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O. Introduction 

The aim of this note is to compute the group Aut(Y) of (biholomorphic) auto- 
morphisms for the general Enriques surface Y. The basic tool is the global To- 
relli theorem for projective K3-surfaces as it was given by Piatetski-Shapiro and 
Shafarevich [11] and refined by Burns and Rapaport  [2]. The essential result 
is that - in contrast to the case of curves - Aut (Y) is big for general Y and 
small for special Y. 

In this paper we consider the complex case only. Recall that an Enriques 
surface Y is a (projective) complex surface with universal double cover a K3- 
surface. One knows that H2(Y, Z ) =  7Z, ~ ~  2~ 2 and that the cup-product provides 
HE(y, 71)/torsion=~ 1~ with the structure of a lattice M of signature (1, 9). 

Theorem. For a generic Enriques surface Y the representation of Aut(Y) on 
H 2 ( X , Z )  defines an isomorphism of Aut(Y) with the 2-congruence subgroup of 
O 1 (M), where 0 1(M) is the group of isometrics of M not interchanging the two 
positive half-cones in M |  or in other words, the reflection group of the lat- 
tice M. 

Here the notion "generic" needs some explanation. Horikawa [7, 8] defined 
a quasi-projective period domain D~ for Enriques surfaces. The assertion in 
the theorem holds for all surfaces Y with period point z(Y)~D~ in the com- 
plement of countably many images of 9-dimensional analytic varieties (recall 
dim D~ = 10). It was pointed out to us by Dolgachev that the theorem also 
follows from results of Nikulin [10], although it is not stated there explicitely. 

For  special Y the automorphism group can be quite different. We describe a 
2-dimensional family of surfaces Y where Aut(Y) in general is ~2 X D~, but for 
special cases Z 4 x D~ or D 4. Here D4(D~) is the dihedral group 7z z ~< Z4 (7.2 ~< 7Z.). 
The example of surfaces with finite group Aut(Y) was communicated to us by 
Dolgachev. 

We apply the knowledge of Aut(Y) for generic Y to count the number of 
inequivalent realisations of Y as elliptic fibre space over IP1, as double cover of 
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a quadri-nodal complete intersection of two quadrics in IP 4 (double plane 
realisation), as sextic surface in IP 3 passing doubly through the edges of a 
tetrahedron (Enriques-realisation), or as smooth surface in IP s of degree 10 
(deformations of Reye-congruences). There are 

527 = 17.31 
67456= 27.17.31 

5396480= 211.5.17.31 
25903104 = 213.3 �9 17.31 

realisations as elliptic fibration 
double plane realisations 
Enriques-realisations 
realisations as 10th degree surface in IP 5. 

We owe much to stimulating discussions on this subject with many other ge- 
ometers, in particular to I. Dolgachev. 

1. Some Lattices and Their Isometries 

1.1. Preliminaries. A lattice is a flee Z-module  of finite rank endowed with an 
integral quadratic form. L_I_M denotes the orthogonal direct sum of two lattices 
L and M. L ~ =  Homz(L, Z) is the dual ~-module (the canonical quadratic form 
on L ~ in general is not integral). The symmetric bilinear form on a lattice L, 
associated with the quadratic form, usually is denoted by < , ). 

This form defines the correllation morphism 

q~L:L--*L ~, x--*<x, - ) .  

If L is nondegenerate, q~z is injective, and we may identify L with the sub- 
module q~z(L)cL v. Then LV/L is a finite abelian group, trivial precisely when 
L is unimodular. 

A submodule M c L is called primitive, if L/M is free of torsion. In this case 
every integral functional on M extends to L, i.e., the restriction L v ---,M v is sur- 
jective. 

If L is nondegenerate and M is primitive and nondegenerate, the compo- 
sition L ~ ~ L V - - , M V ~ M V / M  is surjective. It  sends x e L  to the q~(M)- 
equivalence class of ( x , - ) I M .  So its kernel is M Z M  • and we obtain an 
isomorphism iu:L/(M_I_M• Interchanging the r61es of M and M l 

. . . .  1 .  we obtain i u l : L / ( M l M  l) ~(M•177 Then we put j M = t M l o t u .  
M V / M  ~ ,(M• j-. 

(1.1) Lemma  [9, Prop. 1.1]. Let L be a unimodular lattice, M c L  a nondegen- 
crate primitive sublattice, and ~: M--*M, fl: M I ~ M  -L isometrics. Then the isom- 
etry (c~,/?) of M L M  • extends to L if and only if the automorphisms ~ on M ~ / M  
induced by ~ and ~ on (MZ)~/M • induced by ~ satisfy Ju ~ ~=fl~ 

(1.2) Corollary. Let M c L  and ~: M--*M be as above. I f  c~ extends to an isom- 
etry of L restricting to -bid on M • then this extension is unique. Such an exten- 
sion exists if and only if c~v : M~ ~ M  ~ induces -bid on M~/M.  

We shall use the following notation: For  neN,  by nL we denote the sublat- 
tice {n.x: xeL}  of L, whereas L(n) is the ~-module  L endowed with the qua- 
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dratic form x - - ~ n x  2. A root in the lattice L is an element w of square W 2 =  - 2 .  
Any root w defines the reflection sweO(L), sw(x)=x+(x,w)w.  Given a lattice 
L we put Lc~=L| L~=L|  L e = L |  and for any homomorphism 
g: L-+L we denote by gQ, g~, resp. gc the natural extension of g to these vector 
spaces. 

1.2. Application. For  applying 1.2 to the Picard lattice of K3 and Enriques sur- 
faces we fix the following notation. 

I H = Z e l + Z e  2 with 2 2 e 1 = e 2 = 0  , e 1 e 2 = 1 (hyperbolic plane), 

IE=E8 ( - 1 )  (root lattice for Dynkin diagram Es), 

L = I H Z I H J _ I H 2  IE• 

M : I H Z I E ,  

s: L-~L the involution (hi, h2, h3, el ,  e2)~-+(- hi,  ha, hE, e2, el) , 

L + = {xeL: s(x)=x} = {(0, h, h, e, e)eL: helH, eeIE}, 

L-  = {x~L: s(x)= - x }  = {(ha, h, -h ,  e, - e ) e L  : ha, h~lH, eeIE}. 

There are obvious isometries 

e + : L + --+ M (2) (0, h, h, e, e) ~ (h, e), 

e - :  L - ~ I H •  (hl,h , -h ,e ,  -e)~-~(hl,h,e). 

In particular this shows 

(L • v/L • = M/2 M = (Z 2) 1 o. 

L + and L-  are primitive nondegenerate sublattices of L, one the orthogonal 
complement of the other. Using that all elements in (L• • are induced by 
inner products with elements (0, h, 0, e, 0) one traces the isomorphism 
j: (L-)V/L - -+(L+)V/L + and finds: j is induced by the obvious isometry 

0: L-  -+IH•  +, (h>h, -h ,e ,  -e)~-,(hl,h,h,e,e ). 

We also put 

r = {geO(L): gs =sg}. 

we have g:L• • and there are obvious restrictions For any g~F 
r • : F-+O(L• 

(1.3) Lemma. For geO(L • the following properties are equivalent: 
a) there is a (unique) extension 7eF of g with rT-(7)=id. 
b) g belongs to the 2-congruence subgroup of O(L• 
The proof follows from Corollary (1.2), because g induces the identity on 

(L• • if and only if it belongs to the 2-congruence subgroup. 
The quadratic form on M has signature (1, 9). So the set {xsM~: x2>0} 

consists of two disjoint cones ~M and -~M. We put O~(M)={geO(M): g~M 
=%}. 

Then O(M) is the direct product Or (M)x  { _+id}. 
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1.3. On the R o o t  L a t t i c e  IE. In  this section we collect a few propert ies  of  IE 
which are needed later. We use the descript ion [1, p. 268] of  IE. So I E ~ I R  8 
(with the negative of the usual inner product)  is the set of  vectors (x 1 . . . . .  x 8) 
where either all x i are integers or  all x ~ are half-integers, and ~ x ~ 2 g  is even. 
The  240 roots  are (0. . .0,  +1~, 0 . . .0 ,  + 1  t, 0 . . .0) ,  1/2(___1 . . . . .  + l ) .  

(1.4) L e m m a .  There are exactly 135 equivalence classes m o d 2 I E  of  vectors 
x~IE with x z = - 4 .  

Proof  An integral vector  xe lE  with x Z =  - 4  is up to pe rmuta t ion  of the coor-  
dinates of  the form +_ (2, 0 . . . .  ,0) or ( + 1, + 1, _+ 1, + 1, 0, 0, 0, 0). Since (0... 0, 
+2~ ,0 . . . 0 ,  +2~,0 . . .0 )e21E,  all vectors ( 0 . . . 0 , _ 2 , 0 . . . 0 )  are equivalent  
m o d  21E. Of  the second type there are 24.(])  vectors and rood 21E each of 
them is equivalent  with 24 ones. 

So there are ( ] )=  70 inequivalent  ones. Any half-integral vector  is up to per- 
muta t ion  of coordinates  of  the form 

+ � 8 9  - 1 . . . .  , - 1 ) ,  + � 8 9  1 ,  1 ,  - 1 . . . . .  - 1 ) ,  

+�89 1, 1, 1, 1, -- 1, - 1, -- 1), -I-�89 1, 1, 1, 1, 1, 1, - 1). 

Here  all vectors of the first and  of the last type are equivalent  m o d  2IE. Vec- 
tors of  the first, second, and third type are inequivalent  rood 21E. There  are 
2.8. (7) vectors of  the second type, each equivalent  with 2.6 of  them. So there 
are �89  inequivalent  ones m o d  2IE. Of  the third type there are 2.8.(~) 
vectors,  each of them equivalent  with 16 ones, so 35 inequivalent  ones. Alto-  
gether  we have 1 + 7 0 + 1 + 2 8 + 3 5 = 1 3 5 .  [ ]  

(1.5) Corollary.  Choosing 135 representatives o f  the equivalence classes above, 
one from each o f  the 120 pairs •  of  roots, and O, one obtains a system o f  repre- 
sentatives o f  IE m o d  21E. 

Proof. We only have to show tha t  w I --Wz~2]E for two roots Wl, w 2 implies w 2 
= + w  1. But if Wa--WzE2IE , then ( w l - w 2 )  2= - 4 - 2 w l w  z is divisible by 8. 
Since }w 1 w2] ~ 2  this implies w I w z = +2,  i.e., w z = +_w 1. [ ]  

We denote  by W =  W(E8) the Weyl group. Since the Dynk in  d iagram of E s 
admits  no symmetries ,  W coincides with O(IE), see [1, p. 270]. W contains in 
par t icular  

- all pe rmuta t ions  of coordinates  x ~ 
- s imul taneous  changes x ~, xJ~--~- x i, - x  s of the signs of  two coordinates.  

(1.6) L e m m a .  W operates transitively on the set o f  all ordered 8-tuples o f  roots 
W x , ..., w s ~ IE satisfying ( w i , w j )  = - 1 whenever i + j. 

Proof. W(Es) operates  transit ively on the roots,  so we may  assume 

w 1 =~(1 . . . . .  1). 

If  w i, i >  2, is integral, then 

w~= (0. . .0,  1 ,0 . . .0 ,  1,0. . .0) .  
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1 1 If w i is not  integral, say w~=~( , 1, 1, 1, 1, 1 , - - 1 , - - 1 )  we use the reflection s w 
with w = � 8 9  1 and t ransform w i into an integral 
root. After permut ing  coordinates  we have 

w 2 =(1, 1, 0.. .0).  

Since w z l w ,  by the same a rgument  we may assume w 3 integral. Then after 
pe rmuta t ion  

W3 = ( I , 0  , 1,0. . .0).  

Again w3•  and we may  arrange it that  w 4 is integral, i.e., 

w 4 = ( 1 , 0 , 0  . . . .  1. . .0) or w 4 = ( 0 , 1 , 1 , 0 . . . 0 ) .  

In the second case we t ransform w 4 under  s, with 

- -  - -  1 1 u = � 8 9  1, 1 ,1 ,1 ,1 ) J_wl ,w2 ,w 3 into ~ ( , 1 , 1 , - 1 , - 1 , 1 , 1 , 1 )  

and then with 

u = � 8 9  1, 1, 1 , - 1 , - - 1 ) l W l , W 2 ,  W 3 into (1,0, 0, 0,0, 1,0,0). 

So after pe rmuta t ion  

w4=(1 ,0 ,  0, 1 ,0,0,0,  0). 

Still w4•  , hence we may  assume w 5 integral, and after pe rmuta t ion  

w5 =(1, O, O, O, 1, O, O, O)•  

W6=(1, 0, 0, 0, 0 , 1, 0, 0). 

SO, after permuta t ion ,  we have 

t 1 wT = (1, 0, 0, 0, 0, 0,1, 0 ) or  ~ ( , 1 , 1 , 1 , 1 , 1 , - 1 , - - 1 ) .  

In the first case necessarily w 8 =(1,  0, . . . ,  0, 1) and in the second case there is no 
w 8 at all. [ ]  

1.4. Reduction Modulo 2. In this section we examine the reduct ion m o r p h i s m  
O ( M ) - * A u t  (M/2M)=GL(10,  IF2). By YceM/2M we denote the class represented 
by x e M .  On M / 2 M  we have the bil inear form 

(~,  ~) = (x ,  y )  m o d  2. 

Since the form on M is even, by 

q(~)=�89 x 2 m o d 2  

one defines a nondegenera te  quadrat ic  form q on M/2M,  i.e., a form satisfying 

q(~ + y) = q(~) + q(y) + (~,  ~). 
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On each IF2-vector space of even dimension 2k there are - up to conjugation - 
exactly two such forms, q+ and q-,  differing by their number v =2  k-1 (2k__l) 
of zeros. 

Using Lemma (1.4) we count the zeros of q[ IE/2IE and find 

vE=28 - 120= 136=23(24+ 1). 

We observe that the elements 2~IE/2IE with q(2)= 1 are precisely the images of 
the roots. 

Now IH/21H=IF2 z and q has 3 zeros on it. The zeros of q on M/2M are ex- 
actly the pairs (h, 2), h~IH, x~IE satisfying q(h)=(~). Their number is 

3. vn + 2 5 6 -  v E = 3.136 + 120 = 528 = 24(25 + 1). 

Hence q and qlIE/2IE is the corresponding form q+. Its group of automor- 
phisms is denoted by O§ IF2). E.g. in the book [5] one finds (Chap. III, 
w 10) k-1 

i) [O+(2k, lFz)l=2a+k~k-1).(2u--1). ~ (22J--1), 
j=l 

ii) the group O+(2k, lF2) is generated by transvections if k~e2; these are 
maps 2 ~-* ~ + (~, ~) ~, q + (fi) = 1. 

iii) the group O+(2k, lF2) contains a normal subgroup of index 2 consisting 
of all products of an even number of transvections. For  k > 3 this group is sim- 
ple. In our cases, k = 4 and 5, we find 

10 (IE/2 IE, q)l = 213.35 ' 52 "7, 

IO(M/2M, q)[=22~. 35. 52. 7.17.31.  

Now any root w~M reduces in M/2M to an element ~ with q(~)= 1, and the 
reflection s w reduces to the transvection defined by ~. Conversely, if fi~M/2M 
with q(fi)= 1, then ~ =(h, ~), h~lH, x~lE, such that one of the following holds: 

- either q(h)= 1 and q(~)=0, i.e. h~lH is modulo 2IH equivalent with h a +h2, 
(h 1 +h2)2=2,  and x~IE to an element of square - 4  (cf. 1.3). So fi is the image 
of a root in M. 
- or q(h)=0 and q(~)=l ,  i.e., h~lH is equivalent to 0, hx, or h 2 and ~ I E  is 
equivalent to a root. In this case too, ~ is the image of a root in M. 

This proves that all transvections are reductions mod 2 of reflections s w and 
the reduction maps 

W(Ea)~O(IE/21E, q) O(M)~O(M/2M, q) 

are surjective. Since O(M)=Or(M) • { +id}, even Or(M)~O(M/2M, q) is sur- 
jective. Recalling that 

I W(E8) I =214. 35. 52. 7 

we find the following well known 

(1.7) Proposition. a) The 2-congruence subgroup of W(Es) is just {+id} (cf. [1] 
Exercise in Chap. 6, w 4). 

b) The 2-congruence subgroup in O(M) has index 221. 35. 52. 7.17.31.  
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1.5. An Auxiliary Result. Denote by K the lattice IH_I_IH(2) and fix a basis 
2_  2_  2_  2_  ( h l , h 2 ) = l ,  ( k l ,  k2)=2.  Let h 1, h2elH, k 1, kz~IH(2 ) with h a - h  2 - k  1 - k  2 - 0 ,  

G c O(K) be the subgroup acting trivially on K V/K. It contains all g~O(K) such 
that g ( k i ) - k ~ 2 K  for i=1 ,2 .  In 4.5 we shall apply the following fact. (We are 
indebted to Y. Namikawa for pointing out to us an error in the first version of 
this lemma.) 

(1.8) Lemma. All vectors x ~ K  of square x2= - 4 ,  which are of the form 

x = 2s  a h 1 + 2s  2 h 2 + t 1 k 1 -t- t 2 k 2, 

are under G conjugate with k 1 + k  2. 

Proof Given x as above we put 

X x 

e l  

They satisfy 

and since 

we have additionally 

s i, t i ~ . ,  

= 2 S l h l + t l k  I , x2= - 2 s 2 h 2 - t 2 k 2 ,  

= t 2 h l - s 2 k  1, e 2 -  - t l  h2 q-s2k 2. 

x 2_x2_el_ 2_  2 = e ~ = ( x l ,  e~)=O 

x2=4(2sl  s2 + t 1 t 2 ) = - 4  

( X l , X 2 )  = 2 ,  ( e l , e 2 ) =  1. 

So e l , e 2 , x l , x  2 form a basis of K with e l , e  2 generating a sublattice IH and 
Xa, x a generating a sublattice IH(2). Then there is some g~O(K) mapping 

el~--*hl, eE~-+hz, xl~--~ka, xz~---*k2, 

x = x l  +x2t-'~kl Wk2 . 

Since t~ . t  2 = 1 - 2 s  x s 2 is odd, the vectors 

x l - k l = 2 s l h t  + ( q - 1 ) k l  x 2 - k 2 =  - 2 s z h z - ( t 2 + l ) k 2  

belong to 2K and g~G. 

2. Periods of Enriques Surfaces 

2.1. Notation. Let X be any complex projective surface. The cup-product form 
( , ) on H2(X, R )  restricts to the subspace H 1'1(X, ]R)=H2(X, R)c~H 1'1(X) 
as a form of signature (1, hi' 1 ( X ) -  1). The set {x ~ Hi '  1 (X, R): (x, x )  > 0} con- 
sists of two disjoint connected cones. For two elements in the same connected 
component the cup-product is positive, while it is negative for two elements in 
different components. So only one of the cones, say cg x, contains classes of  am- 
ple divisors. 

The inclusion Z ~ R  induces a map H 2 ( X , Z ) ~ H 2 ( X , R ) .  Its image 
Hz(X,Z) / tors ion  is denoted by H z ( x , z ) s .  Its elements are called the integral 



390 W. Barth and C. Peters 

points of HZ(X, ~). The cup-product provides H2(X, Z)f with a quadratic form. 
The sublattice 

Sx=H 1" I(X, Px) ~ H2(X, Z)f 

is called the algebraic lattice. Its elements are precisely the cohomology classes 
d of divisors D on X. Tx=S~cH2(X ,Z ) I  is called the transcendental lattice. A 
curve D c X  is called nodal or (-2)-curve, if it is smooth rational with DZ= 
-2 .  A nodal class is the class des  x of such a curve. We put 

cg~ = {x~Cgx:(X, d ) > 0  for all nodal classes d}. 

(2.1) Lemma. I f  X is a K3 or Enriques surface, the set cg; c~H2(X, TI)i of in- 
tegral points in cg~ consists precisely of the classes of ample divisors. 

Proof By the Nakai-Moishezon criterion a divisor D with D 2 >0  is ample if 
and only if D . E > 0  for all irreducible curves E c X .  But for such a curve the 
adjunction formula shows E 2 = - 2  or EZ>O. In the second case its class e be- 
longs to the closure of cg x and hence (x, e ) > 0  for all x~Cgx . It follows that an 
integral point of cg~ is the class of an ample divisor and conversely. [] 

Therefore, in the case of a K3 or Enriques surface X, cg~ is called the ample 
cone. 

In the remainder of this section X is a K3-surface. 

(2.2) Lemma. Let d + denote the set of all classes dEH2(X, 7Z) of effective di- 
visors satisfying d2= - 2 .  Then 

cs ( x , d ) > 0  for all d~A+}. 

Proof Let c~, denote the cone on the right-hand side. Since A + contains all nod- 
al classes, obviously cg, ccg~. Conversely, if deA + and ( x ,d )<O for some 
xeCg~, then also (y, d ) < 0  for some integral point y~rgx+. This contradicts (2.1). 
So ( x , d ) > 0  for all d~A +, x~Cg + and this shows cg~ cog.+ ' [] 

(2.3) Lemma. For an isometry g of H2(X,Z)I  the following properties are 
equivalent. 

i) c %  +. 
ii) g maps each class of an ample divisor to the class of an ample divisor. 

iii) g maps the class of one ample divisor to the class of an ample divisor. 
iv) g~C~x=Cg x and gA+=A +. 

Proof i ) ~  ii) follows from (2.1), i i ) ~  iii) is trivial. If iii) holds then of course 
gCgx=cg x. If d~A +, then ( g d ) 2 = - 2 ,  so by Riemann-Roch either gd or - g d  is 
effective. But let a~H2(X, 71) be an ample class with ga ample again. Then 
(gd, ga)  =(d ,  a)  is positive and - g d  cannot be effective. This proves iv). The 
step iv)=~ i) follows from (2.2). [-1 

We denote by O T (X)c  O(H2(X, Z)) the subgroup of isometries g with prop- 
erties i)-iv). 

2.2. The Universal Covering of an Enriqaes Surface. Let Y be an Enriques sur- 
face and re: X--* Yits universal (double) covering. Let ~ A u t ( X )  be the covering 



Automorphisms of Enriques Surfaces 391 

involution. According to Horikawa [7,Theorem 5.1] there is an identification 
H2(X, 7~) ~ , L  such that a* acts o n  H z ( x , z )  as the involution s from 1.2. 
The map n*: Hz(Y,,Z)f--*HZ(X,Z) is an isomorphism onto L + e L .  In particu- 
lar there is an isometry H z ( Y , , Z ) y  ~ ,M. Such an identification Hz(x,z)--~L 
is called a marking of the Enriques surface Y. Let HI"I(X,N) ~ denote the vector 
subspace of a*-invariants. 

(2.4) Lemma. The map rc*: HI"I(Y,R)~HI"I(X, IR) maps cgr bijectively onto 
cg~c ~HLI (X ,  IR) ~. The integral points in cKr correspond 1 to l under n* to the 
classes of ample a-invariant divisors on X. 

Proof To test whether xeCgx belongs to cg~ we have to check (x, d) > 0 for nod- 
al classes d. If ~r*x=x then (x ,d)=�89 and if ( d , a * d ) > 0 ,  then (d 
+ a ' d ) 2 = - 4 + 2 ( d , a * d ) > 0 ,  because this number is divisible by 4. Hence d 
+a*deC~x and (x,d)>O. So we have to check (x ,d)>O only for nodal classes 
d with ( d , a * d ) = 0 .  If now D ~ X  is the ( -2) -curve  representing d, then 
( d , ~ * d ) = 0  if and only if Dc~a*D=O, i.e., if and only if rc(D)=n(aD) is a 
( -2) -curve  on Y. Since every a*-invariant xeCgx is of the form n ' y ,  ye~y,  it fol- 
lows that HL~(X,N)~c~c6~/=n*~r +. If ceCgy + is an integral point, then rc*c is 
the class of a a-invariant divisor. Since we have proven n*ceC~], from Lemma 
(2.1) we obtain the ampleness of this divisor. [] 

2.3. The Torelli Theorem for K3-Surfaces. In this section we state the global 
Torelli theorem E11, p. 534], [2, Cor. 32] in the form we need it. 

So let X be a projective K3-surface and co x a nonzero holomorphic 2-form 
on X. This co x spans H ~ 2(X) and is unique up to scalars. Using the Hodge de- 
composition we view H~ as a subspace of H2(X,C) and cox as a class in 
Ha(x, ff~). Obviously 

(cox, cox) =0, (cox, C~x)>O. 

For Reco x and I m  cox~H2(X, IR) these relations are equivalent with 

(Re cox, Re cox) = (Ira cox, Im cox) > 0, 

(Re  cox, Imcox) =0. 

So Reco x and Ira co x span in H2(X, N) a two-dimensional subspace, on which 
the cup-product is positive definite. 

Since H 1' 1 (X) = Re col c~ Im col, we have 

Sx=H2(X, Z) c~ Re co~c~ Im col. 

If p - - r ank  S x is the Picard number, we have signature Sx=(1, p - 1 ) ,  signature 
T x = (2, 2 0 -  p). 

(2.5) Theorem (Global Torelli). Let g be an isometry of H2(X, :~). Then g is in- 
duced by a unique automorphism of X if and only /f g~Oi"(X) and g~cox=2cox 
for some 201~. 

(2.6) Corollary. The representation of Aut(X) on HZ(X,Z) is faithful and 
identifies Aut(X) with a subgroup of OT(X). 
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2.4. Periods of Enriques Surfaces. We recall Horikawa's results [7, 8] on the 
moduli space of Enriques surfaces. Let Y=X/a  be an Enriques surface and 
(p:H2(X, ~E)--~L a marking of Y. Since on Y there are no holomorphic 2-forms, 
we have a*e~x= - m x .  So (pc(rex) defines a point z(Y, q~) in the period domain 

D: = {r  (oelP(Lr <~o, r =0,  (6o, ~ )  >0}. 

This D is the union of two copies of a bounded symmetric domain of type IV 
and dimension 10. The group F (or rather r-(F)) acts on D in a properly dis- 
continuous way. It contains an involution interchanging the two connected 
components of D [7, Lemma 8.1]. Since r-(F) is an arithmetic group [7], by 
Baily-Borel the analytic space D/F carries the structure of a quasi-projective 
variety. Since two markings for Y differ by an element in F, the F-equivalence 
class r(Y)eD/F of z(Y,, ~o) is independent of the choice of ~0. This point z(Y) is 
called the period point of Y 

Horikawa proves: 
(i) z(Y1)=z(Y2) if and only if I11 is isomorphic with Y2. 

(ii) The points z(Y, ~o) belong to 

D O = D \  ~ d • 
d roo t  i n  L -  

where d • = {r coelP (L~): (m, d) =0}. 
(iii) All points ~eD ~ are of the form z(Y, q)) for some marked Enriques sur- 

face Y, ~. 

(2.7) Lemma. The union of all hyperplanes d • deL- a root, is locally finite in 
D. Hence D c~ ~ d • is an analytic set in D. 

4 

Proof If the union is not locally finite, there are infinitely many distinct roots 
dveL- and points oJveDc~d ~ such that co= lim coveD. Since o~ v converges to ~o, 

V ~ 3  

the hyperplanes (Re~%) l and (Im~ov) l as points in IP((L~) v) converge to 
(Re co) • resp. (Im r • The cup-product on L- has signature (2, 10) with Re ~o, 
Im ~o spanning a plane, on which this form is positive definite. So the cup-pro- 
duct is negative definite on (Re o~ffc~(Im~o) • In particular the vectors in 
(Re co) • c~(Im ~o) • of square - 2  form a compact sphere, and there is a compact 
neighborhood of this sphere containing all vectors of square - 2  in 
(Recov)• for all veiN. All the infinitely many roots d v would belong 
to this compact set, a contradiction. [] 

The analytic set D c~ ~ d • in D is F-invariant. So its image in D/F is analytic 
too. The Baily-Borel compactification D/F of D/F is obtained by attaching a 
curve [11, w Lemma 1]. By the extension theorem of Remmert-Stein [12, 
Satz 13] the analytic hypersurface, in D/F extends to a hypersurface in the pro- 

jective variety D/F. It follows that Horikawa's period domain D~ is quasi- 
projective [8, Thin. 3.1]. 

2.5. Nodal Curves on Enriques Surfaces. If C c Y is a nodal curve, then n* C 
c X  decomposes as B+aB with a nodal curve B on X satisfying B.a(B)=O. 
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Conversely, given nodal curves B, a(B) on X with B. a(B)=0,  there is a nodal 
curve C=rc(B)cX such that B+a(B)=a*C. So there is a 1 to 1 correspon- 
dence between nodal classes c~H2(y, Z)y and pairs b, a*(b) of nodal classes on 
X satisfying <b,a*(b)>=O. Fix a marking H2(X,Z)=L as above. On L-  the 
linear forms < b , - >  and <sb,-> differ only by the sign. For  each root 
c~H2(y, TZ)I=M with ~*c=b+a(b) put Dc=Dnb • Since D is not contained 
in any hyperplane and br +, we have Dc4:D. Since there are only countably 
many roots in L +, the set 

Dgen = D ~  U D~ 
c r o o t  i n  L + 

is still dense in D O and Dgen/F is dense in D~ The period point z(Y)eD~ is 
contained in the image of UDc if and only if Ycontains a (-2)-curve.  So, if we 
understand by a "generic" Enriques surface Y a surface with z(Y)~Dgen/F , then 
we have shown: 

(2.8) Proposition. 7he generic Enriques surface contains no (-2)-curve. 

Now for given Y we define the following sublattices L1,L2,La, L4cL:  Let 
M ' c  M be the smallest primitive sublattice containing all nodal classes and L 1 

= n* M ' c  L +. Let L 2 c L- be the smallest primitive sublattice containing all the 
classes d-s(d), where d+s(d)=rt*c, cEM a nodal class. We put L 3 
=Ll2 n S x c~L- and L 4 = T x .  Finally we let N c L-  be the smallest primitive 
sublattice containing L 3 and L 4. Since the form on S x n L- is negative definite 
we have 

L~ = L 2 Q ~  Z L a ( ~  Z L4Q~. .  
N~ 

Notice that the sublattice N c L -  determines L2, L 2 determines M' and hence 
L 1. We call N the nodal type of the marked surface Y, q~. Proposition (2.8) 
means of course L1 = L  2 =0  for generic Y. 

2.6. Generic Enriques Surfaces of Fixed Nodal Type. We fix a primitive sublat- 
tice N c L-  and consider all marked Enriques surfaces Y, (p of fixed nodal type 
N. Their period points z(Y,, ~p) belong to D~ nlP(Nr If there is at least one sur- 
face of nodal type N, then D~162 is a non-empty open set in a quadric of 
IP(Nr Put n = r a n k N .  If n>3,  the union of countably many hyperplanes of 
IP(Nr intersects D~162 in a set with dense complement. We apply this 
simultaneously to two different kinds of hyperplanes. 

a) The hyperplanes d•162 where d~L, d4sN • is a nodal class satisfying 
<d, s(d)> =0. The period points in the complement of these hyperplanes belong 
to surfaces of nodal type precisely equal to N (and not smaller). 

b) The hyperplanes of IP(Nr defined over some algebraic number field k 
c O .  In particular we take k the extension of Q obtained by adjoining all 
primitive l-th roots of unity with Euler function ~o(l)< n. Since n < 12, only the 
following values of I occur: l = 1 . . . . .  16, 18, 20 . . . . .  32, 36, 42. 

(2.9) Lemma. Let Y, q) be a marked Enriques surface of nodal type N with peri- 
od point z(Y, qg)~D~162 not contained in any proper linear subspace of 
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IP(Nr defined over k. Let geAut(X)  be an automorphism commuting with the 
covering involution a. Then g ' IN  = _+id N. 

Proof Since g commutes with a it induces an automorphism of Y, so g* leaves 
invariant all sublattices L~, N c Y. Let co x be a nonzero holomorphic 2-form on 

X. Then g*cox=2cox with 2~C. Since (g 'cox,  g 'cox)  = (cox, (Sx), obviously [21 
=1. But since X is projective, from [13, p. 178/179] it follows that 2 is a root 
of unity. Since 2 is an eigenvalue for g*lNr and n<12,  we have 
deg[tl)(2):l l)]<12. So 21=1 with tp(/)<12 and 2ek. g* is defined over Q, so 
the 2-eigenspace for g * I N |  is defined over k. But then the assumption on 
z(Y, ~o) implies that this eigenspace is all of N~, i.e., g*lNr  id. This is possi- 
ble only i f 2 = + l .  []  

If n = rank N = 2 we may embed N in the euclidean plane 11/2 such that the 
form on N is induced by the usual inner product on ~2.  The two isotropic 
subspaces in N~ =C  2 are generated by the vectors (1, +_i). An orientation re- 
versing orthogonal transformation of 1t 2 would interchange these two sub- 
spaces. So any isometry g of N leaving both lines ~;.(1, __+_i) invariant is of the 
form g =  _+id, unless N is isometric with the period lattice in ~ =112 of an el- 
liptic curve with Z 4 or Z6-symmetry. In this case g may be of order 3, 4, or 6. 
So with these exceptions the analog of Lemma (2.9) for n = 2 also holds. 

3. Generic Enriques Surfaces 

3.1. Automorphisms of Enriques Surfaces. As above, fix a marking H2(X, Z) 
=L,  H2(Y,Z)s=M of the Enriques surface Y. Recall that F c  O(L) is the sub- 
group of isometries commuting with s and O r (X)~ O(L) the subgroup of isom- 
etries g for which g~ leaves invariant ~ ~L~ .  Let O*(Y) denote the group of 
isometries g~O(M) with g~ leaving invariant ~ f ~ M ~ .  Each automorphism 
aeAut(Y)  lifts (in two ways) to ah automorphism ~eAut(X) commuting with 
s. So if we put 

Aut (X, a) = {g~ Aut (X): ga = ag} 

then Aut(Y)=Aut(X,a) /{ id ,  a}. Any geAut (X)  commuting with s leaves in- 
variant the sublattices L 1 ..... L,~cL defined in 2.5. So we have canonical maps 
r~: Aut(X,a)--,O(L~), i=1  .. . .  ,4, and an embedding (r+,rz,r3,r4): Aut(X,a)  
~ o ( g  +) x O(L2) x O(L3) x O(L4) with r -  =(/'2, r3, r4). 

(3.1) Proposition. Under r + the kernel of r-:  Au t (X ,a )~O(L- )  is identified 
with the 2-congruence subgroup of 0 ~ (Y). 

Proof By Lemma (1.3) the kernel of r - = F ~ O ( L - )  is under r + identified with 
the 2-congruence subgroup of O(L+). It is clear that r+(7)~ leaves invariant the 
ample cone cg~- for every 7~Aut(X,a).  So we only have to show the converse: 
if ~,EF with r - ( 7 ) =  +id  and r+(7)~ leaving invariant cs then ~ is induced by 
an automorphism of X. But take some arbitrary ample divisor C on Y with 
class c6C~ n H 2 ( y , ~ ) f .  Then r+(v)c is the class of an ample divisor again. The 
class n*c6L + is the class of the ample divisor n* C and 7(n*c)=n*r+(7)c too. 
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So yeOt(X) by Lemma (2.3). Since r - (7)= +id, the extension ~,~: leaves in- 
variant the subspace ~O)xC L~. The assertion follows from Theorem (2.5). [] 

(3.2) Proposition. The image o f t - :  Aut(X, ~r)~O(L-) is a finite group. 

Proof The form on L- has signature (2, 10). For each 7eF(Y) we have 7~:O)x 
=2o9x, 2e~.  If Ogx=U+iv , u, w L ~ ,  this shows that ~& leaves invariant the 2- 
dimensional real subspace I R u |  on which the form is positive de- 
finite. On (lRu | R v ) l c  L~ the form is negative definite. So r- 7 belongs to the 
compact group O ( l ( u O R v )  x O((RuGlRv)• [] 

Combining propositions (3.1) and (3.2) we find 

(3.3) Theorem. For every Enriques surface Y the automorphism group Aut(Y) 
contains the 2-congruence subgroup of 0 t (Y) as normal subgroup of finite index. 

Next we consider generic Enriques surfaces and obtain the main result of 
this paper. 

(3.4) Theorem. Let Y,,~p be a marked Enriques surface with period point 
z(Y, qg)~D ~ not contained in any proper linear subspace of IP(L~) defined over 
the number field k from Lemma (2.9). Then the representation of Aut(Y) on 
H z (Y, Z)s = M identifies Aut (Y) with the 2-congruence subgroup of 0 ~ (M). 

Proof The assumption implies z(Y,~o)6Dge,. So Ot(Y)=O~(M). Also Lemma 
(2.9) shows that r - (Aut (X,a ) )=  +id, and the assertion follows from Proposi- 
tion (3.1). [] 

Now if a generic surface Y is deformed into less generic ones, the following 
phenomena, working against each other, can happen. 

Y acquires nodal curves, so O t(y) and Aut (Y) probably too, become smaller. 
- Y acquires nodal curves and/or S x becomes bigger, o9 x becomes more special, 
hence r - (Au t  (X, a)) and Aut (Y) probably too grow bigger. 

We do not know, whether one can control these effects. In particular we do 
not know the Enriques surface with the "biggest" or the "smallest" automor- 
phism group. 

3.2. Computation of Some Stabilizer Groups. Denote by G cOT(M) the 2-con- 
gruence subgroup. It is the purpose of this section, to compute the stabilizer 
subgroups G~cGt(M)c for certain elements ceM. An element ceM will be 
called 

primitive, if Zc c M is a primitive sublattice 

O-class, if c2=0 

forward pointing, if c~g7~- (here and in the sequel fix an isomorphism 
M = H 2 ( Y, 7Z)f) 

fwp, if c is forward pointing and primitive. 

In particular we consider elements 

c=el +... +e . 
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where el . . . .  , e. are 0-classes satisfying 

(3.5) e i . e j = l  for i+ j .  

(3.6) L e m m a .  i) I f  n > 2, then (3.5) implies that all e i are primitive. 
ii) I f  n > 2 and one e i is f w p ,  then so are all. 

iii) I f  c = e l  + . . . + e . = e ' x  + . . . + e '  . with e I . . . . .  e, and e' 1 . . . . .  e ' , f w p  O-classes 
satisfying (3.5), then up to a permutation we have e I = e' 1 . . . . .  e, =e'.. 

Proo f  The  assertions i) and ii) being obvious,  we prove  iii). We compu te  c. e] 
in two ways:  

n 

( e l + . . . + e . ) e ~ = ~ e l e '  1 and ( e X + . . . + e ' , ) . e ' l = n - 1 .  
1 

Since e i and e' 1 bo th  are f w p ,  we have e i . e ' l > 0  and e l . e ' a=0  only if e i=e '  1. 
This shows e~= e' 1 for some  i. The  assertion follows by induct ion on n. [ ]  

(3.7) Proposition. For n =  1,2, 3 or i0  the group Or(M)  operates transitively on 
the set o f  ordered n-tuples e t . . . .  , e , 6 M  consisting o f  f w p  O-classes satisfying 
(3.5). 

Proof. n = l .  Let  e ~ e M  be an arbi t rary  f w p  0-class. Since M is unimodular ,  
there is some c ~ M  with e ~ . c = l .  Put k = � 8 9  2 and e z = c - k e  ~. Then e ~ = 0  and 
e l - e 2 = l .  So e l , e  2 a r e f w p  genera tors  of  a sublat t ice I I - t cM.  Since el and e 2 
m a y  be pe rmuted  by some  g e O t ( M ) ,  the assert ion will follow from the case n 
= 2 .  

n = 2 .  It  suffices to show that  O t (M) operates  transit ively on the set of  sublat-  
tices I H c M .  But when an embedding  I H c M  is given, we have M = I H L I H  z 
with IH 1 unimodular ,  even, and negative definite, hence I H •  IE. Then  there is 
some g eO * (M) mapp ing  this decompos i t ion  M = IH • IE into the s tandard  one. 

n = 3 .  F r o m  the case n = 2  it follows tha t  we m a y  assume ea, e 2 to be the stan- 
dard  genera tors  of  IH in the s tandard  decompos i t ion  M = I H •  Then  e 3 = e  1 
+ e 2 + w  with ws IE  some root.  The  assert ion follows f rom the wel l -known fact 
that  the Weyl g roup  W(Es) operates  t ransi t ively on the roots  of  E s. 

n = 1 0 .  W e  take e a , e z e I H c M  as in the case n = 3  and for i = 3  . . . . .  10 we have 
e i = e  ~ + e 2 + w  i with roots  w~slE satisfying 

w i . wj = - 1 whenever  i + j .  

The  assert ion follows f rom L e m m a  (1.6). [ ]  

N o w  we consider sums c = e 1 + . . .  + e, o f f w p  0-classes e i ~ M  satisfying (3.5). 
F o r  n =  1, 2, 3, and 10 we saw tha t  O f ( M )  operates  transit ively on such c. It  fol- 
lows f rom L e m m a  (1.1) and L e m m a  (3.6)iii) tha t  

OT (M)c = ~ ,  x O(e} m. . .  c~ e,a), 

6 ,  the pe rmuta t ion  g roup  of degree n. We are interested in the n u m b e r  N(n)  
- - n u m b e r  of  G-orbi ts  of  elements c. 
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Clearly the stabilizer subgroup Gc is Gc~Ot(M)c, and since G is a normal 
subgroup in O*(M), all G-orbits are equivalent under Or(M). So the set of G- 
orbits is a homogeneous space under O*(M)/G = O + (10,]F2) and 

N(n) = I0 + (10, IF 2)I/[O*(M)~: Go]. 

The results are given in the following table 

n Or(M),. Gr [O~ (M)~: G~] N(n) 

l I E x W  s 21Ex { _ _ 1 }  22t-35.5~.7 17.31= 527 
2 ~2xWs {+_i} 214.3s.52.7 27 .17 .31= 67456 
3 ~ x W 7 1 21 t. 3 ~ " 5.7 210- 5- 17- 31 = 2698240 

10 ~1o 1 10!=28. 3'*. 52.7 213.3 .17 .31= 12951552 

Proofs. Recall (Sect. 1.4) that I O + (10, IF2)I = 221.3s. 52.7- 17- 31. To compute 
the stabilizer groups we use the standard decomposition M=IHA_IF with IH 
=Ze~ �9 7Ze2. Any g eOt(M)  has a matrix decomposition 

gn i gEn]  gn:ltt--'lH, ge: IF~IF 
g = , L ; } L ,   -aq,  -IF. 

n =  1. Assume ge I = e  1. Then 

[1 t f \  
g=lo . . !  ..... o... I t z, y iF 

\0  y go/ f : IF--. 7Z 

and orthogonality of g is equivalent with 

t= _�89 gEsW8 ' f = - ( g l s Y ,  >. 

So OT(M)~ is IF x Ws, the extended Weyl group, under the identification 

[ l  -�89 i -<hy,  >\ 
IFx W~(y,h)w-*~O 1 i 0 J. 

. . . . . . . . .  ; . . . . . . .  . . . . . . . . .  . . . . . . .  . /  

It is known (Sect. 1.4) that the 2-congruence subgroup of W 8 is just {+_1}. So 
Gc=2IF • { +-1}. 

n=2 .  If c---el+e2, we have O~(M)c=~2 x W s with ~ 2  permuting e 1 and e 2. 
Since a nontrivial permutat ion of ei's cannot belong to G, we have Gc = { _+ 1}, 
the 2-congruence subgroup of W 8. 

n=3 .  If c=e a+e2+e 3 and e 3 = e  t + e 2 + w  as above with some root w~IE, then 
i i i wl �9 e 1 ( 3 ~ e  2 ( " , ~ e  3 is c iF ,  the orthogonat complement of a root. This w I is 

isomorphic with the lattice ( - E 7 ) .  S o  O ' ; ( M ) c = ~ 3 •  7 with ~3 permuting 
e 1, e 2, e 3 and W 7 the Weyl group of E 7. In particular G c is trivial. 

n=lO.  Obvious. []  
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3.3. Representations of Generic Enriques Surfaces 

a) Elliptic Pencils. In this section let Y be an Enriques surface, general in the 
sense that Theorem (3.4) applies. In particular, there are no (-2)-curves on Y. 

We fix an isomorphism H2(y ,Z)s=M.  It is classical that (because of the 
absence of (-2)-curves)  each f w p  0-class esM is effective. There are exactly 
two curves E and E' representing e. They are either nonsingular elliptic or irre- 
ducible rational with a node or a cusp, and adjoint in the sense that K r =  (gy(E 
-E ' ) .  The linear system 12EI is an elliptic pencil without base points. It pro- 
vides Ywith the structure of an elliptic fibre space over IP 1. This fibration con- 
tains exactly two multiple fibres, namely 2E and 2E'. (The divisors E and E' 
are called the half-pencils of [2El.) Each elliptic fibration over IP 1 is defined by 
such a linear system [2El with eeM some fwp 0-class. We shall not distinguish 
between two elliptic fibrations Y--,IP 1 differing by an automorphism of IP1. So 
two elliptic fibre spaces Y--,IP~ are isomorphic (as fibre spaces, modulo 
Aut(IP1) ) if and only if they differ by an automorphism of X. So the different 
representations of X as elliptic fibrations over IP 1 correspond 1 to 1 with G- 
orbits offwp 0-classes eeM. From 6.5 we conclude 

(3.8) Theorem. For a general Enriques surface Y there are exactly 17-31 non- 
isomorphic elliptic fibre spaces over IP 1 with total space Y. 

b) Double Plane Representations. Now we consider pairs ex,e2eM of f w p  O- 
classes with e~- e 2 -----  1. We let E i, E' i be the curves representing el, we put D = 2(E~ ) 
+E~ )) and consider the linear system [D[. It is known [3, Theorem 6.1] that 
this linear system defines a 2 to 1 map of Y onto a "quartic Del Pezzo surface 
Q of Segre symbol (11)(11) l", i.e., a surface Q in IP 4 projectively equivalent to 
the complete intersection z2=z~ 22-=2324 of two rank-3 quadrics. The map is 
ramified over the four nodes of Q and a complete intersection curve B = Q c~ Z 
with some quadric Z c I P  4 not passing through any of the four nodes of Q. The 
absence of ( -2)-curves on Y forces B to be nonsingular. The double cover 
Y-,Q is related to Horikawa's representation of Y [7, 8] through the commu- 
tative diagram 

X , Y  

IP1 xlP  1 ->Q 

where IP 1 x IPa--,Q is a double cover ramified over the four nodes of Q. 
Up to an automorphism of IP 4 the map defined by ID] is uniquely deter- 

mined by the two classes e~, e2eM. We consider two double plane represen- 
tations of Y as equivalent, if the pairs (Q, B) defining them differ by an auto- 
morphism of IP4, i.e., if the classes D differ by an automorphism of Y From 
Sect. 3.2 we obtain: 

(3.9) Theorem. For a general Enriques surface there are exactly 27. 17.31 in- 
equivalent double plane representations. 

c) Enriques Representations. Let e~, e 2, eaeM be a triplet of fwp  0-classes sat- 
isfying e i . e j=  1 for i#:j, let Ei, E' i be the curves representing % and put D=E~ 
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+E2+E 3 (defined uniquely by d=e t +ez+e  3 up to the ambiguity between D 
and D'=D+Kr).  It is known [3, Theorem 7.4] that IDI defines a birational 
map of Y onto a sextic surface in IP 3 passing doubly through the edges of a 
tetrahedron. The image surfaces are projectively equivalent if and only if the 
linear systems IDI differ by an automorphism g of Y. Using the double-plane rep- 
resentation it is easy to see that for general Y (i.e., general choice of the 
branch curve B cQ)  there is no automorphism geG leaving el, e 2 invariant and 
interchanging E1 and E' 1. This shows that in general the systems ]DI and [D'] 
have projectively inequivalent images. From Sect. 3.2 we conclude: 

(3.10) Theorem. For a general Enriques surface there are exactly 2 ~1. 5-17.31 
inequivalent Enriques representations. 

d) Representations as Surfaces of Degree 10 in IP 5. Let e 1 . . . .  ,el0 be fwp  O- 
classes satisfying e l . e  J = 1 for i+j and let Ei, El be the curves representing e~. We 
consider the linear system [DI with class 

10 

a: Ze,. 
1 

Notice that because of the explicit form of the e~ given in Sect. 3.2 and Lemma 
10 \ 

(1.6) one easily checks that ~ e~ in M is divisible by 3.) It is known [4, 3.2.1 iii) 
1 ! 

and 3.3.2] that there are (special) Enriques surfaces carrying such e i with IDL 
defining an embedding of Y in IP 5 of degree 10 (" Reye-congruences"). So for 
general Y,, the system ]D[ will also define such an embedding Y~IP 5. As above 
one proves that [D[ and ID'1 define projectively inequivalent embeddings. So we 
conclude from Sect. 3.2 

(3.11) Theorem. For a general Enriques surface there are exactly 214. 3 .17.31 
1 embeddings in IPs, defined by linear systems IDI=I~_EI] as above, as lOth de- 

gree surfaces which are projectively inequivalent. 

4. Examples of Enriques Surfaces with Small Automorphism Group 

In this section we use the double plane presentation of Enriques surfaces to 
compute explicitly the automorphism groups for some examples. The obser- 
vations that Aut(Y) is finite in case 3 below is due to Dolgachev [6]. 

4.1. The Branch Curve. Denote by Q the quadric I P l x I P  1 and let ((Uo:U0, 
(Vo:V0) be bihomogeneous coordinates on Q. By a line on Q we mean a 
smooth rational curve belonging to one of the two rulings on Q. 

Take constants a, b, c, dO12 satisfying 

a#O, c#O~d ,  c $ d  

and consider the curve B c Q of bidegree (4, 4) with equation 

(V2o 2 2 2 4 2 b ( v g - 2  2 2 -v , ) {a(Vo-V, )Uo+ vl)UoUl +(cv2-dv2)u4}=O. 
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Then B splits as B = N + + N -  + C with the two lines 

N + : v o _+v 1 = 0  

and C a curve of bidegree (4, 2). This curve C meets the line N -+ at 

P+ =(1:0),(1:  -T-1)~N • 

with multiplicity 4. Since a , 0 ,  C is smooth in these points, so they are A 7- 
singularities on B. 

It turns out that one has to distinguish between the following three cases: 

Case 1 (general case): b+O, a c ~ b 2 ~ a d .  

Case 2 (symmetric case): b =0.  

Case 3 (special case): a c = b  2 or a d = b  2. 

Here Case 3 leads to the surface first considered by Dolgachev [6]. 

(4.1) Lemma.  Each line (Vo:Vl)=const+ _+1 meets C at four  distinct points, 
unless it is one o f  the two lines 

L+: (%: v l ) = ( ~ b 2 :  + ] / ~ - b 2 ) .  

Case 1 : The two lines are different and C is smooth at the two distinct points o f  
contact. 

Case 2: The two lines are different and C meets them with muhiplicity four at a 
smooth point o f  C. 

Case 3: The two lines coincide and C has two ordinary nodes on this line. 

(4.2) Corollary. Away  from P+ the curve B is smooth in case l and 2, and has 
two Al-singularities on the line L + = L -  in case 3. 

Proof  o f  the Lemma. An arbitrary ' l ine L with equation %: vx=to :  tx+ +1 in- 
tersects C at four distinct points unless a(ctg-dt~)=b2( tZo- tz l ) ,  i.e. 

(a c - b z) t~ = (ad - b 2) t~. 

This condition determines the lines L +. The restriction of C of L + has equation 
(au2+bu~)2=O, so the points of contact are 

((Uo: U,),(Vo :Vl))=((]/~: +_i V a ) , ( ] f a d Z ~ "  + _ ~ ) ) .  

In these points we differentiate the equation for C 

(?/Ovl = _ 2avl  u ~ _ 4 b v l  Uo2 Ul2_ 2dvl u~ 
= -- 2v 1 (ab 2 - 2ab 2 + da 2) 

= - 2av~ ( a d -  b2). 

So C is smooth here in case 1 and 2, but singular in case 3. 
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In case 3 let e.g. a c = b  2, hence L + = L -  is the line vt =0.  We use inhomo- 
geneous coordinates u=u~/u  o and v=v~/v  o to form partial derivatives of the 

equationror the po nt  ((1: .:0,) 

c~2 /c?u2=4b+12cu2=4(b-3C b ) = - 8 b , O ,  

32 /~v 2 = - 2 a -  4bu 2 - 2du 4 

= - 2  a - 2 a + d  = - 2 a ( a d - b 2 ) 4 : 0 .  

So the singularities are ordinary nodes. [] 

The equation for B is invariant under the group 7]2 x 7]2 generated by 

We put 

~1 : ((u0 : u0 ,  (Vo : v 0 ) ~ ( ( U o  : - u 0 ,  (Vo : v0),  

~ : ((Uo : Ul), (v0 : v ~ ) ) ~  ((Uo: u0,  (Vo: - v0). 

T ~ T 1 T  2 . 

If b = 0  the group 7] 2 • 7]2 can be enlarged to 7]4 • 7]2 generated by 

p: ((uo : u O, (Vo : v , ) ) ~  ((Uo : iuO, (Vo: vl)) 

and re, i.e., p2=z~.  

(4.3) Lemma.  In case 1 and 3 the group 7~ 2 X 7]2 generated by ~1, z2 and in case 
2 the group 7]4 x 12 generated by p, "c 2 is the full  automorphism group of  the pair 
B c Q .  

Proof. Any automorphism ~ of (B, Q) respects the pair of lines N -+, hence does 
not interchange u and v. Therefore a = a  1 ~2 with ~1 acting on u and ~2 on v. 
Additionally ~ respects the line u 1=0, the pair L -+ and the pair of lines au~ 
+ b u 2 = 0 .  

Case 1 and 3. Here the equation aU2o+bu~=O defines two distinct lines, inter- 
changed by ~1. This implies ~x=id  or a1=~1- Now either ~2 or ~2z2 leaves in- 
variant both the points (1: + 1), so it is of the form 

(Vo: vl)w-~ (to Vo + t 1 v l : tl Vo + to Vx), 

This substitution changes 

2 2 to#:t 1 . 

~ ~ _ t~ ) (~o~-  v~), t) 0 - -  V 1 b---+ ( t  o 

cv~ 2 2 z 2 + ( c t ~ - d t ~ ) v ~ ,  - d r 1  ~ (ct o -  dtl)  Vo + 2 ( c - d )  t o t 1 v o v 1 

and the invariance of C under el 0{2 implies first totl=O and then t I =0.  So ei- 
ther ~z= id  or e2=~2. 
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Case 2. N o w  the line u o = 0  is fixed under  cq because on 
implies 

~:(Uo:Ul)~(Uo:SUO, s*O. 

it C touches L • This 

As in cases 1 and 3 either ~2 or t~ 2 "['2 is of  the form 

(Vo : vl)~--* (t o Vo + tl vl : tl Vo + to vl). 

The invar iance  of the point  pai r  cv.2=dv 2 implies t 1 =0 ,  so c~2=id or c%=z 2. 
Consider ing the equat ion  for C we find s * =  1, hence ~ is a power  of p. [ ]  

4.2. The  K3-Surface X. Let X ~ Q  be the double  covering b ranched  over  B and 
q: X ~ Q  its min ima l  desingularisation.  On X we have the following curves:  

In all three cases: 
F (  . . . .  , F7 ~ ( - 2 ) - c u r v e s  resolving the Al-singular i t ies  over  P•  
F8 • two ( - 2 ) - c u r v e s  over  the line u 1 = 0  
N • two ( - 2 ) - c u r v e s  in the branch  locus 
F smoo th  elliptic curve over  u 0 = 0 

In case 1 and 2 addi t ional ly:  
L~, + L~+ ( - 2 ) - c u r v e s  over  L • (L~ and L 2 touch in case 2) 
E, E'  smoo th  elliptic curves over  % = 0 ,  v 1 = 0  

In case 3 addi t ional ly:  
E~ two ( - 2 ) - c u r v e s  over  the line L § = L -  
E2 ~ ( -  2)-curves resolving the A 1-singularities of  
E' smoo th  elliptic curve over  % = 0 ,  resp. v 1 =0 .  

Let a 3 e A u t ( X  ) be  the covering involut ion interchanging the two sheets of  
q: X~Q.  The  a u t o m o r p h i s m s  of Q from L e m m a  (4.3) lift to X in the following 
way:  

a~ is an involut ion lifting "c I and having F, F2 • F4 ~, F6 ~, and  F8 -+ as curves 
of  fixed points. 

a z is an involut ion lifting z 2 and  having E (resp. E~)  and E' as curves of 
fixed points.  

E 

t~ 
- ~ ~ ~ - ~  - 

- 

- -  N § F 

F~ ~ W- 

- ~ 
L~ 

- - 

LT 

Case 1 (in case 2, L~ and L~ touch on F 
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E~ 

E; E; 

E' 

Case 3 

D 

a 1 and 0" 2 commute with 0"3, so the involutions 0"1, 0"2, 03 generate a sub- 
group (Z2)3c Aut (X). This group contains in particular 0.=0.1 0.2 a3, the invo- 
lution without fixed points. 

In case 2 this group is enlarged by lifting p to /5eAut(X) with F8 + being 
curves of fixed points for ft. Then necessarily F2 +-, F~ and F6 -+ are curves of fixed 
points, and ISIF is an involution with four isolated fixed points. Further (15) 2 
=a l , /5  commutes with 0- 2 and 0"3, and we have a subgroup 7Z4x(Z2) 2 in 
Aut (X). 

Notice that the involutions a 1 and 0.~ 0.a interchange E~- and E 2. The in- 
volution 0.2 a3 interchanges all other pairs of curves differing by a _+-sign. 

4.3. The Elliptic Pencil [FI on X. The elliptic curve F in X is linearly equivalent 
8 

with ~ (Fi + +Fi -  ). We denote by ~b: X ~ I P  1 the elliptic fibration defined by the 
1 

pencil IFI. We know already the following sections for this pencil: 

N +, N - ,  L +, L 1, L~, L 2 (case 1 and 2) 

N +, N - ,  E~-, E 1 (case 3). 

We denote by ~ the set of all sections and introduce on it the structure of an 
abelian group by distinguishing N -  as origin. For  any of the curves 

- + 5: i ~ �9 N , N ,/2 t , E~ we denote the corresponding group element by o, n, l + e + 
With N -  as origin the 2-torsion elements on every elliptic curve in IFI are 

the intersection points with the ramification divisor of q. Since C does not 
split, the only non-trivial 2-torsion element in ~ is n. The involution a 2 a 3 acts 

on ~ as addition by n. 

(4.4) Proposition. 7he torsion subgroup ~tors ~ ~ is 

Z 2 generated by n (cases 1 and 2) 

Z 4 generated by e • (case 3). 
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(4.6) 
is 

Proof If ~ e ~  is any torsion element represented by the section S c X ,  then qS 
c Q  is a smooth rational curve of bidegree (1, n). If qS intersects B in a smooth 
point, then necessarily 2~=0, i.e., S = N  • The only way to avoid meeting B in 
a smooth point (on N + or N - )  is n = 0  and qS=q(E~) in the case 3. So S=E~( 
or Ei-. Since ~ contains only one 2-torsion element n 40,  necessarily ~,o~s= 7Z.4 
generated by e + or e -  in this case. [ ]  

(4.5) Corollary. In case 1 and 2 we have rank ~ > 1. 
In fact ~ contains the non-torsion elements 1 +. Notice that n + I + = I~- and 

The automorphisms a I (resp. /5 in case 2) and aaeA u t (X  ) respect IF[ and 
leave N -  fixed. 

Proposition. The subgroup of Aut(X) respecting IF] and leaving N - f i x e d  

Z 2 X Z 2 generated by a 1 and a 3 (case 1 and 3), 

Z 4 X Z 2 generated by ~ and a 3 (case 2). 
8 

Proof Any a~Aut(X) respecting the pencil IF[ fixes the cycle ~(Fi + +Fi-  ). If 
1 

a N - = N - ,  then (after replacing a by an3.) we may assume ~Fi + =F,. +, ~F i- =F/ -  
for i = 1 . . . . .  8. So c~ leaves invariant the ET-fundamental cycle 

Z = F  i -+2F z - + 3 F  3 -+4F  2 + 3 F  s- + 2 F  6 + F  7- + 2 N -  

linearly equivalent with E (resp. E [  + E  i- + E ~ - + E 2 )  and E'. This means that 
the map X ~ I P  a defined by the elliptic pencil IE'1 is e-equivariant too, hence c~ 
is induced by some symmetry of (B, Q). The assertion follows from Lemma 
(4.3). [ ]  

This group ~2 X ~2 (resp. 7/4 x Z2) acts naturally on $.  On the sections giv- 
en above this action can be traced easily: 

a 3 being the covering involution induces - i d  on all elliptic curves in the 
pencil IF[, hence acts on ~ as - i d .  

a 1 (resp./5) leaves invariant each of the sections n, 1 + e ~: i ,  so it acts trivially 
on ~tors and on the rank-1 subgroup generated by the 1 +. 

Now let 
9t=(71z x Zz)Ex ~, resp. (Z,  x Z 2 ) ~  ~ 

be the semidirect product w.r. to this action. 

(4.7) Proposition. 0t = Aut (X) c O(L) is just the stabilizer subgroup of the class 
f~Lof  F. 

Proof Assume ~ f = f  for some a~Aut(X). Then ~b: X ~ I P  1 is c~-equivariant. Af- 
ter replacing ~ by ao {translation by - c ~ ( o ) ~ }  we may assume a N - = N - .  
The assertion follows from Proposition (4.6) above. []  

4.4. The Enriques Surface Y=X/a .  Since a = a l a z a 3 ~ A u t ( X  ) has no fixed 
points on X, the surface Y = X / a  is an Enriques surface. As usual denote the pro- 
jection by re: X~Y.  Under a all the curves E l ,  Fi -+, L • ~, Ni • differing by a 
+sign are identified. So on Ywe have the following curves: 
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Eu 

N 

[-1 
>C)( 

[-2 

E~ 

F v 

Case 1 (in case 2, L 1 and L z touch on Fr) 

E 2 

tq 

E~ 

Fu 

Case 3 

First we determine divisors representing a Z-basis of Hz(Y, TZ)I=M. Con- 
sider the cycle 

Z=ZF2 +4F3 +6F,, + 5F5 +4F6 + 3FT + 2Fs + 3N. 

It is the fundamental cycle of an Es-configuration, hence Z 2 = - 2 .  We com- 
plete Z to/~8-configurations 

Z I = L I + Z  , Z 2 = L 2 + Z  (case 1 and 2), 

Z 1 = E  1 + Z  (case 3). 

Then there are classes hx, h2eM with h 2 =h22=0 and 

z 1=2hl ,  Zz=2h 2 (case 1 and 2), 

z l=2hl ,  h l . e 2 = l  (case 3). 

(Here as usual we denote the class in M represented by a cycle with the corre- 
sponding small letter.) Putting h z =h 1 + e  2 in case 3, we have in all cases 

h~ =h~Z =0, h i . h 2 =  1, 

hi.fj=hi.n=O , i=  1, 2, j = 2  . . . . .  8. 
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This proves: hi, h2,f2 . . . .  ,fs, n form a Z-basis of M. 
Recall that Aut (Y) = Aut (X, 0.)/0.. Putting 

~R(0.) = 91c~ Aut (X, 0.)= {~91:  ~0. = 0.ct} 

we have 91(o)/0. as subgroup of Aut (Y). To describe this group more explicitely 
recall that 0.=0.1 .(o2 0.3) and that o 2 0.3 acts on 6 as translation by the unique 
2-torsion element n. So a 2 0.3 commutes with all elements of 91 and 91(o-) is the 
centralizer of 0.1. We observed that 0.1 centralizes 6tots. If 0.1 commutes with 
translation by a non-torsion element ~ 6 ,  then necessarily 0.](~)= ~. So putting 

6(0.)  = {8 ~ 6 :  a 1(~) = 8} 

we have 91(0.)=(7Z 2 • Z2) ~ 6(a),  resp. in case 2 ~.fl(0.)=(7Z 4 • 7Z2) v< 6(0.). We 
put 

s = r a n k  6(0.), 

then 6(0.) = 6tors X Z s. Notice that we do not yet know s, but in the cases 1 and 
2 we have l~e6(o) ,  hence s > l .  So we obtain the following description of 
9t (a)/0. c Aut (Y). 

Case 1" ]~2(0"1) )< ]~2(0.2 0.3) X (]~2(0.3) D< ]~-,s)/(71 0" 2 0.3 ~---Z2 )< (7"2 D'< ~j~s). 

Case 2:]~2(t72 0-3) X ((1-4(p) X ~2(0.3)) IX Zs)/t71 0" 2 0.3 =(7~'4 X ]~2) [~ ~s.  

Case 3: Z2(Ol )  )< (7'2(0"3) D( (~4(e  -+) x ~s))/o" 1 0.2 0.3 ~---~2 D< ( / 4  X 7~s). 

The aim of this section is to prove that there are no other automorphisms 
of Y. For  cteAut(X, 0.) let us denote by c~ mod a the induced automorphism of 
Y. The key observation is the following one. 

(4.8) Proposition. a) The involution 0.1 mod 0. acts trivially o n  H2(y,Z) and gen- 
erates the kernel of the representation of Aut (Y) on H2(y, Z). 

b) In case 2 the automorphism ~ rood 0. acts trivially on H2(y, Z)y and gen- 
erates the kernel of the representation of Aut (Y) on H2(y, Z)I. 

Proof. 0.1 (as well as/3 in case 2) leaves invariant all the curves on X specified 
above, except for interchanging E~ and E~. This proves that 0.~ mod 0. (as well 
as/3 mod 0.) acts trivially on the basis of H2(y, 7Z)I considered above. 

To prove that 0.1 mod o acts trivially on H2(y ,z )  already (and /5 mod 0. 
does not do it) we observe that not only the classes hi, h2,f2, . . . , f s ,  n, but also 
the curves Z~, Z2, F 2 . . . . .  F s, N are left invariant under 0.1 mod 0., resp. /3 mod 
0.. So it suffices to consider the action on the two half-pencils in the linear sys- 
tems IZxl and [Z21. 

Let us denote by p'~, p'2r the points where F s, F r meet the smooth elliptic 
curve El,. Then [2p'll=12p~[ is the linear system cut out on E~ by both [Zll and 
IZ21. The two half-pencils in [Zll and [Z2[ intersect E~, in the two other points 

' ' d) ' d) ' P3,P4 with E~,(p~)= ~,(p~), i=  1, 2, j = 3 , 4 .  Now 0.1 mod 0. fixes the points P3, 
p~, and the corresponding half-pencils, whereas/3 interchanges p~ and p~,. 

Conversely, consider an arbitrary ~zAut(X,  a) with ct mod 0" acting trivially 
on H2(y,z)y.  After replacing ~ by ~0. we may assume a N - = N - .  By Proposi- 
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tion (4.6) this ~ is one of the following 

idx,/3, al,/3 3, 0.3,/~03' 0"1 0"3' ~3 0.3" 

But the last four automorphisms in this list reverse the orientation in the cycle 
8 

(F~ + +F~-). This proves the assertion. [] 
1 

(4.9 a) Corollary. 0.1 mod a belongs to the center of Aut(Y) and its fixed point 
set is stable under each automorphism of Y 

Now o I mod ~ has the following set of fixed points 

Case 1 and 2: Fr, F2, F4, F6, F8, {P3, P4, P'3, if4} PiEEr, P'iEE'r, 

Case 3: Fr, F2, F4, F6, Fs, E2, {P3, P~,}. 

It follows that any automorphism of Yis of the form e mod a with ~sOt(a). 

(4.9 b) Corollary. Aut (Y) = Ot(a)/a. 

It remains to determine the rank s of the abel• subgroup Is  c ~(a). 

(4.10) Lemma. a) The subgroup of O(M) leaving invariant f l  . . . . .  fs  is Doo 
= Z  2 ~ Z, the infinite dihedral group. 

b) The subgroup leaving in addition e 2 invariant is trivial. 

Proof Any ~eO(M) leaving invariant fz . . . .  ,fs is determined by its action on 
8 

{f2 . . . .  , fs}  • Now hl, h 2 and f = ~ f i  belong to this orthogonal complement. 
Since 1 

2 2 2 h l = h 2 = f  =0 ,  h l . h 2 = l ,  h l . f=h2 . f=2 ,  

their 3 x 3  intersection matrix has determinant - 8 ,  hence equals 
det (f/"f~)2~=i.i<=s. This shows that hi, h z , f a r e  a Z-basis of {f2 . . . . .  fs} • 

Now e acts as 
hl~---~r 1 h I + r  2 h 2 + r f  

h2w-~Slhl +s2h2+s f  

f~-*f  

with r, s, r~, s~s2g and determinant 

rl s2--r2sl = +_1. 

Denote by %~O(M) the permutation hl~-~h 2. It generates a subgroup ~2 
c O ( M )  and modulo this subgroup we may assume the determinant above to 
be + 1. Now orthogonality of ~ implies 

2 = h  1 ' f  =2( r  1 +r2) =e~ r2 = 1 - r  1, 

2 = h  E . f=2 ( s  l + s z ) ~ s  z = l - s  1 
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and from the determinant condition we conclude r l=s 1 +1. Putting s 1 = t e Z  
we find 

hl ~--*(t + t)h 1 - t h 2  +rf, 

h2~--* thl + (1 - t )ha  + s f  

and orthogonality of c~ is equivalent with 

0 = h  2= - 2 t ( t +  1 ) + 4 r ~  r=t ( t+  t)/2, 

0 = h  2 = 2 t ( 1 - t ) + 4 s  ~ s = t ( t -  1)/2. 

So ~ = at is an element of the group 

1 +t - t  t(t+ 1)/2) 

7Z~t~--*~t--= t 1 - t  t(t 1)/2 . 

o o 

On this group a o acts by a~c~ ,. So ao and Z generate Doo. 
b) We have 2 E 2 = Z  2 - Z  a and hence e 2 = h z - h  1. So ~t(e2)=e2-2t(el+e2).  

So at(e2)=e2 implies t=0 .  Since c%(e2)= - e 2 ,  the assertion follows. [] 

(4.11) Corollary. In case 1 or 2 we have s = l ,  and s = 0  in ease 3. 

Proof If ~6Z~c ~(a) then addition by 8~ leaves invariant f l  . . . . .  f8 and in case 
3 also e 2. So s=<l, resp. s = 0  in case 3, by the lemma above. But s > l  in case 1 
or 2 was observed already. []  

The final result is the following. 

(4.12) Theorem. Let Ybe an Enriques surface as considered above. Then Aut(Y) 
is isomorphic with 

Z 2 • D~ (case 1), 

]g4 • D~ (case 2), 

D 4 (case 3). 

4.5. Invariants. In this section we compute the Picard number p(X) and the 
nodal type N for the general surfaces in our family. As above we use the de- 
composition L=IHLIHLIHJ_IE•  In 4.4 we observed that the nodal classes 
f2 . . . . .  fs ,  n e M = I H L I E  form a Z-basis for IE. Their inverse images on X de- 
compose into 16 nodal classes forming two Es-configurations. In fact these two 
configurations are bases for the two factors IE c L, see [7, Sect. 5]. Since the al- 
gebraic lattice S x contains L + ~ L, this proves the following. 

(4.13) Lemma. For all surfaces X considered here the algebraic lattice S x c L  
contains the rank-18 sublattiee 

IH(2)• 1E• = {(0, h, h, x, y): helH, x, y~lE}. 

The orthogonal complement in L of this rank-18 lattice is 

Nx = IH• {(h, h', - h ' ,  0, 0): h, h'elH}. 
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In case 3 also the class e a = h 2 - h  1 is nodal. Then n*e2=d+s(d ) with 
d e I H •  a nodal class such that (d, s(d))=0 and 

d + s(d) = (0, h 2 - h,, h 2 - hi) , 

d-s(d)=(h,  h', - h')e N~ , 

2 d = ( h , h ' + h a - h l ,  - h '  + h2-hl) .  

This shows he21H. By Corollary (1.2) and Lemma (1.8) it follows that there is 
an automorphism of N 1 extending to IH•177  as identity on N1 ~ mapping d 
-s(d)  to (0, h2-h~,  h~-h2). If we change the fixed marking of Yby this auto- 
morphism we have 

d +s(d)=(0, h a - h t ,  h 2 - h i )  d - s ( d )  = (0, h 2 - h i ,  h I -h2)  

and therefore 

d=(O, h z -h t , 0 ) ,  s(d)=(O,O, h2-hl) .  

Let N 3 c N 1 be the rank-3 sublattice orthogonal to d. Then we have shown the 
following. 

(4.14) Lemma. In case 3 for all surfaces X the algebraic lattice S x contains the 
rank-19 lattice N3 i. 

In other words: If N c L  is the nodal type of X, then always N c N  1 and in 
case 3 even N c N 3. 

(4.5) Proposition. For general X in our family we have T x = N = N 1. For general 
X under case 3 we have T x = N = N  3. In particular p(X)= 18 for general X, and 
p(X)= 19for general X in case 3. 

Proof The cup product on N~ is non-degenerate. So there is no 3-dimensional 
isotropic linear subspace of N 1 | ~. If T x + N~ for all X, then the period point 
z(Y, (p) would vary in a countable union of 1-dimensional quadrics. This is im- 
possible, because we show that in D~ our family has an image containing a 
(local analytic) variety of dimension two. Similarly, in case 3, we show that the 
image contains a curve. 

Case 1. Consider the map ~br: Y~IP~ given by the pencil [2Fy[. We have qJr ~ n 
= 4, and (hiE is the quotient map w.r. t o  ~2(O'lIE)• Z2(a3IE ). So 4~[g factors 

- u  2 and similarly for ~l E'. The four iso- as E q ~'IPl(u0] U l ) * I P l ( W o : W l ) ,  w i -  i ,  

lated fixed points P3, P4~Er, P'3, P'4~E'r and their images under 4~r (modulo the 
natural C*-action on IP1) depend only on the isomorphism class of Y. These 
four image points are the four roots of the polynomial 

(awZ + 2bwo wl +cwZO(aw2 + ZbWo Wl +dw 2) 

( ( b  2 ~ _ )  b ( ~ _ )  - a" 4' 
_ a 2 + 2 _  SoW + w,i. = a  2 w 4 + 4 b w ~ w l +  4 ~ +  WoW 1 
a a 

b c d 
Since - ,  - ,  and - vary independently, we see that these 4-tuples in IP'~ form a 

a a a 
3-dimensional set and dividing by the tE*-action the dimension is two. 
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Case 3. It suffices to show that the elliptic curve F varies. It is ramified over / - _  

the four points + 1, + i / c ,  or after multiplying with 1/-d over +1/~, +__l/-d. The 
cross-ratio [ u 

v -v7 2 
v +vT-v7+r (v +vT)2 

varies with c/d. [] 

The lattices L t . . . . .  L,~ for general X then are as follows 

L 1 = L  +, 

L2=NlXnLL -, L 3 = 0 ,  L 4 = N  1 in case 1, 

L2=N3• -, L3=0,  L4=N 3 in case 3. 

4.6 The action of Aut(X,a) on N. Let us finish by giving a few properties of 
the representation of Aut(X, a) on N 1 (cases 1 and 2) and N 3 (case 3). In the 
proof of (4.15) we showed that the period point z(Y, tp) moves in an open set of 
D~ (resp. D~ if Ymoves in our family (resp. in the part of the 
family under case 3). So the argument of (2.9) applies and shows that the image 
of 

7,2(0"1) X ~,2(O'2 0"3) X (~2(O'3) D< ~)---~ Aut (N1) 

~2(0"1) X (~2(0"3) D'( Z4(e• (N3) 

in general is the group {+id}. But this assertion is invariant under defor- 
mations, so it holds for all our surfaces Y 

Now for 15 the situation is quite different. 

(4.16) Proposition. We have ( /51Nli2=-id,  in particular the order of ~ on N is 
four. 

Proof It suffices to show that a 1 =/3 2 acts on N 1 as - i d .  To do this, we use the 
Lefschetz fixed point formula. It reads 

Trace (a 1 on OH2q(X, ~)) = e (Fix (al)), 

where on the right-hand side we add over the Euler numbers of all com- 
ponents of the fixed point set of a~. Now a 1 fixes point-wise the eight rational 
curves F f ,  F~,  F~, and F~ as well as the smooth elliptic curve F. So 
e(Fix(al))= 16 and Trace (a~lL~)= 14. Since a 1 leaves invariant all the curves 
F/• L/~, N • from which a basis for the lattice N(  can be chosen (cf. (4.13)), we 
have (a 11Nr = id and Trace (al I (N() | R) = 18. 

This implies 
Trace (allN 1 | R) = 1 4 - 1 8  = - 4, 

hence o 1 acts on N 1 as - i d .  []  
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