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The Local Torelli Theorem

1. Complete Intersections
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§ 0. Introduction

In [4] and [5], Griffiths constructs a generalised period map for algebraic
manifolds and asks whether this map is locally injective. This is a problem related
to the usual Torelli theorem for curves and therefore called Torelliproblem.
In the papers mentioned Griffiths gives a cohomological criterion for solving
this problem, provided the moduli are defined for the manifolds in question.

By means of this criterion we prove the local Torelli theorem for complete
intersections in projective n-space relative to the holomorphic k-forms, where k
is the dimension of the manifold. Because there are no such forms if the canonical
bundle is negative, we only have to deal with the case of trivial and ample canonical
bundle. In case of surfaces with ample canonical bundle, this provides new
examples for which the conjecture stated in [6], Problem 6.1 is true.

As to the organisation of the paper, we collect the necessary background
material on deformation theory and the period map in the first two sections. In
the next one the moduli are computed for the complete intersections mentioned.
Then, in Section 4 and 5, the local Torelli problem is reduced to a question about
polynomial ideals. Here we essentially use the criterion given by Griffiths (cf.
Section 2). The question on polynomials is solved in Section 6.

We employ the following (partly standard} notations and conventions:
If Wis a complex manifold, 1 a submanifold of W and F any holomorphic vector
bundle on W, we set:

F|V: the restriction of F to V.

Moreover:

Oy : the trivial bundle on W.

Ty the holomorphic tangent bundle on W.

€%, : the bundle of holomorphic d-forms on W.

K : the canonical bundle on W, i.e. Qjy, where n=dim W.
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Ny : the normal bundle of V in W, ie. the quotient bundle arising in the
exact sequence

0T, TylV >Ny y—0. 0.1)
Dualising this we find (p=codimy, V):
Ky =Ky®A’Ny  (adjunction formula). 0.2)

We shall often identify a holomorphic vector bundle with its sheaf of holo-
morphic sections.

In case W=IP, we drop the subscripts W in the notations 0y, T;,, etc. If
VP, is a complete intersection of s hypersurfaces ¥, of degree n, (k=1,...,3)
we put: V=V(n,,...,n)y=V({,...,s)

H denotes the hyperplane bundle on IP,, and F(k)=F®H* Note that the
normal bundle of V{1, ..., s) in IP, is isomorphic to @7‘:1 0,(n,), so by (0.2):

Ky =0(n, +...+n,—n—1). (0.3)

Therefore we put A=Y%_, n,—(n+1).

The submodule of the polynomial ring €[ &, ..., £,] consisting of homogeneous
polynomials of degree k is denoted as o.

Remark that we may identify H%(IP,, O(k)) and o, after the choice of a fixed
system of homogeneous coordinates on IP,,:

i o> HO(IP,, O(k)) .
We abbreviate:
OF=0/0¢, F  forany FeC[&,....E,].

CAM: connected compact complex manifold.
CAKM: Kihler CAM.
PAM : projective manifold.

§ 1. Deformation Theory

We collect some results on deformation theory from [7], [11], and [16].
A family of CAM’s is a triple (¥, n, B) of analytic spaces ¥", B and a proper,
simple, connected morphism 7: ¥ —B. Put V,=n"'(b). A family of deformations
of a CAM V, is a family (¥, =, B). with a distinguished point b e B, together
with an isomorphism i: V,~ V. Notation (¥", x, B, i, b) or ¥"\B if no confusion
arises. A morphism of families of deformations is required to be compatible
with the given isomorphisms.

If ¥"™\B is as above and f: (B, b’)—(B, b) is a morphism of pointed spaces
¥ ;=¥ xpB' becomes, in a natural way, a family of deformations of ¥, over B’;
this is the family induced by f.

We are only interested in the behavior near the distinguished point of B,
which from now on shall be denoted as 0. So we consider two families over B
as isomorphic as soon as their restrictions over some neighborhood of O e B are
isomorphic.
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A family ¥\B is called complete if for any family #"\B' there is a morphism f
of some open neighborhood U of 0 e B’ into B, such that #7|U and ¥ are iso-
morphic over U. If the germ of f is unique, i.e. if ¥",~¥", implies f =g, then we
call ¥ \B a modular family and (B, 0) a space of moduli for V,. Such modular
families do not always exist, but Kuranishi proved that complete families always
exist [13]. He constructs a particular family 2 \T, which is complete. This we
call Kuranishi’s family. Recall [7]:

Lemma 1.1. The Zariski tangent space at Oe T is of dimension dim H(T,);
furthermore codim T <dim H*(T,), where T is considered as an analytic subspace
of a polycylinder in HY(T,).

Corollary 1.2. If H*(T,))=0 then T is non-singular at 0 and dim T =dim H'(T;)).

Corollary 1.3. If ¥"\B is a modular family, it is isomorphic to & \T.

Proof. Cf.[16], lemma on page 404.

In [16] some necessary and sufficient conditions are given for 1 to have
a space of moduli. In particular [16], corollary to Theorem 4.2:

Lemma 1.4. If Tis reduced and dim H'(T,, ) is independent of t € T, there exists
a modular family for V.

Remark 1.5. 1f H*(T;)=0 then V need not have a space of moduli. However,
in the cases at hand we shall also have H%(T;)=0 and it is well known that we
have a space of moduli, even a smooth one (cf. [16]).

Next we recall the definition of the Kodaira-Spencer map [11], [7]: Let
(7", m, B)be a complex family. Let T, be the subbundle of T, consisting of vector-
fields tangent along the fibres of n. (Remark that these notions still make sense
if B has singularities). There is a bundle sequence on ¥:

0-T,»T,»n*Iz—0.

Its restriction to V, gives:
0—T, - T,|V,on*Ty V0.

And the corresponding cohomology sequence provides us with maps:
Syt HO* Ty V)~ H\(T;).

Let T(B) be the Zariski tangent space at t. Since ¥, is compact and connected
the map n*: T(B)— H%n*TgV,) is an isomorphism and we identify these two
vectorspaces by means of 7*. So we obtain the map:

o/ : T(B)-HYT,,).

This is the Kodaira-Spencer map. It is easy to see that, if (F, f): ¥ \B->#"\B'is a
morphism of families of deformations of V,, there is a commutative diagram:

Ty(B) 57— TolB)
Fiid o

HY(Ty,)
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Furthermore it is well known that g7 is an isomorphism for the Kuranishi
family 2\T (cf. [13], [16]).

Lemma 1.6. Let B be non-singular. If g, is an isomorphism for all be B, then
¥"\B is a modular family.

Proof. There is a morphism (F, f): ¥ \B—Z\T. The above diagram shows
that dfis injective, hence is bijective because dim B=dim H'(T;,))=dim T (cf. 1.1).
So (F, f) is a local isomorphism (cf. [7]) and T is non-singular. Now apply 1.4.

Sometimes we shall need the principle of upper-semicontinuity :

Theorem 1.7. (cf. [3], [14a]). Let & be a coherent analytic sheaf on ¥". Let ¥"\B
be a family of CAM’s. Put E,=&/& - m, where my, is the maximal ideal of be B.
There is a neighborhood of 0e B such that dim H?(V,, E,)<dim H¥V,, E,) in this
neighborhood.

From now on all our varieties are assumed to be non-singular. If Z\T is a non-
singular pair, forming a modular family of V; we call dim T the number of moduli
of Vs, notation u(V,).

We call ¥\B a family of deformations of V in W if

(i) It is a family of deformations of V' =V,

(i) There is a holomorphic map ¢ : ¥ — W such that ¢|V, is an embedding
of V, in W. There is an exact commutative diagram:

0 Ty, > Ty |V, — (n*Tp)|V; —— 0

|

00— TV,_‘-"¢*TWIV;“‘—"¢*NV,/W‘—‘_’0-

And in cohomology we obtain the commutative diagram:
T(B)—— H'(Ty)
N A
H(Ny,w)
We quote from [10]:
Theorem 1.8. If H'(Ny)=0, there exists a family of deformations of V
in W, say ¥"\B, such that o, is an isomorphism for all t € B.

Corollary 1.9. If H((Ny »)=H(Ty|V)=H"(T,)=0, then there exists a modular
family for V and y(V)=dim HY(T,).

Proof. We take the family from 1.8. Consider the exact sequences
0-Ty,» TylV,=> Ny, jw—0

this gives:
0~H(Ty )= H(Ty| V)~ H'Ny ) —5— H (T, ) > H'(Ty V) ...

Now, for ¢ near 0 € B we have by 1.7 that HYT,, )= H'(T|V;)=0. Because g, is an
isomorphism, dim H%(N_ ) is equal to dim B.
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So we have: dim H'(T;,)=dim B —dim H°(Ty|V)), hence by 1.7 dim H'(T;,)
isconstant for t € B. Thisimplies [3], [14a], that #' = J,. 5 H(T;;) isa holomorphic
vectorbundle. Now gy =6, - 0, s0 is onto and we may choose a submanifold
A of B through 0, such that the Kodaira-Spencer map of ¥"\4 is an isomorphism
at 0. Now the g, fit together to give a bundle map ¢: T,—#, which is an isomor-
phism at 0, hence in a neighborhood of 0 e 4. So we may apply 1.6 to obtain the
result.

For future reference we state a slightly modified form of 1.8 in a special case
and its analogous implication:

Theorem 1.8(a) (cf. [12]). If codimy V=1 and HY{[V])=0, the conclusion
of 1.8 holds. Here [ V] denotes the linebundle on W defined by the divisor V of W.

Corollary 1.9(a). If HY([V])=H\T,|V)=H%T,)=0, then there exists a
modular family for V and w(V)=dim HY(T;).

§ 2. The Period Map for Algebraic Manifolds

We recall Griffith’s results on the period mapping, see [4] and [5]; A small
deformation of a CAKM is always a CAKM (cf. [11], Theorem 3.1). So if V
isa PAM we may assume that for any family of deformations of V' =V,, B is so
small that

(i) All V; are CAKM (t e B).

(i) ¢: ¥ =V xB differentiably.

So we have natural difftomorphisms ¢, : ¥,— V,, the inverse of which we denote
by y. If dim V=m, set X=H"(V,C). Remark y*: H™(V, C)>X. The Hodge
decomposition [9]: H™V,, €)~ @, -, H"YV)) gives a subspace S,=y}*H™(V})
of X. Now dim H™(V))=} p+q=m dim HP%(V)) is constant, whereas each dim H”%(V))
is upper-semicontinuous (1.7), hence is locally constant. So we may assume:

(iii) dim H™°(V)) is locally constant, say k.

Under the assumptions (i) up to (iii) we obtain a map from B into the Grass-
mann-manifold of k-planes in X:

Q:B5GrX, k); 1S, .

this is the period map for ¥"\B. In case there exists a modular family we ask
whether Q is locally injective for this family. This is the Torelli problem. We recall
(5], Theorem 1.1) that Q is a holomorphic map and we may study the infinitesimal
map:

Q. Ty(B)— Too(GH(X, k)) .

Now by [4], Lemma 4.2, Ty(Gr(%, k))~Hom (H™°, H" “'@...®@H%") in a
canonical way and we thus obtain:

Q,: Ty(B)»Hom (H™°, H" 1@..@H*™).
The pairing 7, K, —» Q7 ~ " defines a cup product (cf. appendix):
v HY(T)@HYKy)-»H (Qp ™).
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So we get a map:
HY(Ty)—»Hom (H%Ky), H{(Qy ™~ "))=Hom (H™°, H" 1)
0—{0: k—>0UxK} .

A central role is played by Proposition 1.20 of [5]:

For all A€ Ty(B), Q*(A)=Q/O-(7), where g, 1s the Kodaira-Spencer map. In case
the moduli are defined and equal to dim H*(T}), the map g, is an isomorphism
(cf. remark before 1.6). So Q, is injective if and only if the cup-product U has the
following property:

Ouk=0 forall x, implies @=0.

We call this property, non-degenerate in the first factor.

Dualising we find that the map 68— {k+—0u«} is into if and only if the dual map:

{HYQ7 ™ ) @HKy)—~{HY(T,)}*

PRk {0—p(0uk)} is onto.

In the appendix it is proven that this map corresponds to cup-product if we
take the Serre-dual spaces, i.e. the above map is the cup-product

Ut " QD@H(Ky)~H" Q) ®Ky).

So the above discussion shows that U is non-degenerate in the first factor if
and only if U, is onto. Resuming:

Proposition 2.1. Assume V has a modular family (Z, T), where T is a manifold
of dimension dim H(T,). Then the period map for this family is locally injective
if one of the following equivalent conditions holds:

(i) v:H(T)®HYK,)->H (&™)
is non-degenerate in the first factor.

(i) Uy H"HQ)@HKy)»H" (2 ®Ky)
is onto.

Example2.2. Let V be a PAM with K,=0, such that w(V)=dim HY(T;).
Then condition (iii) is trivally fulfilled. In Section 3 we shall prove that complete
intersections in IP, of hypersurfaces of degrees ny, ..., n, such that Y ;_, m,—
(n+1)=0 belong to this type.

We shall need a special case of 2.1(i), namely assume V is a submanifold of W.
Assume H°(K,)#0 and study the cohomology diagram of the bundle diagram:

00— Ty — TW|V *——]-——’ NV/W —F0

N

00— Ty @Ky —z7 TwlV®K, T Nyw®Ky ——0
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where .s denotes the product with s € H%(K,,). One finds:
0‘——_"HO(TV)—“‘——“’HO(TWIV) " HO(NV/W)'—‘—_’HI(TV)"—“—’HI(TWIV)

i L

L T T

0— HAT, ®Ky) — HAT, |V ®K,y) 5o HUNyw®Ky) <> HI(T,®Ky) —— ...

Theorem 2.3, Assume w(V)=dim HYT,). Suppose moreover :
HTy)=HYT, ®K)=H(Ty|V)=0

then Torelli holds locally if and only if the next condition is fulfilled:
Suppose for ve H'(Ny,) we have vuse Im(®1), for all se HY(Ky), then
se Im(,).

Proof. From the above diagram we see that for any 8 e H'(T;) there is a
ve HYN, ) such that 6,v=0. Because of commutativity and exactness:
dus=0wvuseIm (j®1),
and
0=0veIm(,).
Together with 2.1(i) this proves the theorem.

§ 3. Vanishing Theorems for Complete Intersections

We let V=V(1,...,s)=( )iz, Vi where V,CIP, is a non-singular hypersurface
defined by ¢, =0 (¢, eq,,). Put p=ideal (¢,, ..., ). Recall Bot’s theorem [1]:

Theorem 3.1. H*(IP,, Q4k))=0, except for:

(1) p=0 k>gq,

(i) p=n k<q—n,

(i) p=q k=0.

The Serre-dual of HP(IP,, T'(k)) is

H""(IP,, Q' @K(—k))=H""*(IP,, Q(—k—n—1)),
so we obtain from 3.1

Corollary 3.2. H¥(IP,, T(k))=0 except for:
() p=n, k<—-—n-2,
(i) p=0, k> -2,
(i) p=n—1, k=-n-1.
By means of induction on the codimension of V and the exactness of the
sequences:

0~ F(k—n, 4 1) —5 F(K)

Flk)/vQ,...,o+1)-0

r

valid for any vector bundle F on V(1, ..., 6) we may verify the first two assertions
of the next lemma; the last one can be found in [8], Theorem 22.12.
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Lemma 3.3. (i) H?(V, H4V)=0 for 1<p<dim V-1
(i) HXV, T(k)|V)=0 for 1 <p<dim V-2 and for p=dim V—1 in case k+ 1.
(i) H»9(V)=0if p#q and p+q=+n.

By means of 3.3(i) we obtain inductively:

Corollary 3.4. There exists an isomorphism j, such that the next diagram
commutes:

o, —— H(P, H")

aw/pno,—— HV, HY|V).

Here r, is the restriction map, i, is the map defined in section 0, and q is the natural
quotient-map.

Lemma 3.3 can also be used to solve the moduli-problem for V(1, ..., s) with
Y n—(n+1)20:

Theorem 3.5. If V is a complete intersection of hypersurfaces of degree ny
(k=1,...,s) such that A=3Y%., m—(n+1)20, then (V) is defined and equal to
dim HY(T,).

Proof. (i) If V is a curve this is classical (cf. [7])

(i) If dim V =2, A=0 we have that H*(T,) is dual to H™ *(Q})(m=dim V)
[recall that K, =0,(1), cf. (0.3]. So H*(T;)=0, except if m=3, by 3.3 (iii). So if
m=+3 we may use 1.5. In case m=23 we have that H%T,) is dual to H>(V)=0,
by 3.3(iii). Moreover HY(T|V)=0 by 3.3(i)) and H'(Ny,p)=0, because
Nyp,~Pi-, 0(n) and H'(V, 0,(n,))=0. Hence we may apply 1.9.

(iti) In case >0 we have H'(T|V)=H(N,,p)=0 as in (ii). Moreover H%(T,)
is dual to H™(Q}®K ), now K, is ample, so by [14], Theorem 7.9 we have that
H"™K,)=0,so H(T,)=0, apply then 1.9.

Corollary 3.6. In case V is as in 3.5 with 1, =0, then the local Torelli theorem
holds for V.

Proof. Use 3.5 and 2.2.

§ 4. Two Fundamental Diagrams

On P, we have the exact sequence:
(D) 0-0p» D" 0(1)» T—0

with W(f)=(f &, ..., f&) and n(Lq, ..., L)=Y r_ o L,0/3%,. Indeed exact ness turns

out to be equivalent with Euler’s relation: if F € o,, then ) 5_, &,0,F =oF.
Restricting (I) to V we get sequence (I), and tensoring with K, we obtain

(II),. Recall that K, ~0,(4). Then by 3.3 and 3.4 we find for the cohomology
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sequences of (1) and (I),:
0 C— P a, > HY(T) >0
0——C—— @ HY0y(1)) —— HUT|V)—— 0

where a(c)=(c&,, ..., ¢&,).
Similarly for (I1),, we have:

0—— 0,/pna;, _“’_’@n+l (G,41/PN0;44)

111'1 R llrz*

0—— H(0p(A) 5~ D" H'Op(A+1)) —z> HAT, ®K,) ——0

where a(f)=(f&o, .-, f -
We now use the fact that j, : 0,/pna,; = HK,) (cf. 3.4) to see that from these

two diagrams we may derive the next proposition:

Propositions 4.1. In the preceding diagrams, put f=m,or,, resp. f,=7,,°r;,.
Let m be the subspace of (""" 6, generated by (&, ..., £,), resp. m, the subspace
of @' 6, spanned by a,(&,, ..., &) and P"* ! (pey). If se HYK ) and Se 5,
such that j,(S)=s, there exists a commutative diagram:

0 m; —— C—D"“al—f—)Ho(ﬂV)——-———-»O
0_“*"12“’_’@" Yo, —5— HA(TIV®K,)——0.

Similarly we have:

Proposition 4.2. With s and S as in 4.1 we have a commutative diagram:

00— @i=1(pﬁo’nk) —_— ®i=lank E— HO(NV) —0

l.s l.s [

0—'_’@%1 (pﬁank+a)_’ @iﬂ O'nk+,1‘_‘—’HO(NV®KV)—“““’O'

§ 5. Reduction of Torelli to a Polynomial Problem

From now on we assume that dim V =2 and 1>0. We study the diagram:

0 > T, - T\WV - Ny/p, 0
0—— T, ®Ky g1 TIV®Ky <51 Nyp,®Ky —— 0 (se HYK})).

We want to apply 2.3. In the proof of 3.5 we derived that H(T,,)= HY(T|V)=0;
we need only to see that HY(T, ® K,)=0. But T, ® K, ~Qr~ 1, so H(Qpr 1)=0
by 3.3. So applying 3.5 we find:
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Lemma 5.1. Torelli holds for V if and only if the next condition is fulfilled:

Suppose veHO(NV/IP“) is such that vok e Im(i®1), for all ke HYK,), then
velmj,.

We want to specify Im j, and Im(j®1),. We use 4.1 and 4.2:

Proposition 5.2. There are commutative diagrams:

0 s, Dt o, —— HYTIV) —— 0

N

0—— Pi- (pno,) — Pi-1 0, —— H(Nyp)— 0,
0 s D10y —— HATIVOK;) ——0

1]2IM2 lh [(\1@ 1), (II)

0—’*@%:1 (Pmo'nkJrz)’““" @i: 1O+ HO(NV/]P,,®KV)—_)O-

Here J(Fo, ... F )= 4 Fidyy, ... Y x Fidid) (i=1,2) where for i=1,F, €0, and
for i=2 F,eo,,, fork=0,..., n

Moreover each se H%(K,) and each S such that j(S)=s (notation see 3.4)
give rise to a morphism of diagram (1) to (I1) in the obvious sence.

Proof. The usual sequences:

0Ty, T|V;520,(m) 0
where

jk(ZL 0 T:0/0t)= Z?: 0 Te0: Py
combine to give a diagram:

0 T, TV ——s=— Ny/p, 0

0— T, ®Ky —— TIWVRKy —g7> Ny/p,®Ky ——0

the result then follows from 4.1 and 4.2.
Proposition 5.3. The local Torelli problem for V is equivalent to the next

assertion:
Let Fyeo, (k=1,...,5). If forall Pea; we have:

Fl 60¢1"-an¢1 GO
. . P . . :
Fs 60455...6,,455 Gn

i

mod p

Fl aOd)l"'and)l LO
=1 bl jmodp.
Fs 00¢s"‘an¢s Ln
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Proof. (i) Suppose that this assertion holds. Let velImj,. Take some
(Fys.... F)e Py o, such that q,(F,,...,F)=v [notation of diagram (I)]. Let
se H°(Ky) be arbitrary and S e g,, such that j,(S)=s. Then

vus=q(Fy,..., F)uj(S)=qF,S,....,FS) e Im(j®1), ,
so by diagram (II) (F,S, ..., F,S)e (ImJ, + p). Hence:
Fl a0¢1"'and)l GO
]S : : :
Fs aOd)s"'an(rbs Gn

so the assertion gives F,=Y7_, L0, modp. But then by diagram (I):
q1(Fy, ..., F)elmj,.

(ii) The proof of the converse is similar and will be deleted.
In the next section we shall prove (Theorem 6.3) in case all n, =2:

(x) If forallv=0,...,n we have:

mod p by the definition of J,;

F Oo¢y1---0,81\ (Ao
)= : . |mod p
Fs aqus "'6n¢s An

where deg A, < A+ 1 then
Fl 604)1“'an¢1 LO
=1 : © Jmodp.

Fs 00¢s e an.qss Ln

It is easy to see that (x) implies the second assertion of 5.3 (for instance by induction
on deg S) Hence we obtain our main result:

Theorem 5.4. Let V be a complete intersection of hypersurfaces of degree ny
(k=1,...,5) in PP, such that ) n,>n+1, then the local Torelli-theorem for V
holds with respect to the periods of the holomorphic n—s forms.

§ 6. Polynomial Ideals Related to Complete Intersections

In this section we let R be the polynomial ring C[&,, ..., ¢,]. Suppose aCR
is a homogeneous ideal. The ideal a determines a set V(a) in IP,, ie. the set of all
x e IP,, such that f(x)=0for all f € a. The ideal a has an irredundant decomposition
into homogeneous primary ideals, a={")/_, q; and this decomposition corresponds
to a decomposition of V{(a) into irreducible constituents: V(a)=|)/_, V(q)).

We recall [157:

(I) Letge R, then (a:g)=a<wg ¢ ﬂ(iz L...,r
Because:

() V(a)SV(b)s)/a2}/b,
we may reformulate (I) as:

(I1I) Let ge R, then (a: g)=a<=V(q)¢ V(g) for alli=1,...,r.
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We need from [2]:

Lemma 6.1. If g, ..., g, are non-constant homogeneous forms in R with no
common zero in P, and if P,e R (i=0,...,n) such that Y _, P,g;=0 then there
exists a set ;€ R such that P;=3"_o 1,9, (i=0, ..., n). We have ny=—"n; and if
the P; are homogeneous such that deg(P,g,)=M is independent of i we may assume
1;; to be homogeneous of degree M —deg(yg;g,).

In case a=(gy, ..., g,) and V(a)=0, we say a is of the principle class. We shall
apply 6.1 in the following situation:

Let V(1, ..., s) be a non-singular complete intersection of V(¢,) (i=1, ..., s) in
IP, such that for any subset AC{l,...,s} the set ﬂie 4 V() is non-singular.
Let ps(d)l’ e ¢s)’ q:(d)l’ Tet d)s— 1)'

If BC{O, ..., n} consists of s elements we define dpg;  , to be the jacobian
determinant of (3,¢,)(ve B, u=1, ..., s). Let C be a subset of {0, ..., n} consisting
of s— 1 elements and consider the ideal b generated by 0,c;, . (i€ {0, ..., n}\C).

Lemma 6.2. (g, b) is of the principle class.

Proof. We need to see only that V(q,h)=0. Now V(p) is non-singular and
this means that V(p,§’)=0, where §)’ is generated by all k-th order jacobians
Opd,. . By elementary linear algebra we see that rank (d,¢,) (v=0,...,7;
p=1,...,5) is less than s as soon as d,c¢, =0 for all ie{0,...,n}\C. So
V(p,h)=V(p,h)=0. Next we need an important consequence of Euler’s relation
[Dr_o &= (degy). y for any homogeneous y € R] namely:

V) Y=o CalacPy.... s=(degd) - 0Py, . -1 (a)

Suppose pe ¥(q,h), then by (IV). we have that ¢(p)oc¢,  —:(p)+0. By
assumption V(q) is non-singular, so there is a subset C of {0,...,n} such that
Ocd1.. s-1(p)*+0, so then pe V(p,h), a contradiction, so V(q,h)=¢ and this
suffices to prove the lemma.

Next we state our main result:

Theorem 6.3. Suppose for all v=0, ..., n we have:

F:l aofbl"‘an?&l AvO
(V)v : évE . :
Fs aOd).s te an¢s Avn
where deg A,; < A+ 1, then

i\ (Gobi 08 (Lo

Fs 60~¢s ore an‘¢s Ln
This theorem will follow from the next two lemmas to be proved later on.
Lemma 6.4. Suppose that
() V{1, ..., )"V (&) is irreducible for i=0, ..., n.

B VQ,...,s— V(&) is irreducible for i=0, ..., n.
(y) given homogeneous A, of degree <1+2(b=0,...,n) such that:
Yi-0 A0sPs=0modp for f=1,...,s.

then A,= B¢, mod p.

mod p

il

mod p .



The Local Torelli Theorem 13

Lemma 6.5. Suppose that

0 If ksn-3, V(1,...,k)nV(&, &) is irreducible for all pairs (i,j)C{0, ..., n}.
If k=n=2V(Q,..,kNV(, ¢, E)=0 for all triples (i, ], k) C{O0, ..., n}.
(¢) Let A,y and B,, be homogeneous polynomials (v, u,b=0, . n) such that:
Avbgu_Aubév: Buvéb mod p

then there are polynomials B, and C, such that A,,= B, + C,£, mod p.

Proof of 6.3. Conditions (a), (), and (6) of 6.4 and 6.5 can assumed to be
satisfied by taking an appropriate system of homogeneous coordinates. Now
multiply (V), with &, and (V), with &, and subtract. We see that condition (y)
of 6.4 is satisfied with A,:= A,,¢,~ A4,,€,, so we obtain the formula A4,,¢,— 4,,¢,=
B,.¢, mod p. Hence we can apply 6.5 to get 4,,= B¢, + C,&, mod p. Substituting
this in (V), we find:

F\  (dob1.08)) (Bio Goby..-0u) (o
o Bl B : Cleé=1 o : :1C.().
F;‘ aOd)s ce. an¢s B:m aO‘i)s . 'and)s én

By Euler’s relation the right hand side is zero mod p. Now V(p) is not contained
in any hyperplane (all n,=2), so by (IIT) we divide out &, to obtain the desired
expression.

Proof of 6.4. We let

(VD, Z:= 0 Au0.P, =By, mod q .

Expand 0g¢,  _, in subdeterminants as follows. If B=auC, then

aB¢1,...,s=Zi;l1 (_)b 0 ¢b : aC¢1
Now multiply (VI), with (—)°0c¢, 5 ..
to obtain with help of this expressmn
(VII)C ZZ:O AaaaCd)l ,,,,, S:Z ( )bBbd’ 6C¢1 ..........
Multiply this with (deg¢,)- 6.¢,  ,_, and use (IV)C:
Za {Aadeg¢sac¢l,...,s~ it [22;11 i leacdh .......... JCa} - Ouchs, ..
=0modp.

Because (q,h) is of the principal class (6.2), we may apply 6.1 to it and we
obtain:

Aadeg¢sac¢1 S 1+[z b+1B aC(rbl ,,,,,,,,, s] éa
EZ?=ODacacC¢l,...‘sm0dq lf ae{O,..., }\B

Multiply this with ¢, and use (IV). again:
Zdédadc¢l ..... sAa+[Zz;i (_)b+1BbabC¢l ......... ]¢ éa
= [Zc DacacC¢l ,,,,, s]¢s mOd q .
Use (VII). to obtain:

Zd[édAa“ & A~ Dad¢s]adc¢1,..<,350 mod g

s and sum up over all be {1,...,s—1}
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and again by 6.1 applied to (g, h) we see:

(*) édAa_ éaAdEZt Fad!atC¢1,A..,s mOd p.

Now deg Fy,=degA,+1->%_, (deg p;— 1)<s5+2—n.
So we must consider two cases:
Case 1. s<n—2, then F,;,=0 and we obtain:

(%) &,4,—E,4,=0mod p.
So ¢£,4,=0mod (p, &,). Now V(p,E)¢V(E,) for d+a, so by (III) we have
A,=0mod (p, &), say A,=¢,D, mod p.

Substituting back in (%) we see D, may be assumed to be independent of a.
This proves the lemma in this case.

Case 2. s=n—2. Then the F,, are constants. We want to see that these are in

fact zero constants. We then are in the situation of (xx).
Multiply () with ¢,¢, and sum up over all a. Use (VI), to get:

Zz [Za F 409410, =0modp forallb.

Later on we shall prove:
Assertion. If Y, F,0,c¢,
mMax,h,.
From this we get:

Y i Fasilahy=EGemod p forall b=1,...s.
And so:
Yoo (Faailn—F aam)@upp=0mod p

and a similar reasoning as the one leading to (*), now applied to the linear forms
thm::detém—demét shows:

s=0mod p, then F,=¢&G.mod p. Here degF, <

......

ElLjim)— E{Lgm)=0mod (p,b), so by degree considerations
=0modp.
Hence as before Lj,,=0mod (p, ¢;) and L, = ¢;M,,, mod p. This means:
Fralm— Framéi— CeM,,, =0modp .

But V(p) lies in no hyperplane, so this last expression must be zero, i.e. all F,;,=0
and we are in the situation of (x#).

Proof of the assertion. Suppose

(VIID) Zr Fi0icds,.. s=degdpGep,modg .

Let DCA{0,...,n} consist of s—1 elements. Multiply (VII). with 0pdp;
and (VIII), with 8¢, ., and apply (IV); to the difference:

Zt (FtaD¢1 ,,,,, s—'l_'Gsét)' atC(pl ,,,,, SE()mOdq .
Again apply (6.1) to (g, ) and the obvious degree consideration to see:

(3%%) F!aDd)l..A.,s—l_GCétEO mod q.
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So Fip¢y.. s-1=0mod(q, &), now by (B){g, &) is primary and because
V(1,...,k—1) is non-singular V(q,&)CV(a)¢ V(Ope,,.  -1) for some D. Then
by (III) F,=0mod (g, &), say F,=¢,H, Substituting back in (xxx) gives that
H,=Gmod q. This finishes the proof of the assertion.

Proof of 6.5. B,,£,=0(p,&,,¢,). Because of (§) in both cases mentioned

Vip, &, 8¢ V(E,), so by (1) B,,=0(p,&,,¢,). Suppose that B,,=—P,¢, +
0,.,¢, mod p. Substituting back we find eventually: 4,,=—P, ¢, +R,,, for all
u=*v. So take a fixed u=#v and put C,=~P,, and B,;,=R,,,,.

Appendix

Recall the Dolbeault-Serre way of computing the cohomology-groups
HP(V, F), where F is a holomorphic vector bundle on a CAM V (cf. [8]). Put
AP 9(F)=the C-module of global ¥ -forms of type (p, q) with coefficients in F.
We denote its sheaf of sections by the same symbol.

Because F is holomorphic the usual d-operator induces a sheaf-homomorphism:

01 APYUF)— AP 9 Y(F) .
Because of the Dolbeault lemma this gives an exact sheaf sequence:

0——>F®QI’}—>A”’0(F)?AP’I(F)?A”’Z(F)?... A1)
which forms a fine resolution of the sheal F®Q%. So we have:

HPU(V, F):=HYV, F®€f) is isomorphic to_the g-th cohomology group of
the resolution A(l), i.e. HPYV, Fy~Z"4V, F)@AM_‘(F), where ZP4F) is the

submodule of 474V, F) which vanishes under ¢.
There is a natural pairing:

APIF)@ A" P a(F¥) A"
a®@ oA B

Integrating a A § over V we obtain a complex number, and it is easily seen that
this induces a pairing:

HPYF)QH" P 4(F¥)-C. AQ)

Serre proved that A(2) is a non-singular pairing, establishing a duality between
the two modules. In fact this is called Serre-duality.
More generally the pairing:

APYFYQA(G)—» AP T 1*(F®G) (F and G holomorphic vector bundles)
a@pro A p
induces a pairing:
HP4F)@H'(G)—~ HP* " (F®G) AQ3)
this is the cup-product. In case p=r=0 we thus have a map:

U H(F)QHYG)-»HI""(FRG)
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inducing the map:

t : HYF)—Hom (H*G), H**(F ® G))

ar>{b—aub}

dually this map becomes:

t*: H" S(F ® GY*® HY(G)— HY(F)*
gb—{f—g(fLUb)} .
Lemma. The map t* is up to the sign the cup-product if we identify the dual

spaces with their Serre-dual cohomology-modules.

Proof. Denoting by x* the Serre dual of any x we have:

t*Hg®bNf)=g(fub)=[y fAbAg*=£[, f AN(g*Ab) forallf.
Hence t*(g®b)= +(g*uUb)*.
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