d / (  is the isotropy group in Gr of the reference Hodge 
structure. The manifold/)  is the closed subvariety inside the flag manifold of flags 
(Vr176 d i m c F J = ~ h  ~'m-~) which only satisfy the first 

i>j 
polarization condition in 1.1. The points of D correspond to flags that in addition 
satisfy the second polarization condition. 

Returning to the case of a variation of Hodge structure on B, we can transport 
the Hodge filtration on ~ to a holomorphically varying filtration on the induced 
bundle on/~, the universal cover of B. This bundle is trivial, so we can identify it 
with Vr x/~ and over each point z ~/~ we have a Hodge structure on V~, hence a 
unique point in D. This yields a holomorphic map 

q~ : B ~ D  ("period map"). 

In case V carries an integral lattice V z and Q is defined over Z (e.g. if in the 
geometric situation the fibres are curves, or if f is a projective morphism) the 
monodromy-group F (i.e. the image of the monodromy-representation) belongs to 
G z = Aut(Vz, Q) and F acts properly discontinuously on D and so F \ D  carries the 
structure of a normal analytic space [3]. The map q3 descends to a holomorphic 
map 

: B ~ F \ D  (period map). 

1.3. Positivity of the Chern Forms of Hodge Bundles 

We specify the situation of the preceding sections to the case where B is a 
1-dimensional connected complex manifold. We recall Griffiths' curvature 
estimates from 1-12] in this case. We note firstly that the connection 17 induces an 
0n-linear map ~-J~(~/~-J) |  the second fundamental form of ~ in V.  If 
Gr j = ~-j/~-j+ 1, the horizontality of V implies that the second fundamental form 
induces On-linear maps 

aJ: G r J ~ G r  j -  1@f2~ 

or - equivalently - holomorphic (1, 0)-forms zi with values in Hom(Gr j, Gr j -  1). 
There are natural isomorphisms of C| G r J ~ , ~  ~''~-J and we use 
these to transport the Hodge metric to Gr j. We let (at) * be the adjoint of a t with 
respect to the Hodge metric and let (z J) * its associated (0, 1)-form with values in 
Hom(Gr i -  1, Gri). The curvature form 6 / of the metric connection on Gr j is given 
by 

0J= - ( ~ ) *  ^ ~J-  ~J+ t ^ (~i+ 1), 

(compare [20, Lemma 7.18]). The associated real (1, 1)-form 

c(GrJ)=(i/2n) trace0 j 
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is the Chern form of Hodge metric on Gr j. If we choose a local Hodge frame field 
for Gr j, i.e. a Hodge frame depending in a C ~ manner on a local parameter t on B 
and express zJ in the frame as a matrix of (1, 0)-forms 

~J=(~,~dt) 
an easy calculation shows that c(Gr j) locally is given by the real (1, 1)-form 

z (k,t r , s  J 

In particular, we see that c (~ ' )  is positive semi-definite and is identically zero 
precisely when the bundle map a" is identically zero. This is the case if and only i f  17 
preserves ~ " ,  i.e. if and only if ~ "  is a flat sub-bundle of ~U. Summarizing, we have 

(1.3.1) Proposition. Given a variation of Hedge structures "Y = ~ ~  3 ~ " 3  0 of 
weight m over a 1-dimensional complex manifold B. Then the Chern form c (~  m) is 
positive semi-definite and it vanishes if and only if ~m is a fiat subbundle of ~/F. 

To keep track of the information in the remaining Hodge bundles, we must 
keep in mind the alternation of signs in the preceding formula for c(GrJ). Following 
Griffiths [12, p. 147] we introduce the canonical bundle of a variation of Hodge 
structure (V, ~ o )  

rn m 

o~f(~U) = j=@l (Oct GrJ)| = . =  j_@l (Oct ~-J) " . =  

Since the metric on ~("K) induced by the Hodge metric has curvature 

~o("U) = ~. jTrace(0J), the associated Chern form i/2rc co(~) locally is expressed as 
j = l  

(i/2n) Y'. F. Iz~,llz dt ^ d~ which is semi-positive and as before we can prove (cf. [12, 
j k,l 

Proposition 7.15]). 

(1.3.2) Proposition. Given a variation of Hodge structure V = ~ o  3 ~- 13... 3 ~m D 0 
of weight m over a 1-dimensional complex manifold B. Then the Chern form for the 
Hodge metric on the bundle JY~(~U) is positive semi-definite and it vanishes if and 
only if all Hodge bundles ~J  are fiat subbundles of ~. 

(1.3.3) Remark. If ~/r is defined over 7Z, one has a period map �9 : B ~ F \ D  and 
flatness of all bundles ~ J  is equivalent with �9 being constant. In the general case 
~: /~-~D is a well-defined holomorphic mapping and flatness of all of the bundles 
~ J  means that ~ is Constant. 

2. Asymptotic Analysis of the Hodge Bundles and Metrics in the Curve Case 

2.1. The Quasi-Canonical Extension 

Let C be a smooth complex projective curve and let Co be the complement in C of 
finitely many points. For every p E C\C0 ,  a small loop in Co winding positively 
about  p determines an element in hi(Co), which we denote by ?p. Assume now that 
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data as in 1.1 are given (with B=Co)  and such that the local 
monodromy-operators  

Y~ = e(~),  p ~ C\Co 

are quasi-unipotent, i.e. (Tp ~ -  1) M+l = 0  for some non-negative integers v and M. 
This is the case in the geometric situation: the projective case is treated in [20, cf. 
Theorem 6.1], and [15]. For  the general case see [21, Sect. 2] or [4, Sect. 7]. 

We define ((, = e 2~i~) 

v~ = {v ~ v~; ( ~ -  ~ 3 )  M+ 1 v = 0} 

M 

N~ = log T~ = Z ( -  1)'(l/l) (T~-  1) t . 
1=1 

Then V, = (0) if va r 7/. and we have a decomposition 

= V~. (2.1.1) Vr o=<91 

To construct the quasi-canonical extension [6, p. 94] of the bundle ~ ,  we 
restrict V to a unit coordinate disc (A, t) centered at p e C~Co and we form the 
universal cover of A*: 

z : H-'* A*, z (z)=e 2~i'. 

Sections of (9~,(~U) correspond to holomorphic maps s : H ~ V  c satisfying 
s(z + 1)= Tps(z). If v e V~ we obtain a section 6e  F((gd,(~)) by setting 

(2.1.2) f(z) = exp (2nio~z + zN,)  . v ,  

and if {vl . . . .  , v,} is a basis of V c adapted to the splitting (2.1.1), the sections 
{~1 ..... 17,} trivialize Cd,(~). If j :  C o ~ C  is the inclusion, the (gc-submodule ofj ,"U 
with basis {~1,-.., 6,} defines an extension of V to all of C as a locally free sheaf. 
This sheaf is independent of the choice of basis and of the choice of the t-coordinate 
and is denoted by '~U. It carries a connection '17 with logarithmic residues, in fact, 
we have 

"V~ = (2nio~ + N~)~| 

and the residue at 0 [w.r. to a basis adapted to (2.1.1)] is the matrix 

�9 e + ~ ~ . For  later reference we introduce the rational number 

(2.1.3) ep=Trace(Resp 'g)=  ~ e d i m e V  ~. 
0 < ~ < 1  

Sometimes it is useful to pull back (_0A,('U) via the v-sheeted cover 

o~/l*--. A* (cr,(u)=u~). 

In a*(V)) we have Tp ~ as unipotent monodromy,  so repeating the preceding 
v + l  

construction with T], using now N = log Tp ~ = Y. vN,,, we find a holomorphic 
~ = 0  
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section g'(u)=exp(1/2ni Nlogu)V, for a*((ga,(~/)) and we have 

(2.1.4) a*(v') =uWf ' . 

Let us finally consider a variation of Hodge structure {o ~~ or Counderlying "U. 
The canonical extension of the Hodge bundle ~k  is defined as follows. We define 
isomorphisms ~bz of V c by letting r g(z)(v e V,). The subspaces r  l~-k(z) are 
Tp-invariant and give a holomorphically varying subspace '~k(t) of '~(t)( t  = Z(Z)). 
The corresponding section of the appropriate Gragmann bundle is algebraic with 
respect to the intrinsic algebraic structure on ' ~  (compare [20, pp. 234-236]), 
hence extends over the origin. This gives '~k(0)C'U(0), and doing this at each 
puncture yields ,~k, the canonical extension of ~-k. From the construction it 
follows that ,~-k is a locally free subsheaf of 'V  and that v ~ 'ffk(0) if and only if 
there exists a germ of a holomorphic section w of ' ~  near 0 such that f +  tw is a 
holomorphic section of ffk in A*. 

2.2. Asymptotic Analysis of the Hod9 e Metric 

In view of later applications, we need bounds for the Hodge metric and its 
logarithmic derivatives when a point on the curve C approaches a puncture C\Co. 
Schmid's asymptotic analysis in [20] can be modified slightly to give an 
asymptotic expansion for Hodge-length from which these bounds are derived. We 
follow the outline given by Zucker in [25]. 

As before, we let (A, t) be a coordinate disc centered at a puncture p ~ C~Co, and 
we let z:H--+A* be the universal covering of A*. The theory of the period map (cf. 
Sect. 1.2) gives a holomorphic map 

~ : H ~ D  

In order to simplify the argument, we assume that Tp is unipotent. Later on we shall 
make the necessary changes in the quasi-unipotent case. The map ~P:H--,D 
defined by ~(z) = e x p ( -  zN) ~(z) (N = log Tp) satisfies ~(z + 1) -- ~(z), so it descends 
to ~u : A* ~D.  By Schmid's nilpotent orbit theorem [20, 4.9] this map extends to a 
holomorphic map ~ :A ~ D  and the nilpotent orbit exp(zN)o ~(0) is strongly 
asymptotic to ~(z). Let us paraphrase the argument on [loc. cit., pp. 252-253] 
leading to a bound on the Hodge metric, to show that actually a nice asympotic 
expansion holds. Let 0 e D be some reference Hodge filtration. One compares the 
two Hodge filtrations exp(zN) o 7'(0) and ~(z) by transporting them isometrically 
back to 0 and by measuring in the Hodge metric there. Let us start with some 
real-analytic trivialization of the bundle of Hodge frames in some neighbourhood 
U of 0. If {v J(0)} is a Hodge frame for the reference Hodge filtration, we thus have a 
real-analytic map 

g: U-~G R 

with g(0) = 1 and such that {~(u)vJ(0)} is a Hodge frame for u ~ U. The SL2-orbit 
theorem [loc. cit, Theorem 5.13] yields a real-analytic map 

n : H ~ G  R 
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with exp(zN)o T(0)=n(z)o0 (in Schmid's notation n(z)=m(z)(s(z)) -1, [loc. cit., 
p. 253]). As mentioned before, the nilpotent orbit theorem implies that the element 
s(z) e G~ defined by 

s(z) = g o (n(z)- 1 o ~(z)), Imz >> 0 

is strongly asymptotic to 1 in any G~-invariant norm. The inverse of the isometry 

re(z) = s(z) n(z) e G~ 

is now used to transport q(z) back to 0. 
The nilpotent map N determines a filtration (m is the weight of the Hodge 

filtration) 0 C Wo C W1 C...  C Wzm- ~ C Wzm = Ve [lot. cit., p. 247] and if v e Wk, 
Schmid obtains an expansion (z = x + iy) 

m(z)- iv = s(z)- a {y(k-m)/2 exp(-- xN)v  + y(k-m- 1)/2 exp(-- xN)vm+ 1 

+lower  order terms} 

So for ~(z)=exp(zN)v we obtain an expression [-26, (4.6)]: 

m(z)- 1~ = s(z)- 1 {y(k-m)12 exp(iyN)v + lower order terms} 

f [ M  i j ~ ( 
=s(z)-l~y~k-m)/2| Z ~ N J v ]  +lower  order terms 

( \ j=0J .  / 

and for the Hodge metric we find (v, w E Wk): 

h( g(z), k(z))~) = h(m(z)- 1 ~(z), m(z)- 1 k(Z))o 

= f (e2~i~) {yk- mak(V ' W) + yk- m- a a, + l (v, W) +. . .  }, 

where g(z )=f (e  2~iz) is a real-analytic function, defined for Imz>>0 and with 
9(oe) = 1, and where ak +j(v, w) (j > 0) are real constants depending on v and w alone. 
Because of the construction of the canonical extensions 'o~, as given in Sect. 2.1, 
these expansions are also valid for sections of '~-" near the punctures (see [26, 
(5.3)]). Similarly, one finds bounds for sections s(t) generating the determinant 
bundle de t ' f f "  near a puncture (or the canonical bundle ~r(,~)). The expansions 
are of the form 

h(s(t), s(t)) =f ( t )  {(-logltl)  k-mh k +( - log[ t [ )  k-m-lhk+l + ' " }  

for some real-analytic f ( t )  with f(0) = 1 and, k an integer between 0 and 2m. 
The general case follows easily, using (2.1.4). One finds that the Hodge-norm 

for a section s(t) generating de t ' f f J  near a puncture has an asymptotic expansion of 
the form 

h(s(t), s(t)) = ]tl- 2~/g(t) {(log(1/]tl)) ~ + lower order terms}, 

where g(t) is real analytic, g(0) + 0, a~ e II), a~ > 0, and tip ~ Z, - m < tip < m. In the 
special case when o~J is a flat subbundle of ~,, the residue ap(o~J) = Trace (Resp'Vlff j) 
is well-defined [see (2.1.3) for the casej  = 0] and the number a~ coincides with this 
residue. Summarizing, we have 

(2.2.1) Proposition. I f  s(t) is a generating section of the line bundle d e t ' ~  j in a 
coordinate (A, t) centered at p ~ C~Co, we have the following expansion for its 
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Hodge-norm 

h(s(t), s(t))= [tl-2"~'9(t) {(log(1/Itl)) t~p + lower order terms}, 

where ~ e tI~, ~ > O, tip ~ Z, - m < tip < m and wheere 9( t) is analytic with 9(0) + O. I f  
~ J  is a flat subbundle of ~/" the number ~ is equal to the residue ~p(~J) and vanishes 
i f  and only if Tp has unipotent action on the ll?.-subvector space of V C which 9ires the 
f iat  subbundle ~J.  

The last clause follows, since Trace(Resp'Fl~ "j) = S~, where the summation is 
over those ct for which V,c~o~J :t: (0) (repeated dim c V~c~o~J times), so it vanishes if 
and only if the IE-subvector space of V c giving ~ J  belongs entirely to V0, i.e. if and 
only if Tp acts in a unipotent manner on this subspace. 

(2.2.2) Remark. An analogous statement holds for the linebundle 
~ ( ' ~ )  = (~)(detGrJ)| (~)(det~-J). In this case flatness of all the o~J's implies 

J J 
that the Hodge length of a generating section of ~ ( ' ~ )  near a puncture has an 
expansion 

h(s(t), s(t)) = I tl - 2 =. g(t) {(log (1/Itl)ap +...  }, 

where ~p is the number Trace(Resy)  [see (2.1.3)], so it vanishes if and only if Tp is 
unipotent. 

3. Singular Hermitian Metrics on Line Bundles Over Curves 

As in Sect. 2 we let C be smooth projective curve and Co the complement of finitely 
many points of C. We let 5r be a holomorphic line bundle on C. A hermitian metric 
h on s is said to be 9ood at p ~ C\Co (cf. [18] Sect. 1) if for some coordinate 
neighbourhood (A, t) centered at p and for a generating holomorphic section s of 
ff[A the following bounds are valid 

Cl(lOg(1/[tl)) ~ < h(s(t), s(t)) < C2(log(1/ltl)) p , 

(3.1) C1, C2 >0, fl a non-negative integer 

IO/Ot logh(s(t), s(t)l < C3 Itl- 1 (log(1/Itl)- 1, C 3 > 0 

102/OtJt log h(s(t), s(t)J < C41tl- 2 (log(1/It{)- 2, C 4 > 0. 

This notion is independent of the choice of s and of (A, t), and since it easily seen 
that 

F(A, ~ )  = {s ~ F(A*, ~) ;  h(s(t), s(t)) < C(log 1/Itl) p 

for C > 0, fl depending on s} 

it follows that if there is to exist a metric h on ~ lCo  good at all points p ~ C\Co, the 
extension Za of La 1Co cannot be arbitrary. It is uniquely characterized by the above 
growth condition. For instance, if L~lCo is the determinant of a Hodge bundle ~ J  
as in Sect. 2, the line bundle 5e must be the determinant of the canonical extension. 
Mumford proves [loc. cit.] that for a metric h of Zg which is good at each point 
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| 
p ~ C\Co, the Chern form ~n/a~logh is integrable [this is implied by the third 

bound in (3.1)] and its integral computes c1(~) [this is implied by the second and 
the third bound in (3.1)]. 

(3.2) Example.  Suppose, one has an asymptotic expansion 
h(s(t), s(t))=f(t){log(I/It])  ~ + lower order terms} with/~ ~ ~E and f ( t )  real analytic, 
f(0)+0,  I claim that the bounds (3.1) hold. The first bound is clear, while the 
formulas for the logarithmic derivative 

and 

t3/t3t (log(log 1/Itl) a) = t-  X(log 1/Itl)- ' 

t32/t3t~t(log(log(1/ltl) ~) = t - 2(log 1/Itl)- z 

show that the other two bounds hold as well. 
If we consider the asymptotic expansion of the Hodge norm of a generating 

section of the line bundle det '~J  near a puncture (Proposition 2.2.1) we see that the 
Hodge metric h is nearly good. In fact It[ 2~-~ h(s(t), s(t)) has an expansion as in the 
previous example and this implies that for any smoothing h~ of the metric h, which 
coincides with h on the annulus 2/3e< It} <4/3e the limit 

lim 1 ~ ~logh,(s(t),s(t)) 
~o  2hi It[ =e 

exists and is equal to ~.  This motivates the following notion: we say that a 
hermitian metric h for AalCo has residue % at p, if [tl2"p h(s( t), s( t) satisfies the bounds 
(3.1), so that 

(3.3) %= lim ~ ~ Jlogh~(s(t),s(t)), 
r 0 ZT~l Itl=e 

where h~ is a smoothing of h, chosen as above. Now we have (cf. [13,Lemma 5]). 

(3.4) Proposition./f s is a holomorphic line bundle on C and h a hermitian metric on 
5YlC o with residue % at p ~ C~C o. Then the (1, 1) form OJlogh is integrable on C o 
and 

/ - - x  

c 1 ( ~ ' ) : ( ~ ] ~  0~-logh+ ~ %. 
\ z ~ l  ,I Co p~C\Co 

Proof. Let he be a global smoothing of h which behaves as the preceding smoothing 
near the punctures. Then 

c1(y~) = L ~ O~-logh~ 
ZT~! C 

Z lim ~ ~logh~(s(t),s(t) 1 . 
p~C\Co ~--*0 [t[ =~ 
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Since d~-logh and a~-log(Itl2~h) are equal on A*, and since the estimates (3.1) 
assure convergence of S ~Jlog(Itl2~h), the first term in this expression converges. 

A* 

By (3.3) the limit on the right equals ~p, thereby completing the proof. [] 

(3.5) Remark. Comparing this result with [13, Lemma 5] we see that in our case 
integrability of the integral is guaranteed by the very definition of the notion of 
"residue". In applications (see Sect. 4) it therefore suffices to establish certain 
asymptotic expansions. 

4. Proof of the Main Theorem 

(4.1) Theorem. Let C be a smooth projective curve and Co C C a Zariski-open subset 
on which one has a (real) variation of Hodge structure V = ~ ~  D~mDO of 

m 

weight m. Let ,~1 be the canonical extension of ~ J  and let ~('~/F) = (~) (det '~J). We 
have j= 1 

(i) deg ( '~  m) __> 0 and equality holds if  and only if  ~"~ is a f la t  subbundle of ~ and 
the local monodromies are unipotent on ~'~. 

(ii) deggff('~)_>_ 0 and equality holds i f  and only i f  all the H odge bundles ~ J are 
f la t  subbundles of ~ and all local monodromies are unipotent. 

Proof. The degree of a holomorphic line bundle LZ on C is c1(~r ). The Hodge 
metric h i on d e t ( ~  j) has a certain asymptotic behaviour, expressed by Proposition 
2.2.1. According to the discussion after Example 3.2, it follows that it has residue ~J 
at p, with ~__> 0. By Proposition 3.4 we have 

1 
cl(,~J) = cl(det,~-J) = ~ S 0~-logh j + ~ c~. 

Co p 

Now 9~idJloghr"=i/2ntraceOm, where O r" is the curvature of the metric 

connection on ~r", so by Proposition 1.3.1 its integral over Co is non-negative and 
vanishes if and only if ~ "  is a flat subbundle of ~ .  So cl('~r")>O and equality 
holds if and only if ~-" is a flat subbundle of ~ and all the ~p vanish. Again by 
Proposition 2.2.1 this occurs if and only if ~-m is flat and Tp acts in a unipotent 
manner on ~r" near each puncture p e C\Co. This concludes the proof of (i). The 
proof of (ii) goes along similar lines, using semi-positivity of the Chern from of 
3ff(~) (see Proposition 1.3.2) and the meaning of the numbers ~p in this case (see 
Remark 2.2.2). [] 

(4.2) Remark. Suppose that the automorphism group of the fibre of a certain flag of 
the ~J ' s  is finite (e.g. if the variation is defined over Z). Then, if it consists of flat 
bundles on which the local monodromies Tp act in a unipotent manner, one must 
have Tp = id and also the canonical extension of the flag must be flat over C. 

(4.3) Remark. If the Hodge structures at every point of Co are irreducible over R,  
then flatness o f~-"  implies that ~-" = ~-r"- 1 = = ~ o  = ~ for obvious reasons: if 
~-r" is flat it splits off as a direct summand, say ~ = ~-m@ ~1 and "U~ inherits from 
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{~ '}  a Hodge structure of weight m, so U~ =0, This situation often arises in 
geometry, so in that case it does not make any difference to look at ~m or at ~ ( ~ ) .  

5. Applications to Geometry 

5.1. The Main Theorem in the Geometric Situation 

Recall the geometric situation, described in Sect. 1.1, where now B = C o, a Zariski 
open subset of a smooth projective curve C. More precisely, we have a compact 
connected K/ihler manifold X and a surjective holomorphic m a p f  : X-+ C. We let 
C O be the set of critical values of f ,  so that f restricts to a smooth family of 
connected K~ihler manifolds over Co. The primitive cohomology groups 
H'~(X t, ~), t ~ C O of the fibres X, fit nicely together to a fiat vector bundle (~m, V) 
and the Hodge filtrations fit together to give a variation of Hodge structure of 
weight m on Co underlying A '~m. The Hodge bundles have canonical extensions to 
all of C, and can be described in geometric terms (cf. [21', Theorem 2.1 I]). In case 
m = n = dimeX t there is a connection with the relative dualizing sheaf: 

(~ = ~162 |  a~c- 

Over Co we have f.(COxlc]Co)= ~ "  and Kawamata  has shown [13, Lemma I]: 

f,(~Oxlc) = '~"  . 

The proof of this equation is highly non-trivial; it makes essential use of Schmid's 
asymptotic expansion as presented in Sect. 2.2. For details we refer to Kawamata's 
paper [13]. Cf. also [25, pp. 51-52]. 

Consequently, the main theorem translates as follows: 

(5.1.i) Proposition. The degree o f f  ,(O~xlc) is non-negative and vanishes if and only if 

~"=f,(o~Xlc[Co) is a f lat  subbundle of ~ " =  U H"o(Xb, ff2) and all local 
b~Co 

monodromies Te( p ~ C\Co) act in a unipotent manner on ~" .  

We want to translate the flatness of o ~ "  into properties of the smooth fibration 
f i r -  *(Co). Obviously, one needs a Torelli-type theorem for the fibres. To be more 
precise, if Co is the universal cover of Co and if D is as in Sect. 1.2 (but with 
F ~  ~= = F  "-1, since we only consider variations of F") the holomorphic 
"period map" ~ : Co--+D should be constant precisely, when the pulled back family 
has constant fibres and hence is trivial by a result of Grauert and Fischer [8]. 
Going back to Co, the Hodge bundle ~ "  should be flat precisely when f is an 
analytically local trivial family over Co. This will be certainly the case, if the generic 
smooth fibre Xb has the following property: 

(5.1.2) A germ of a deformation of X, is trivial if and only if the period map 
associated to the variation of the n-th Hodge bundle (n = dimeXt) is constant. 

This property is a sort of weak Torelli property for X, and in this form holds 
many cases, e.g. if ~t~x~ = One, for curves, for complete intersections in projective 
space [17]. 

(5.1.3) Theorem. Let f : X ~ C  as before. Then deg(f,  COxlc)__>0. Assume that the 
Torelli property (5.1.2) holds for a generic smooth fibre o f f  Then deg(f,(OxLc) = 0 / f  
and only if the following two properties hold. 
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(i) The smooth fibres of  f form a locally trivial f ibre bundle (in the complex 
analytic sence ) 

(ii) The local monodromy around a singular f ibre is the identity on H"' O(Xb), b 
near a critical value of f. 

Proof. The inequality follows from Proposition 5.1.1. By the same proposition, if 
equality holds ~-" is a flat subbundle of Jog" and the infinitesimal Torelli property 
garantuees (i). For (ii), we observe that the group of isometrics of H~o(Xb) coming 
from automorphisms of X b respecting the K/ihler class is finite by [16, Proposition 
2.2]. So if f [f-1(Co) is a fibre bundle and if the local monodromies are unipotent, 
they must be the identity. Since this last hypothesis is verified by Theorem 4.1, we 
are done. [] 

The next question is whether the fibre bundle f [ f - 1 (Co)  is trivial near the 
punctures. To answer this, we introduce the operation of extracting an N-th root. 
We let Y be a K/ihler manifold., n : Y ~ A  a proper holomorphic map with 
connected fibres, such that 0 e A is the only critical value of n. So n is smooth over 
A* with compact connected K/ihler manifolds as fibres. We shall refer to this 
situation as a Kiihler degeneration. If a N : A u r A = A t  is the map given by 
aN(U) = U N = t, we can form the fibre product Y ~ Au and its normalisation YN maps 
to Au. In general YN has singularities over the origin and we choose some resolution 
f'N of YN and the resulting K/ihler degeneration nN : YN~Au is called a degeneration 
obtained after extracting an N-th root of n. 

k 

If Yo = n -  1(0) is a divisor Z niDi, taking N any multiple of 1.c.m. (n I ..... nk) we 
i=1 

find a fibre n;~ 1(0) having at least k components with multiplicity 1 (the proper 
transforms of Di) and hence nN has a section (perhaps after shrinking A, 
somewhat). 

Let us apply this to the situation of the preceding theorem. So, near a puncture 
f is a fibre bundle with typical fibre F, hence is associated to a representation 
O : n l(A*)~Aut F. Moreover 0(7) (7 a generator of n I(A *)) acts trivially on H"' ~ 
so by [16, Proposition 2.2], some power Q(yM) belongs to Aut~ Since the 
Torelli-property implies that F cannot be ruled, by [16, Theorem 4.9] it follows 
that T = Aut~ is a complex torus. After extracting an M-th rooth the fibre bundle 
has a T as its group and by the preceding remark, after further extraction of roots 
and shrinking of A*, the associated principal bundle has a section, hence is trivial. 
So also the F-bundle is trivial. It follows that near a puncture, after extracting a 
root, the bundle is trivial. So we have proved. 

(5.1.4) Lemma. In the situation of  Theorem5.1.3 assuming deg(f,,COxlc)=O, 
locally in a suitable neighbourhood ( A, O) of a critical value 0 ~ C off, after extracting 
a suitable N-th root, the fibration f l f -  1(A*) is trivial. 

A further question is whether one can extend the fibre bundle f l f - 1 (Co)  over 
the punctures. This we treat in the next subsection. 

5.2. Degenerations of Trivial Families 

The crucial auxiliary result is the following. 
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(5.2.1) Lemma. Let ~ : Y ~ A be a Kgihler degeneration and let S* be a subvariety of 
Y* = re- I ( A * ) which is proper over A *, there exist points t o E A* arbitrarily close to 0 
such that, perhaps after shrinking A and extracting an N-th root, the subvariety S*o 
extends to a cycle S on Y, which is f lat  and proper over A. 

Proof. We employ the relative Chow-scheme p : cg(YIA)~A introduced by Fujiki 
[9]. Since Y is K/ihler and n is proper, by [10, Theorem 5.2], cg(YIA) has at most 
countably many components, all of which are proper over A. Arbitrarily near 0 
there are points to ~ A* such that the connected component cgo of Cg(XlA) containing 
the cycle S* o does not entirely map to to (here we use countability). Since #o = #1~0 
~ A  is proper, after shrinking A and taking an N-th root, the holomorphic map #o 
has a section. This section yields the desired S fiat over A. [] 

(5.2.2) Corollary. Let f : X ~ A  and f ' : X ' ~ A  be two Kiihler degenerations, 
isomorphic as families over A*. Then, perhaps after shrinking and extracting an N-th 
root, there is a commutative diagram 

A 

with m a bimeromorphic map inducing biholomorphic maps between the fibres over 
A*.  

Proof One can apply the previous lemma with Y a resolution of singularities of 

X x X' and S* the graph of an isomorphism X* ~(X3*. So, after shrinking and 

extracting a root, S* extends to a cycle S C X x X" such that S,o = S* o. Since St*o gives 

an isomorphism and since the set {t ~ A, St does not give an isomorphism} is an 
analytic subset of A, after shrinking A still further, all cycles St, t ~ A* give 
isomorphisms. The cycle S then gives the desired meromorphic 
correspondence. [] 

This corollary in particular applies when a given K~ihler degeneration over A is 
trivial over A*. 

(5.2.3) Corollary. Let f "  X -~  A be a Kdhler degeneration, such that f [ f -  l(A*) is 
biholomorphically a product. Then, after extracting an N-th root and shrinking A, 
the new degeneration is bimeromorphically a product. 

5.3. A Generalization of a Result of  Arakelov 

Let us combine Theorem 5.1.3, Lemma 5.1.4, and Corollary 5.2.3. The last two 
results describe the situation locally and since we can always find a finite cover o- : D 
-~ C branched at most in the critical points of f and one further point such that 
near every critical point ~r is totally ramified with given order, we arrive at the 
following result, which is a generalization of [1, Theorem 1.1]. (Also compare [19, 
Proposition 5].) 
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(5.3.1) Theorem. Let X be a compact connected (n + l )-dimensional Kdhler manifold, 
f : X ~ C  a holomorphic map onto a curve and C\Co the set of critical values. We have 

d = degf  , cOxlc > O . 

I f  d = 0  and the generic smooth fibre has the Torelli-property (5.1.2) f is a fibre 
bundle over Co; after a finite covering ~ : D ~  C branched at most in critical values of 
f and one further point, the fibre product X x D is bimeromorphic to a fibre bundle 
over D. [] c 

(5.3.2) Corollary. I f  the generic fibre F o f f  has the Torelli-property, e.g. if mv ~- (Or, 
the conjecture C + ,.1 (cf.the lntroduction) holds. 

Proof. As mentioned in the Introduction, the conjecture C,, 1 has been proved by 
Kawamata [13]. So, to prove C + it suffices to see that if C is an elliptic curve the n, 1,  

assumption to(X)=0 implies d=0 ,  because then we can apply Theorem 5.3.1. 
Suppose that on the contrary d>0.  Then by Riemann-Roch dimcH~ | 
grows like av(a> 1) for v large. On the other hand there is a natural injection 
H~174176 (it comes from the injection f*f,~OXlC-,~Oxlc) , so 
~oxt c = oU x has positive Kodaira-dimension contradicting •(X)= 0. [] 

Let us give an example to show that if in Theorem 5.3.1 we have d--0  we really 
have to take a finite cover before we arrive at a situation where the bundle is 
bimeromorphically locally trivial. 

(5.3.3) Example. Let E be an elliptic curve and F a curve of genus g > 2 having a 
nontrivial automorphism ~b of prime order p, acting as a translation on E. The 
quotient X of E x F by the cyclic group generated by ~b is smooth and if C = F/((~ k} 
we have a holomorphic m a p f : X ~ C  induced by the projection E x F ~ F .  Away 
from the fixed points ore  on C the fibration is locally a product, but f itself is not a 
product bundle. The Hodge bundle ~ 1 however is fiat and the canonical extension 
is a flat g-bundle on C, becoming trivial when lifted to F. 

The point of the previous example is that the structure groups of the bundles 
f i r -  1(Co) and ~ 1  differ, because of the existence of non-trivial automorphisms 
acting trivially on H 1, O(Xc) (namely translations of X c ~ E). In the final section we 
shall investigate what happens if this is not the case. 

5.4. A Special Case 

(5.4.1) Proposition. Let f : X ~ 3  be a Kdhler degeneration. Assume 

(i) The family f l  f - l(d*) is a fibre bundle in the analytic sense with typical fibre F 
of dimension n. 

(ii) The local monodromy is the identity on H"' ~ 
(iii) The group of automorphisms of F act faithfully on H"'~ Then X is 

bimeromorphically equivalent to F x d. 

Proof. The three assumptions imply that f l f -  1(3.) is a trivial fibre bundle in the 
analytic sense, so we can apply Corollary 5.2.3. We only have to show that we can 
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take N = 1. Let us consider the operation of extracting an N-th root in more detail. 
We have a commutative diagram 

Z X (2) 

iv'/ 
FxAu . . . .  "XN X(1)= XN / 77N 

l' 
Ao ,. & 

% 

Here X N is the normalization o fX x A.. It admits a natural ZN-action covering the 

action of Z N on A n given by multiplication with N-th roots of unity. The manifold 
-(N is a ZN-equivariant resolution of singularities (compare [22, Theorem 2.12]) 
and n:X(E)~X (1)=)~N/ZN is a resolution of the finitely many 
quotient-singularities of X (1). Finally r and q are proper modifications establishing 
a bimeromorphic equivalence between )~N and Y x A,. We shall make repeated use 
of the following 

Lemma. I f  one has a commutative diagram 

U ~ V  

A 

with U and V complex manifolds, a a proper modification and qk and lp proper maps, 
then the maps Rkq~,(gv~Rk~p,(gv induced by ~ are isomorphisms (h =0, 1 .... ). 

This follows from the fact that the natural maps Hk(lp-l(W), (gv) 
~Hk(q)- 1 (W), (gt:) induced by a are isomorphisms for all open subsets W of A. 

If we apply this lemma to the left hand triangle we find H"'~174 
-~(R"fs),(9~,~(R"fN),(gx,,. The group ZN acts on the stalk at 0 of (R"fs), (9~N and 
the quotient map 7, N ~ X N / Z N = X  (2) induces an injection (cr*(R"fx(gx))o 
~((R"fN),(gx~)o onto the Zu-invariants. On the other hand, since X 1 has at most 
cyclic quotient singularities, R"r~,(gx~2~ =0  for m>  1 [23] and one obtains an 
isomorphism R"g,(gx,~R"h,(gx~2~. Since 7r(1)orc is bimeromorphic, the 
preceding lemma says that R"f,(9 x and R"h,(gx~ are isomorphic. Combining 
everything we have an isomorphism 

G~,((R% COx))o ~/-r, ~174 
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By relatively duali ty (see [14, Coro l la ry  (24)]) R"f.(9 x is dual  to 
f .  Ogxl n. This last sheaf is the canonical  extension of  the free sheaf ( f .  ~oxld)lA *, hence is 
itself free. So R"f.(9 x is free and the stalk of  tr*(R"f.(gx) at 0 is H"'  ~174 The 
previous equat ion  shows that  H"'~176 z~', hence N = I  since 7Z N acts 
faithfully on H" '~ by assumption.  [] 

(5.4.2) Corollary. I f  in the situation of Theorem 5.3.1 with d = 0 in addition to the 
validity of the Torelli-property for the 9eneric fibre F, one also knows that A u t F  acts 
faithfully on H"'~ the manifold X itself is bimeromorphic to a fibre bundle over C 
and it becomes trivial after a finite unramified covering. 

Proof. Only  the last s tatement  requires proof. It  follows directly f rom the fact that  
the g roup  of  the fibre bundle must  be finite by [16, Propos i t ion  2.2], since it 
preserves a Kfihler class and since moreover  A u t ~  = { 1} as a consequence of  the 
assumption.  []  

Acknowledgements. Clearly I owe much to Fujita's pioneering work and to Kawamata's paper [ 13]. 
Special thanks go to Steve Zucker, who patiently explained the details of[25] and who also gave a 
critical reading of an earlier version of Sects. 1-3. 
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