A family of K3 surfaces and ... (3). D | G '

BeUkerS, F.; Peters, C.A.M. ZEITSCHRIFTEN
Journal fur die reine und angewandte Mathematik —

Volume 351 /1984 / Article

Nutzungsbedingungen

DigiZeitschriften e.V. gewéhrt ein nicht exklusives, nicht Ubertragbares, personliches und beschrénktes Recht auf Nutzung dieses
Dokuments. Dieses Dokument ist ausschlief3lich fur den personlichen, nicht kommerziellen Gebrauch bestimmt. Das Copyright bleibt bei
den Herausgebern oder sonstigen Rechteinhabern. Als Nutzer sind Sie sind nicht dazu berechtigt, eine Lizenz zu Ubertragen, zu transferieren
oder an Dritte weiter zu geben.

Die Nutzung stellt keine Ubertragung des Eigentumsrechts an diesem Dokument dar und gilt vorbehaltlich der folgenden Einschrankungen:
Sie missen auf sémtlichen Kopien dieses Dokuments alle Urheberrechtshinweise und sonstigen Hinweise auf gesetzlichen Schutz
beibehalten; und Sie diirfen dieses Dokument nicht in irgend einer Weise abéndern, noch dirfen Sie dieses Dokument fiir 6ffentliche oder
kommerzielle Zwecke verviefaltigen, offentlich ausstellen, auffiihren, vertreiben oder anderweitig nutzen; es sel denn, esliegt Ihnen eine
schriftliche Genehmigung von DigiZeitschriften e.V. und vom Herausgeber oder sonstigen Rechteinhaber vor.

Mit dem Gebrauch von DigiZeitschriften e.V. und der Verwendung dieses Dokuments erkennen Sie die Nutzungsbedingungen an.

Terms of use

DigiZeitschriften e.V. grants the non-exclusive, non-transferable, personal and restricted right of using this document. This document is
intended for the personal, non-commercial use. The copyright belongs to the publisher or to other copyright holders. Y ou do not have the
right to transfer alicence or to give it to athird party.

Use does not represent atransfer of the copyright of this document, and the following restrictions apply:

Y ou must abide by all notices of copyright or other legal protection for all copies taken from this document; and Y ou may not change this
document in any way, nor may you duplicate, exhibit, display, distribute or use this document for public or commercial reasons unless you
have the written permission of DigiZeitschriften e.V. and the publisher or other copyright holders.

By using DigiZeitschriften e.V. and this document you agree to the conditions of use.

Kontakt / Contact
DigiZeitschriften e.V.
Papendiek 14

37073 Goettingen

Email: digizeitschriften@sub.uni-goettingen.de



A family of K3 surfaces and {(3)

By F. Beukers and C. A. M. Peters at Leiden

1. Introduction

VT3 ey L
<k> ( k > {"El m3 +m§1 2m3<n> (n+m> (n=1,2,3,...).

m m

. . b, o
It was R. Apéry’s surprising discovery, that s tends to {(3)=Y m™3 as n — oo and the
n 1

convergence is fast enough to prove irrationality of {(3), see [P]. Another remarkable
discovery of Apéry is, that a, and b, satisfy the recurrence relation

€)) n+13u,,, =B4n®*+ 5102+ 27n+ S)u, —nu,_,
(see [P]). The first few terms of {a,} and {b,} are given by

{a,} =1, 5, 73, 1445, 33001, 819005,. . .,

351
{b"}=0,6,—4—,.... -

Consider the generating functions
LW)=X a,t", B@)=3 b,t" and R()=L(t) {(3)—B(?).
(1] 0
As a consequence of (1) these functions satisfy the differential equations
¥)) Lot (t)=0, LRB()=5, LR(t)=-5

where L is the differential operator given by

d\3 d\? d
— (44 3 2 3__ 2 2 _
B)  L=(*—343+1 )(—dt) +(61°—15312 4 31) <—dt) + (TP 11204 1) 2+ (1—5).

s
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There has been a strong suspicion that the equation Ly =0 and a similar equation
corresponding to Apéry’s irrationality proof for {(2), “must come from algebraic geo-
metry”. For the equation corresponding to {(2) the first author has shown that it is
indeed the Picard-Fuchs equation of a modular family of elliptic curves [Be2]. In this

paper we prove that Ly =0 is in fact the Picard-Fuchs equation of the family of algebraic
surfaces given by '

) 1—(1-XY)Z—1XYZ(1 - X)(1-Y)(1—-2Z)=0

where ¢ is the parameter of the family. For the definition of Picard-Fuchs equation,
Gauss-Manin connexion, etc. see [Ka1,2]. The central result of this paper is that, for

general ¢, a surface given by (4) is birationally equivalent to a K3 surface with Picard
number 19.

Before stating the Main Theorem and its consequences in section 3 we give a brief

overview of the terminology concerning K3 surfaces in section 2. In section 4 we then
prove the Main Theorem.

We close this introduction with a word of apology to the reader who is not well
versed in algebraic geometry. In order not to lose the number theoretical reader too soon,
we have tried to give the proofs in an extensive manner with references for further
reading. Furthermore, we hope that the Main Theorem and its Corollaries contain
sufficiently little geometry in order to pass their content also to the non-geometer.

2. Some properties of K 3 surfaces

A K3 surface X can be defined as a compact, simply connected non-singular
complex-analytic surface having a trivial canonical class. Examples of such surfaces are
given by non singular surfaces of degree 4 in P3 or by twofold coverings of P? branched
along a nonsingular curve of degree 6.

Since X is simply connected the cohomology groups H'(X, C) are trivial for i=1, 3
and have rank 1 if i=0, 4. The group H%(X, Z) is a free Z-module of rank 22. Endowed
with the bilinear symmetric form {, ) coming from the cup product, it becomes a uni-
modular lattice of signature (3, 19). Up to a scalar multiple, there is a unique holomorphic
2-form wy on X. The cohomology class [wy] of X spans the subspace H*°(X, C) of
H?(X, C) and satisfies the well-known relations {[wy], [0wx]> =0 and {[wy], [@x])>0.

The collection of all K3 surfaces is parametrised by a connected 20-dimensional
manifold M. However, the algebraic K3 surfaces form a countable union of 19-dimen-
sional irreducible subspaces. Furthermore, those algebraic K3 surfaces having k or more
divisors independent in homology form a dense countable union of subvarieties of
dimension 20—k inside M.

Let X be an algebraic K3 surface. The subgroup of H,(X, Z) generated by the
divisors of X is the Néron-Severi group of X and its rank is called the Picard number
of X, denoted by p(X). We have that p(X) <h"! =rank, H"!(X, C)=20. K3 surfaces
with p(X)=20 form a discrete countable family. They were classified in [Sh1]. In this
paper we shall be interested in a (non constant) family of K3 surfaces with Picard num-
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ber 19 which arises naturally in connection with Apéry’s irrationality proof of {(3). From
the foregoing it follows that its parameterset maps to one of the countably many irreduc-
ible curves in M corresponding to K3’s with Picard number =19.
For more information on K3 surfaces one may consult for example [GH], p. 590,
[BPV], Ch. VIII or [LP].
3. The results

Let a, be the numbers defined in the introduction. Let P,(x) be the polynomial
of degree n given by

1/4dY " k
ro= (g ra-mr= £ (1) (1) et

n\? (n+k\ 1 1 1
a"=2<k> ( k >=m|x|§=1;P"(X)P"(;>dx'

By Cauchy’s residue theorem the latter integral equals

Notice that

P P
j—- n(1X)_x,,)EJ’) dxdy

and this equals

(Y F.(x) £.())
(5) |, e e

[y|=2
|z|=2

Following the same arguments as in [Be1, p.271] we see that this integral equals

dXxdydzZ

(1N X=X Y (I=Y) Z"(1=Z)"
" \2mi £ (1-1-xY)Z)+!

where the integration is over a suitable 3-dimensional closed integration area S. Hence

d(t)'—’(m) g1_(1_XY)Z-1XYZ(1—X)(1—Y) 1-2)°

Denote the projective algebraic surface with affine equation
1-(1—-XY)Z—1XYZ1-X)(1-Y)(1-2)=0

by S,, and denote the differential form in the expression for &/ (¢) by ,. The surface S,
is exactly the polar locus of ,. A straightforward computation shows that the three
lines at infinity given by X=0, Y=0, Z=0 respectively, consist of singular points
of S,. If t¢ {0, oo, (]/511)4} there are no other singular points on S,. If =0 or oo
then S, becomes reducible. If t=([/§i 1)% the surface S, acquires a finite double point.
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In retrospect, we have proved the following,

Proposition. Let S,, Q, be as defined above. Then there exists a closed real three-
dimensional area S in C3\S such that of (t)=Q2mni)™3 jQ Moreover, by (2), (1)
satisfies the differential equation Lsf =0.

We now show that the integral {Q, where S is a closed three dimensional area
S

in C3\S,, is in fact a period of a two form on S,. To this end we use the procedure

described in Griffiths [Gr], p. 470. In this procedure we rely on the fact that as a con-

sequence of Stokes’ theorem, [, depends only on the homology class of S in
N

H,(C3*\S,, Z). We now shrink S to a small tube around a 2-cycle on S, as follows.
Write S=0R, where R is a 4-chain in C3. We may assume that R is in general position
with respect to S, and thus R meets S, transversely in a 2-cycle y lying on S, (since
O(R-S,)=0R-S,+R-3S5,=0). Let T,(y) be the set of points z of R with distance
(z, y) <e. Because of transversality, for sufficiently small ¢ a point z in T,(y) is given
uniquely by a pair (v, w) where v lies on y and w belongs to the normal e-disc to S,
at v. Thus T,(y) is a solid tube of discs surrounding y. The boundary 07,(y)=T,(y) is
a family of disjoints circles lying in C3\.S, and parametrised by 7. Clearly

O(R=T,(»)=S—1.(

so that S and 7,(y) are in the same homology class. We call 7,(y) the e-tube lying over 7,
and 1(y) will be any 1,(y) for & sufficiently small. Thus we have, to every S e H;(C*\S,,Z)
corresponds a finite 2-cycle y € H,(C* N S,, Z) such that

[Q=1Q,.
N ©(y)

By the Poincaré residue theorem we now have

1 dXndZ

S0 Ty I—(=XNZ—XYZA-X) (1 -Y) (1= 2)}

. dXndZ
’”{ XZ(1—t(1-X)(1-2Z)(1-2Y))

Define the (rational) 2-form w, on S, by

dxX ndZ
XZ(1—1(1-X) (1-2) A=2Y))

©) W=

We now state our
Main theorem. Let ¢ {0, 1, ([/Ei 1)*, 00}. Then,
i) The algebraic surface S, given by
1—-(1-XVZ—-tXYZ1-X)(1-Y)(1-2Z)=0

is birationally equivalent to a K3 surface X,.

31 Journal fiir Mathematik. Band 351
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il) The form w, given by (5) is, apart from a scalar factor, the unique holomorphic
2-form on X,.

i) The Picard number satisfies: p(X,) 219 and equality holds for all but countably
many t.

Before proving this theorem in section 4 we state and prove two corollaries.

Corollary 1. The periods | w,, where y € H,(S,, Z), span the space of solutions of the

v
differential equation Ly =0, where L is the linear differential operator defined in (3).

Corollary 2. Three solutions of Ly =0 around t=0 are given by

y0=d(t)’
n=A M) logt—3—-3t—-912+103¢3+5822¢* + ---,

y2=—%d(t) log?t + y, logt—361— 55812 — 1115413 —255225¢% — ...

where o (t) is the generating function defined in the introduction. Moreover, they satisfy
the relation

2y, 7, +9y5=»7.

Remark. Although the expansions of y,, y, in powers of ¢ seem to suggest it, not
all coefficients are in Z.

For the proof of Corollary 1 we need a
Lemma. Let L be the differential operator defined in (3). Then

i) L is irreducible, that is, L cannot be written as the product of two differential
operators of order =1 with rational coefficients.

ii) the C-linear space spanned by all branches obtained by analytic continuation of
a nontrivial solution of Ly =0 has dimension 3.

Proof. i) Notice that Ly=0 is a Fuchsian differential equation with local ex-
ponents (0,0, 0) at =0, (0,41,1) at t=([/§i1)“ and (1,1,1) at t=o00. For the defi-
nition of “Fuchsian”, local exponent, etc. see_Ince [In], Ch. XV. Suppose L can be
written as L=L,-L, where L,, L, are linear differential operators of order =1 with
coefficients in C(#). Let p e P,(C). It is clear that the local exponents of L,y=0 at p
form a subset of those for Ly=0. Morever, the non-apparent singularities of L,y =0
form a subset of {0, (]/ii 1)*, 00}. We now recall Fuchs’ formula [In], Ch. XV

(6) > {ap—%k(k—l)}=—k(k—-1)
p €P(C)
where k is the order of a Fuchsian differential equation and o, is the sum of its local
exponents at p. Only for the singularities of the differential equation the summand is
non-zero. We apply this formula to L, y=0. First let k = order of L, be one. Then (6)
implies 3 0,=0. However o, =1 and since 0,20 for all other p, we arrive at a con-
p



Beukers and Peters, K3 surfaces and {(3) 47

tradiction. Now let k = order of L, be two. Then (6) implies 3 (6,—1)=—2. We now
1 p
have ¢,=2, o, 2—2— for p=(1ﬁi1)4, 6o=0 and ¢,—1=0 for all other p. Hence

1 Do .
1+2 5—1 +(—1) = -2, which is clearly a contradiction. We thus conclude that L is

irreducible.

i) Let w be a non-trivial solution of Ly =0 such that its branches obtained by
analytic continuation span a C-linear space ¥ of dimension <3. Then w must satisfy
a linear differential equation Ly =0 of order <3 with coefficients in C (¢). Choose the
order of L minimal. Then, by application of a euclidean algorithm to L and L where we

use the order as a norm, we find that we must have L= L' - L for a certain L' e C(¢) %]

According to part i) of this Lemma this is impossible, hence ¥ must have dimension 3,
as asserted.

Proof of Corollary 1. X, is a nonsingular model of S, and we denote by w, the
unique holomorphic 2-form on X,. By Proposition1 we know that there exists a

90 € Hy(X,, Z) such that [, is not identically zero and it satisfies the differential
Yo
equation Ly =0. The transforms of | w, obtained by analytic continuation are all of the
Yo
form [ w,, ye€ H,(X,, Z). Moreover, by our Lemma they span the C-linear space of

Y
solutions of Ly =0.

Since | w,=0 if y is an algebraic 2-cycle, we conclude that there must be three

v
2-cycles 7y, 7v,, 73, which are linearly independent modulo algebraic cycles and such

that | w, (i=1, 2, 3) forms a basis of the solutions of Ly=0. Since p(X;)=19, we can
Vi

complete y,,7,,7; to a C-basis of H,(X,,Z)®C by adding 19 algebraic 2-cycles
22
Vare - -5 V22. Now let y e H,(X,, Z) be arbitrary. Then y= ¥ 4,, for certain 4;€ C and
3

i=1
hence [ w,= ¥, 4; [ w,. Thus, any period | w, satisfies Ly=0.

Y i=1 b

Proof of Corollary 2. The fact that y,, y;, y, satisfy Ly=0 can be checked by a
simple substitution and the fact that Lo/ () =0.

For the second statement we use the dual isomorphism between H?(X,, Q) and
H,(X,, Q) where [ w is the dual pairing on H,(X;, Q) x H?*(X,, Q). On H,(X, Q) we have

the symmetric bilyinear form (-,-) which is given by the intersection between 2-cycles. It
is the dual of the quadratic form (-,-> on H*(X,, Q). Let 7,,7s,...,7,, be a Q-basis
of the algebraic 2-cycles. Let 7, 7,,7; be a Q-basis of the orthogonal complement of
the algebraic 2-cycles. Thus we have (y;,7;)=0 for i=1,2,3, j=4,5,..., 22 and the
matrix (y;, 7;);, j=1 is non-trivial and symmetrical.
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By duality the relation {w,, ®,)» =0 implies

22

(M > (Jo, f )@ 9)=0.

ulv. i

Since | w,=0 for algebraic y;, (7) reduces to
Yi

3
(8) Z (jwt j‘wt) ('Via Vj) =0.
Li=l y
The matrix (y;, yj)?, j=1 1s symmetric, non-trivial and locally constant with respect to .

Therefore the quadratic relation (8) between the periods | o, is non-trivial and has locally
Vi
constant coefficients. By the previous corollary we know that {w, is a C-linear combi-
Vi
nation of y,, y,, ¥, and thus the y, satisfy a non-trivial homogeneous quadratic relation

with coefficients which are locally independent of ¢, hence constant. By comparison of
the expressions for y; one easily derives the desired relationship.

Remark. We can paraphrase the preceding argument as follows. Considering ¢ as
an affine coordinate on P!, the equation (4) defines a (singular) threefold S</P3x P!,
The fibres of the morphism S — P! induced by the projection ‘are exactly the S,’s.

Replacing S by a suitable non-singular model X, we get a morphism {: X — P!,
which over P= P\ {0, 1, ([ﬁi 1)*, 0o} is a family of K3-surfaces. There exist 19 divi-
sors on X flat over P' such that for each of the K3-surfaces X, (¢ € P) they span a rank 19
sublattice N,c H?(X,, Z) invariant under monodromy. So the N,’s form a subsystem of
the locally constant sheaf {H?(X,, Z)}. If we lift the family {X,} to the universal cover
P of P we may at the same time identify the H?(X,,Z)’s (ue P): H*(X,,Z)=H and

= Nc< H. The orthogonal complement T=N* of N inside H is of rank 3. The line
in H® C spanned by the cohomology class of the holomorphic 2-form w, remains in-
side T ® C. So the corresponding point in P(H ® C) remains inside the projective 2-plane
P(T® C)< P(H ® C). Since the equation (X, X') =0 determines a non-singular quadrlc
in P(H® C), the relations ([w,], [0,]>=0 (ue P) imply that, when u varies over P
the point corresponding to [w,] in P(H ® C) varies over a non-singular conic in the
projective plane P(T® C). It is this conic whose equation is given in the preceding
corollary (with respect to a suitable basis for T® C).

4. Proof of the main theorem

The surface S, has an affine equation
1-(1-XY)Z—1XYZ(1—-X)(1-Y)(1—Z)=0.

Under the birational transformation of P, given by

2 xt
we obtain a model with affine equation -

4txy.=(x+ 1) (y+1) (zf——(xt—.—y)zy),
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but a more suitable model is obtained after the birational substitution

T1—v AT U—w =y
namely

®
Z2=4tuv(1—u)? (1—v)® + (u(1 —v)t —v(1 —w))%.

The form w, defined by (5) transforms into

(10) w=du/\dv

t z .

Reformulating these results more geometrically, we have:

The surface S, is birationally equivalent to a double cover of P, branched along
a sextic curve C,, whose equation is given by the right hand side of (9). The two-form w,
transforms into (10).

It is well-known (see e.g. [GH], p. 593) that a surface, which is a double cover of
PP, branched along a smooth sextic curve is nothing but a K3 surface and the form (10)
is a regular 2-form on it. In our case C, has singularities. We will show that for
t¢{0,1, o, (Vfi 1)*} all of them are “simple”, i.e. of 4-D-E type (see [BPV], Ch. II. 8).
These singularities are therefore harmless, the double cover of P, branched along C, has
only A-D-E singularities. So the minimal resolution is a K3 surface and the form w, is
still regular on it (see [BPV], Ch. III. 7).

In order to complete the proof of the main theorem we only have to investigate
the singularities of the curve

C,={(u, v, w) € Py; 4dtuv(w— u)> (w—0)*+w?(u(w—v)t—v(w—u))*=0}
and to determine the Picard number of the K3 surface

X, = minimal resolution of singularities of the double cover of P,
branched along C,.

() Singularities of C, (t¢1{0,1, oo, ([/Ei 1)*}). The points P;=(1,0,0),
P,=(0,1,0), Py=(0,0,1) and P,=(1,1,1) are seen to be singular on C,. Using for
example the procedure of [BPV], Ch. II. 8, suitable local analytic coordinates can be
found such that the equation of C, near the points P; has a particularly simple form.
We omit these calculations, but state the result in the following table. See also Fig. 1.

singular point Normal form Type Tangent lines
P,=(1,0,0) y(x* =33 Dy v—w=0 (cuspidal), v=0
P,=(0,1,0) y(x*—y?) Dy u—w=0 (cuspidal), u=0
P,=(0,0,1) x?—y? A, (cusp) ut+v=0

P,=(1,1,1) x2—y* A, (tacnode) v=—w)t—(u—w)=0

32 Journal fiir Mathematik. Band 351



50 Beukers and Peters, K3 surfaces and {(3)

Figure 1

Notice that, except for P,P,, all lines connecting two singular points P;, P; intersect

C, only in these singular points. We claim that no other singularities are present. To
establish this, we show first of all that

C, is a (variable) elliptic curve for-all t ¢ (0, 1, oo, (J/2 £ 1)*).
We first go back to (x, y, t)-space. The curve C,<(z=0) is given by
4txy+(x+1) (y+1) (xt—y)*=0.

By the substitution y =u, x this curve is transformed into

4tu, +(x+1) (uyx+1) (u, — 1)*=0.
After the substitution x, =u, (¢t —u,)x we obtain

x2+x {(t—uy) (U + D} +u, (£ +u,)*=0.
Finally, upon completing the square, we find with X=u; and Y=x, +—;—(t— uy) (u, +1),
4Y2=(X—-1)* (X—~t)2 —161X2.

This exhibits C, as a double cover of P, branched at the four points
! (1+1+4)1 0+ D)1 +1+6)/1),
! (1 +1—4)1+0-)YD) )1 +1-6)/1).

These four points are distinct, precisely when ¢ ¢ {0,’1, 0, (1/5-{_— 1)*}, so for these values
C, is elliptic, as claimed.

|

(S}
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Secondly, we use the genus formula for plane curves C of degree d (cf. [BK], Ch. 9.2)

£(C) =3 [@~1) (@-2)—x Le¥e=D
p
where the summation is to be extended over all points P of C including the infinitely
near ones at the singularities, and where x4, is the multiplicity of P on C. For a dis-
cussion of infinitely near points and their multiplicities, see for example [BK], Ch. 8. 4.
The D4-points P, and P, consist of one point with multiplicity 3, the cusp P, consists

of one point with multiplicity 2 and the tacnode P, consists of two infinitely near points,
each with multiplicity 2. Thus we obtain,

g(C,)§%-5-4—3—3—1—(1+1)=1.

Since we know that g(C,)=1 we conclude that there are no other singularities on S
besides P,,..., P,.

(i) Determination of the Picard number p(X,). We follow the process of [BPV],
Ch. III. 7 to resolve the singularities of the double cover of P, branched in C,. We first

apply the o-process at all four singular points P; simultaneously and we let E; be the
exceptional curve over P; (see Fig. 2).

E, E3—7T‘ E,

Figure 2

Let C, be the proper transform of C,. In Fig. 2 its branches near the singular points
are the curves with arrows. We add those exceptional curves for which the multiplicity of
the corresponding singularity on C, is odd, i.e. we add E, and E, to get C{V=C,+E| +E,.
Still, the double cover of the new surface branched along C" has singularities, since C;"
has singularities (the dots in Fig. 2). Repeating this procedure gives the less singular
curve C® which is the proper transform of C{" (see Fig.3, the curve C/* near the
singularities consists of curves with arrows again).

=
N
N

Figure 3
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Still, this curve is not smooth, the dots in Fig. 3 are singular points. So we have to
perform two more blow ups and we finally arrive at a surface Q on which the proper
transform C® of C/? is smooth (see Fig. 4 for the situation near P,).

Figure 4

The double cover of Q branched along C® is the K3-surface X,. In Fig. 5 we have
drawn all curves on X, lying above P, P,, P,, P, (see Fig.4b for P, as well). The
A-curves give the Dy configuration over P,, the B-curves give the D5 over P,, the curves
C,, C, give the A, over P, and the curves D, D,, D, give the A; over P,. We have
also drawn the inverse images of the lines connecting two of the P;s (except for Py P,).
So M,, maps to the line connecting P, and P,, the pairs {M;} ((i,j)=(1,4), (2,4,
(1, 3), (23)) map to the line connecting P; and P;.

Figure §

To determine the Picard number, we make use of the elliptic pencil on X, coming
from the lines through P,. On X, these lines have inverse images that are variable
elliptic curves all meeting the curve B, in exactly one (variable) point. So B, gives a
section for this elliptic fibration and we let O be the corresponding zero-element for the
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group of sections S. We let mi;, m{, € S be the elements corresponding to the curves
M, M. The following observation is quite crucial for the determination of the Picard
number,

For generic t, m¥; and mi, have infinite order.

To prove this claim, we specialize to u=1, w=—1, t=—1 and then the elliptic
curve in S_; over the line u+w=0 can be given by

22=1603—=230v2+10v +1.

This is a non-singular elliptic curve in the (z, v)-plane with a flex at infinity corresponding
to 0. The section m{, meets it in (42, 1), the section m%, in (+1, 0). The formula for
doubling is easily derived:

2 2(py_ 2
U(2P)=—20(P)+_1%+%<24U (P)Z(iiv(P)+5> |

Notice that (+2,1)=2-(+1,0). Thus it suffices to show that T=(1,0) has infinite
order. Using the integral substitutions x=9-16v—3-23, y=27- 16z we bring the elliptic

curve into normal form y*=x3+ Ax+ B, A, Be Z. Consider the point 47T. Its (z, v)
. 2 . . .
coordinates are —1%2-, g) and its (y, x) coordinates are w, > -69 ). A consequence

of the Nagell-Lutz theorem is, that a rational point on y? = x>+ Ax + B with non-integral
coordinates has necessarily infinite order (see [M], Ch. XVI). Hence 4 T has infinite order
and the same is true for 7.

We now proceed to show that p(X,) =19 for generic ¢. Since C, is a variable elliptic
curve, {X,} is a non-constant family of K3 surfaces, so not all X, have maximal Picard
number 20 (these form a discrete set in the moduli space, compare section 2). Hence
p(X,) =19 for generic t. Therefore it suffices to show that p(X,) =19 for all

t¢1{0,1, oo, (/2 £ 1)*}.
We apply [Sh2], Corollary 1.5 which reads
p(X,)=rank of S+2+3> (m,;—1)

where the summation is over all reducible members F; of the elliptic pencil and where
m, is the number of components of F,. From Fig. 5 some reducible members are easy
to find,

My, Ay, Ay, A3, Ay, As (type If) m,=6,
By, My, M3, Cy, C, (type Is) m, =5,
B,, B,, B;, M;,, M;,, D, D,, Dy (typelg) m,=38.
The types refer to Kodaira’s classification for singular fibres in an elliptic pencil, see
e.g. [Sh2], p. 36 or [Ko], p. 564. By the above claim we have rank (S§) =21, hence
p(X)Z14+24+(5+4+7)=19

as asserted.
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