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0. Introduction

Let X be a complex projective variety and let Cm(X) be the disjoint union of the Chow
varieties of effective m-cycles of degree d = 0, 1, 2, . . .. The empty cycle 0 ∈ Cm(X) is a
natural base point and it also acts as a zero for the addition of cycles, making Cm(X) into
a monoid. Let me put

Zm(X) =Cm(X)× Cm(X)/ ∼,

with (x, y) ∼ (x′, y′) ⇔ x + y′ = x′ + y (the näıve group completion).

The complex topology induces a natural topology on the monoid Cm(X) and one equips
Zm(X) with the quotient topology. By [F1] this topological space is independent of the
chosen embedding of X into a projective space. The induced topology will be called the
Chow topology.

The Lawson homology groups are the homotopy groups of this space:

LmH`(X) =
{

π`−2mZm(X) if ` ≥ 2m
0 if ` < 2m.

These groups form an intriguing set of invariants. Despite the vast literature on this
subject, the groups have been calculated only in very few cases, such as for the projective
spaces. One of the goals of this note is to understand these invariants in case the variety
has “few cycles” in the sense that rational and homological equivalence coincide for all
m-cycles up to a certain rank m = s. Actually, the results only deal with that part of
Lawson homology that is not “visible” in ordinary homology in that it is in the kernel of
the cycle class maps

cm,k+2m : LmHk+2m(X)→ Hk+2m(X),
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i.e. the subgroup

Lhom
m H`(X) := ker { cm,` : LmH`(X)→ H`(X) }.

These cycle class maps are reviewed in section 3.

The main result can now be formulated as follows (see Theorem 16).

Theorem Let X be a smooth complex projective variety for which rational and homolog-
ical equivalence coincide for m-cycles in the range 0 ≤ m ≤ s. Then Lhom

m H∗(X)⊗Q = 0
in the range 0 ≤ m ≤ s + 1.

While this result holds for Lhom
m H`(X) for m in a restricted range, the second index is

arbitrary. If however one considers only even `, there is an interesting translation of the
result in terms of a certain filtration on the m-th Griffiths group (i.e. the group of m-cycles
homologically equivalent to zero modulo the group of m-cycles algebraically equivalent to
zero).

This filtration, the S-filtration from [F2] is related to Nori’s A-filtration introduced
in [N]. Very roughly, a Griffiths class is in Sr if it is in the subgroup generated by the
images of the action of correspondences from Y to X, equi-dimensional over Y , the action
being restricted to r-cycles homologically equivalent to zero. One allows singular projective
varieties Y , while Nori only admits smooth projective varieties Y . In the last section I’ll
prove this translation:

Proposition Let X be a smooth complex projective variety for which rational and homo-
logical equivalence coincide for m-cycles in the range 0 ≤ m ≤ s. Then the last s+1 steps
induced by the S-filtration on any of the Q-Griffiths groups are constant. In particular,
algebraic and homological equivalence coincide for s + 1-cycles.

Since the examples constructed by Nori in [N] show that in general these steps are non-
constant (see also [F3]), this is a non-trivial observation. It can be applied to examples
of rationally connected varieties and to the examples from [E-L-V] as I’ll show in the last
section.

I’ll employ the following notation throughout. Here X is any projective variety.

- Cm(X): the monoid of effective m-cycles, considered as a pointed topological space
with the complex topology.

- Zm(X): the group of algebraic m cycles on X, considered as a pointed topological
space with the Chow topology,

- LmH`(X) := π`−2mZm(X), ` = m,m + 1, . . .

- Chm(X): the Chow-group of m-cycles modulo rational equivalence,

- Ch(X) = ⊕m Chm(X),
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- Griffm(X) = Chhom
m (X)/ Chalg

m (X), the m-th Griffiths group. of m-cycles homologically
equivalent to zero modulo the group Chalg

m X of m-cycles algebraically equivalent to
zero.

- Griffm(X)Q = Chhom
m (X)⊗Q/ Chalg

m (X)⊗Q, the m-th Q-Griffiths group.

I need some well known facts on correspondences which I collect in the next section. I
should warn the reader that in this section only certain correspondences are allowed, the so-
called Chow-correspondences which come from equi-dimensional degree 0 correspondences.
This action is used to give a precise definition of the S-filtration. The comparison with
Nori’s filtration necessitates a comparison with the usual action on Chow groups. After
a careful review of intersection products on the level of cycle spaces I show that any
correspondence induces an action on cycle spaces with good functorial properties (but this
action might differ from the action of Chow-correspondences).

Since most algebraic geometers are not familiar with Lawson homology, in §2 I give
a synopsis of the main results (in the complex analytic setting). In particular I treat
intersection theory and derive some fundamental facts that are probably known among
the experts, but for which I did not find a reference.

Using these properties, in §3 the main results are then derived from a certain decom-
position of the diagonal (on the level of Ch(X) ⊗ Q) when X has small Chow groups up
to a certain rank. This decomposition was originally considered by Bloch and used for
instance in [B-S].

I am grateful to Robert Laterveer for bringing up this decomposition, and for suggesting that it

could be applied to Lawson homology. I am also indebted to E. Friedlander for a critical reading

of a first draft and for the suggestions he made to improve the exposition.

1. Correspondences

Let X and Y be complex projective varieties. A correspondence Z from X to Y is a
cycle on X × Y . Its class in Ch(X × Y ) is denoted [Z]. The correspondence is called
effective, resp. irreducible if the corresponding cycle is effective, resp. irreducible. An
effective correspondence of dimension d + dim X is called a degree d correspondence.

Recall [Fu, Chapter 16] that a correspondence Z between smooth projective varieties
X and Y acts on Chow groups as follows

[Z]∗ : Ch(X)→ Ch(Y )
u 7→ (p2)∗ (p∗1u • [Z])

where p1, resp. p2 denote the projection onto X, resp. Y , and where • is the intersection
product on the Chow group of the smooth variety X×Y . If Z is a degree d correspondence
the homomorphism [Z] is homogeneous of degree d:

[Z]∗ : Chm(X)→ Chm+d(Y ) if deg Z = d.
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There is a refinement on the level of cycle spaces for a certain class of correspondences,
the definition of which necessitates a preliminary

Definition1. Let Y , Z be projective varieties. A (set-theoretic) map f : Y → Z is called
a continuous algebraic map if its graph is a subvariety of Y ×Z and projection onto Y induces
a birational bijective morphism Y → Z. More generally, if Y and Z are (non necessarily
finite) disjoint unions of projective algebraic varieties, a map f : Y → Z is continuous
algebraic map if its restriction to each of the corresponding irreducible components Yα of
Y induces a continuous algebraic map f |Yα : Yα → Zβ , Zβ a component of Z.

Clearly, a continuous algebraic map is the same thing as a rational map that is every-
where defined and continuous (in the Zariski-topology or the complex topology) and for
Y normal, it is just a morphism (every bijective birational map from a normal variety Y
to Z is a morphism).

Let me next recall the definition of a Chow correspondence.

Definition 2. A Chow correspondence of degree d from X to Y is a continuous algebraic
map f : X → Cd(Y ).

Following [F-M] I’ll outline the relation with correspondences. First note that the
incidence correspondence of a Chow correspondence f : X → Cd(Y ) defines a cycle

Zf ⊂ X × Y

which is effective and equidimensional over X and of degree d. The assignment f 7→ Zf is
injective, but in general not all correspondences equidimensional over X and of degree d
are realized in this way. However, if X is normal the rational map

fZ : X → Cd(Y )

sending a sufficiently general point x ∈ X to the cycle defined by the scheme-theoretic
fibre Zx over x of the projection Z → X extends to a morphism realizing the inverse for
f 7→ Zf .

For Chow correspondences there is an induced map on the level of cycle spaces. This
concept makes use of the trace of an irreducible subvariety W ⊂ Cd(X), say of dimension
m. Intuitively it is the cycle on X traced out by the d-cycles corresponding to points of
W . More formally, recalling that for any morphism g : Z → Y between projective varieties
there are induced maps g∗ : Cm(Z) → Cm(Y ) (see [Fu, p. 11]), the trace of W , is the
cycle Tr(W ) = (p2)∗ZW where ZW ⊂ W ×X is the incidence correspondence defined by
W and p2 : ZW → X is the projection.

Definition 3. Let f : X → Cd(Y ) be a Chow correspondence. The induced action on
cycle spaces is defined by

Γf : Cm(X) f∗−−→ Cm(Cd(Y )) Tr−−→ Cm+d(Y ).
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As to the comparison with the action of the induced incidence correspondence on the
level of Chow groups let me first remark that Γf sends cycles rationally equivalent to zero
to cycles rationally equivalent to zero. Its induced action on Chow groups is denoted [Γf ].
One has the following proposition whose proof is contained in [F2] (see the proof in loc.
cit. of Proposition 2.2 and of Corollary 3.3):

Proposition Let X and Y be smooth projective varieties.

1. Let f : X → Cd(Y ) be a degree d Chow-correspondence from X to Y , Zf the asso-
ciated correspondence cycle. Then [Zf ]∗ = [Γf ]. In other words, the induced action
of the Chow correspondence on Chow groups coincides with the induced action of the
corresponding incidence cycle.

2. If Z is an irreducible degree d correspondence from X to Y such that Z maps onto a
codimension c subvariety V ⊂ X under the projection, there exists a desingularization
Ṽ of V such that the proper transform ZV of Z in Ṽ ×Y is the incidence correspondence
of a morphism fV : Ṽ → Cd+c(Y ). Furthermore, with i : Ṽ → X the obvious map, one
has

[Z]∗ : Chm(X) i∗−−→ Chm−c(Ṽ ) [ZV ]∗=[ΓfV
]−−−−−−−−−→ Chm+d(Y ).

Moreover, there are degree d Chow correspondences fi : Ṽ × Pc → Chd(Y ), i = 1, 2
such that [Z]∗ = [Γf1 ]− [Γf2 ].

This proposition motivates an extension of Nori’s A-filtration from [N] which we recall
at the same time

Definition 4. Let X be a smooth projective variety and m a non-negative integer. Fix
an integer r with 0 ≤ r ≤ m.

1. A class α ∈ Chm(X) belongs to Ar Chm(X) if it is in the subgroup generated by

Im
(
[Z]∗ : Chhom

m−r(Y )→ Chhom
m (X)

)
,

where Z is an effective degree r correspondence from Y to X.

2. A cycle W ∈ Zm(X) belongs to A′
rZm(X) if it is rationally equivalent to a cycle in the

subgroup generated by

Im
(
Γf : Zhom

m−r(Y )→ Zhom
m (X)

)
,

where f is a degree r Chow correspondence from Y to X.

Remark That indeed this defines a filtration, i.e. Ar ⊂ Ar+1, follows from the fact that
the correspondences Z ⊂ Y × X and Z × P1 ⊂ Y × X have the same image. Similarly
A′

r ⊂ A′
r+1. Compare [N, Prop. 5.2].
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The preceding proposition then says that on the level of Chow groups A′
r contains

Ar. Indeed, Ar is the subgroup generated by images of Chow correspondences of degree r
(acting on cycles homologous to zero) from smooth Y to X.

2. Lawson homology

I’ll briefly recall the definition and some main properties of Lawson homology (in the
complex-analytic setting). So X denotes a smooth complex projective variety.

A. First Properties

Recall that the Lawson homology groups are the homotopy groups of the cycle space
equipped with the Chow topology:

LmH`(X) := π`−2mZm(X), ` ≥ 2m.

Examples 5.

1. LmH2m(X) = π0Zm(X) can be naturally identified with the equivalence classes of
algebraic m-cycles under algebraic equivalence, i.e, one has

LmH2m(X) ∼= Chm(X)/ Chalg
m (X).

2. The Dold-Thom isomorphism [D-T] yields an identification

L0H`(X) = π`Z0(X) ∼= H`(X)

of the zeroth Lawson group with the singular homology group with integral coefficients.

Next, I need the cycle class map for Lawson homology which is induced from the sus-
pension homomorphism

s : πk(Zm(X)) = LmHk+2m(X)→ πk+2(Zm−1(X)) = Lm−1Hk+2m(X)

which is defined as follows. Taking (∞, 0) as a base point on S2 × Zm(X), the natural
continuous map between pointed spaces

τ : S2 × Zm(X)→ Zm(P1 ×X)
(x, u) 7→ (x, u)− (∞, u)

factors over S2 ∧ Zm(X) and so, identifying S2 ∧ Sk with Sk+2, there is a natural map

πk(Zm(X))→ πk+2(Zm(X × P1)

[f ] 7→ [τ◦S2f ]
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The left hand side is isomorphic to πk+2(Zm−1(X)) because of Lawson’s Algebraic Sus-
pension isomorphism (see [L] and [F-G, Proposition 2.3]). Combining everything, one
obtains the suspension map

s : πk(Zm(X))→ πk+2(Zm−1(X)).

Iterating this map m times, one arrives at L0Hk+2m(X) ∼= Hk+2m(X), by [DT], thereby
defining the class maps

cm,k+2m : LmHk+2m(X)→ Hk+2m(X).

One deduces from [F2, Prop. 1.6] that the class map

cm,2m : LmH2m(X) = Chm(X)/ Chalg
m (X)→ H2m(X)

is the usual class map. One sets

Lhom
m H`(X) := ker { cm,` : LmH`(X)→ H`(X) }.

Example 6. Since c0,` is the Dold-Thom isomorphism, one has Lhom
0 H`(X) = 0.

Also, since for an n-dimensional projective variety X (always assumed to be irre-
ducible), one has Zn(X) = Z with the discrete topology, LnH`(X) = 0 unless ` = 2n
and in this case Lhom

n H2n(X) = 0.

More generally, there is a filtration on the level of cycle spaces coming from the iterated
suspension preceded by the natural quotient morphism

π : Zm(X)→ Chm(X)→ Chm(X)/ Chalg
m (X) ∼= LmH2m(X).

One defines a corresponding S-filtration by

SrZm(X) = ker { Zm(X) π−→ LmH2m(X) cr,2m−−−−→ Lm−rH2mX }

and so
S0Zm(X) ⊂ S1Zm(X) · · · ⊂ SmZm(X),
S0Zm(X) = m-cycles algebraically equivalent to 0
SmZm(X) = m-cycles homologically equivalent to 0.

This topologically defined filtration is the same as the previously geometrically defined
A′-filtration. See [F2]:

Proposition For any smooth projective variety X one has

A′
rZm(X) = SrZm(X).
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In the sequel I need a simple consequence of the definitions

Lemma 7. One has Lhom
k H`(X) = 0 for k = 1, . . . , s if and only if suspension induces

injective homomorphisms

LsH`(X) ↪→ Ls−1H`(X) · · · ↪→ L0H`(X) ∼= H`(X).

If ` is even, say ` = 2m, this is the case if and only if

Sm−sZmX = Sm−s+1ZmX = · · · = SmZmX.

The main functorial properties of Lawson homology derive directly from the correspond-
ing properties on the level of cycles. So the push forward of cycles under proper mor-
phisms f : X → Y induces f∗ : Zm(X) → Zm(Y ) and the pull back under flat morphism
g : X → Y induces g∗ : Zm(Y ) → Zm−c(X) with c = dim Y − dim X. A good reference
for this is [F1]. In conclusion, there are (unambiguous) induced homomorphisms

f∗ : LmH`(X)→ LmH`(Y )
g∗ : LmH`(Y )→ Lm−cH`−2c(X).

B. Intersection products

In this section I recall the approach to intersection theory on cycle spaces from [F-
G]. It is based on Fulton’s approach in [Fu]. One of the ingredients in constructing the
intersection products is the Gysin morphism associated to any regular embedding i : X ↪→ Y
between projective varieties. Let C = CXY be the normal cone of X in Y (which is the
same as the normal bundle since the embedding is regular) and let p : C → X be the
defining projection. Let C̄ := P(C⊕1) be the projective completion. Then C is canonically
isomorphic to the complement in P(C ⊕ 1) of C∞ := P(C), the ”hyperplane at infinity”
(see [Fu, Appendix B.5]). Fulton shows that the flat pull-back map p∗ : Chm−c(X) →
Chm(C), c = dim Y − dim X is an isomorphism which subsequently must be inverted.
To do this on the level of cycle spaces let me first note that for quasi-projective varieties
such as C, one does not take for Zm(C) the m-cycles on C, but one first embeds C in any
projective variety such as C̄ and then sets

Zm(C) := Zm(C̄)/Zm(C̄∞), C̄∞ = C̄ \ C,

and shows that this is independent of the choice of the compactification. For this I refer
to [LF]. One then proves that the flat pull back

p∗ : Zm−c(X)→ Zm(C), c = dim Y − dim X.

is a weak homotopy equivalence. This is a consequence of Lawson’s Algebraic Suspension
theorem. See [F-G, Proposition 2.3]. So one should invert continuous homomorphisms
that are weak homotopy equivalences. As pointed out in [F3], for X quasi-projective,
the cycle spaces Cm(X) and Zm(X) admit the structure of CW-complexes so that weak
homotopy equivalences are in fact homotopy equivalences ([Span, 7.6.14]), so one might
as well invert just those. The next construction makes this precise.
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Definition 8. Let Abtop be the category of abelian topological groups admitting the
structure of a CW-complex and let H be the set of those continuous homomorphisms be-
tween abelian topological groups that are homotopy equivalences. The category H−1Abtop
is the category of abelian topological groups in which homotopy equivalences are inverted.
This means that the objects are the same as the objects of Abtop, but the morphisms
are ”left fractions g\f of maps” X f−→ • g←− Y with g a homotopy-equivalence and • any
object in Abtop.

Indeed, Abtop is an additive category and fiber products can be used to show that
H satisfies the conditions in [Iv, Chapter IX.1] needed to define (left) fractions. We
could equally well work within the homotopy category HTop of topological spaces where
continuous maps are replaced by homotopy classes of such maps. Indeed, we may replace
g\f by h◦f with h a homotopy-inverse of g. In either category, a morphism X → Y
induces a well-defined homomorphism πk(X) → πk(Y ) between homotopy groups, and
hence between the Lawson groups.

Now, just as in Fulton’s approach, one can define the Gysin map using the specialization
morphism σ̃ : Zm(Y ) → Zm(C) (in [FG], this name is reserved for the second map in the
decomposition sY/X◦p∗1 : Zm(Y )→ Zm+1(Y ×C)→ Zm(C) of σ, where p1 denotes projec-
tion onto the first factor). Next, one defines i∗Y = p∗\σ : Zm(Y )→ Zm(C)←− Zm−c(X).

Finally, one arrives at

Definition 9. The Gysin homomorphism associated to a morphism f : X → Y between
smooth projective varieties is defined as a map in H−1Abtop as follows

f∗ : Zm(Y )→ Zm−cX, c = dim Y − dim X

v 7→ γ∗f (p∗2v).

where γf is the associated graph morphism (which is a regular embedding)

γf : X → X × Y

x 7→ (x, f(x)).

Using the Gysin homomorphism, one introduces then

Definition 10. The intersection product

Zp(X)× Zq(X) •−→ Zn−p−q(X)

for a smooth projective X of dimension n is defined in the category H−1Abtop by taking
first the exterior product between cycles and then use the Gysin map for the diagonal
embedding ∆ : X ↪→ X ×X (which is a regular embedding since is X smooth).
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In particular, these products yield well-defined intersection products on the level of
homotopy groups of cycle spaces, i.e. on the level of Lawson homology.

The following three properties of these Gysin maps are used in the sequel.

Lemma 11.

a. Let X, Y,X ′, Y ′ be smooth complex projective varieties and let

X ′ f ′
−−→ Y ′yg′

yg

X f−→ Y

be a Cartesian square of morphisms. Then with c = dim Y − dim X, one has f∗g∗ =
g′∗f

′∗ : ZmY ′ → Zm−cX in H−1Abtop.

b. Let f : X → Y and g : Y → Z be two morphism between smooth complex projective
varieties, then the composition formula holds in H−1Abtop:

(f◦g)∗ = g∗◦f∗ : Zm(Z)→ Zm−d(X), d = dim Z − dim X.

c. Let f : X → Y be a morphism between smooth complex projective varieties. Then the
projection formula holds in H−1Abtop:

f∗(f∗v • u) = v • f∗u, u ∈ Zp(X), v ∈ Zq(Y ).

Proof:

a. This follows directly from the corresponding formulas in case f is a regular embedding
(this is Theorem 3.4 d) in [F-G]) or a flat morphism (this follows already on the level
of cycle spaces by Proposition 1.7 in [F]).

b. One uses that a similar composition formula holds for flat morphisms (this follows
directly from the definition) and for regular embeddings (this is Theorem 3.4. (c) in
[F-G]). Consider the diagram

X γf−−→ X × Y
γ′

g=id×γg−−−−−−−→ X × Y × ZypY

ypY Z

Y
γg−−−−−−−−→ Y × ZypZ

Z
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One has p∗Y (γ∗gp∗Zu) = (γ′g)
∗p∗Y Zp∗Zu and so, composing with γ∗f . one gets f∗◦g∗(u) =

γ∗f
(
p∗Y γ∗gp∗Zu

)
= γ∗f (γ′g)

∗ (p∗Y Zp∗Zu), which equals γg◦f (p∗Zu) = (g◦f)∗u.

c. Here one considers the diagram

X γf−−→ X × Yyf

yf×id

Y ∆Y−−−→ Y × Y

One gets
f∗u • v = ∆∗

Y (f∗u× v)
= ∆∗

Y ((f × id)∗(u× v))
= f∗ ((γf )∗(u× v))

and it suffices to prove (γf )∗(u × v) = u • f∗v = ∆∗
X(u × f∗v), but this follows upon

inspecting the diagram

X ∆X−−−→ X ×Xyid

yid×f

X γf−−→ X × Y.

Indeed, γ∗f (u× v) = ∆∗
X((id×f)∗(u× v)) = ∆∗

X(u× f∗v).

C. Action of correspondences

Any correspondence between smooth projective varieties induces homomorphisms on
the level of cycle spaces by the same formula as the formula on the level of Chow groups,
but one has to interpret this in the category H−1Abtop. So, for a degree d correspondence
α ∈ Zn+d(X × Y ), n being the dimension of X one puts

(∗) α∗(u) = (p2)∗[p∗1u • α], u ∈ Zm(X).

In this formula (p2)∗ is the proper push-forward, while p∗1 is the flat pull back. In this way,
one obtains a correspondence homomorphism in the category H−1Abtop

α∗ : Zm(X)→ Zm+d(Y ).

On the level of Lawson groups this then can be interpreted as follows. The intersection
product • is unambiguously defined on the level of homotopy groups. One maps α ∈
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Zn+d(X × Y ) to the the connected component [α] ∈ π0(Zm(X × Y )) to which it belongs.
Then for all u ∈ πk(Zm(X)) one has

(p2)∗[p∗1u • [α]] ∈ πk(Zm+d(Y )).

Here, by abuse of notation the proper push forward and flat pull backs on the level of
cycle spaces are denoted by the same letters as their induced maps on homotopy groups.
Summarizing, one has then induced maps

α∗ : LmH`(X)→ Lm+dH`+2d(Y )

which, by construction, depend only on the class of α in the Chow group of X×Y modulo
algebraic equivalence.

The following crucial property is needed in the sequel

Lemma 12. Assume that X and Y are smooth projective varieties and let α ⊂ X × Y
be an irreducible cycle of dimension dim X = n, supported on V ×W , where V ⊂ X is a
subvariety of dimension v and W ⊂ Y a subvariety of Y of dimension w. Let Ṽ , resp. W̃
be a resolution of singularities of V , resp. W and let i : Ṽ → X and j : W̃ → Y be the
corresponding morphisms. With α̃ ∈ Ṽ × W̃ the proper transform of α, and p1, resp. p2

the projections from X → Y to the first. resp. the second factor, there is a commutative
diagram

Lm−n+v+wH`+2(v+w−n)(Ṽ × W̃ ) α̃∗−−→ LmH`(Ṽ × W̃ )xp∗1

y(p2)∗

Lm−n+vH`−2n+2v(Ṽ ) LmH`(W̃ )xi∗
yj∗

LmH`(X) α∗−−→ LmH`(Y ).

Here i∗ and p∗1 are induced by the Gysin homomorphisms and (p2)∗ and j∗ come from
proper push forward.

In particular, α∗ = 0 if m < n−v or if m > w. Moreover, αn−v acts trivially on Lhom
n−vH∗X,

while αw acts trivially on Lhom
w H∗X.

Proof: The proof is based on the projection and composition formulas established above.
Let pṼ , resp. pW̃ be the projection from Ṽ × W̃ onto the first, resp. the second factor.
As before, [α] ∈ π0(Zn(X × Y )) is the connected component to which α belongs and
similarly for [α̃] ∈ π0(Zn(Ṽ × W̃ )). Note that one may assume that the cycle α is not
entirely contained in the singular locus of V ×W by moving it in its algebraic equivalence
class (the action of [α] depends only on this equivalence class). This ensures that the
push-forward of the cycle α̃ under i× j equals α.

12



We find for any u ∈ Zm(X):

α∗u = (p2)∗[p∗1u • [α]]
= (p2)∗ (p∗1u • (i× j)∗[α̃])
= (p2)∗(i× j)∗ ((i× j)∗p∗1u • [α̃])

= j∗(pW̃ )∗
(
p∗

Ṽ
i∗u • [α̃]

)
.

The one but last assertion follows from the fact that Lm−n+vH∗Ṽ = 0 for m−n+v < 0
and LmH∗W̃ = 0 if m > w. The final assertion follows from the fact that for all varieties
Z, one has Lhom

t H∗Z = 0 for t = dim Z, while also Lhom
0 H∗Z = 0.

Corollary 13. An irreducible cycle α ⊂ X ×X supported on a product variety V ×W
with dim V + dim W = n = dim X acts trivially on Lhom

∗ H∗(X).

3. The main result

Before stating the main result, I need some terminology.

Definition 14. A variety X has small Chow groups up to rank s, if there exists a closed
subvariety Y ⊂ X of dimension ≤ s which supports all k-cycles with k ≤ s. In other
words, with j : X \ Y → X the inclusion, j∗ Chk(X) = 0 for k = 0, . . . , s.

As shown essentially in [B-S], this notion means that rational equivalence and homo-
logical equivalence coincide in degrees ≤ s. See also [La].

Characterisation 15. X has small Chow groups up to rank s if and only if rational
equivalence and homological equivalence on Ch(X)⊗Q coincide in degrees ≤ s.

For such varieties X, a result of Paranjape ([Pa]) (see also Laterveer ([La]) generalizing
previous work of Bloch-Srinivas ([B-S]), Jansen ([J]) and Esnault-Levine-Viehweg ([E-L-
V]) states that the diagonal ∆ ⊂ X ×X can be decomposed modulo rational equivalence
(allowing also rational coefficients) as follows.

Theorem Let X have small Chow groups up to rank s. Then there are subvarieties
Vn−k ⊂ X, k = 0, . . . , s+1 and Wk ⊂ X, k = 0, . . . s (subscripts indicating the dimension),
and a decomposition in Ch(X ×X)⊗Q

∆ = α(0) + · · ·+ α(s) + β

with α(k) having support in Vn−k×Wk, k = 0, . . . , s and β having support in Vn−s−1×X.

13



Using Corollary 13, one deduces that the identity acts as β on Lawson homology Lhom.
Applying Lemma 12 to β yields

Theorem 16. Let X be a smooth complex variety having small Chow groups up to rank
s. Then Lhom

m H∗(X)⊗Q = 0 for m = 0, . . . , s + 1.

This has the desired implication on the level of S-filtrations, using Lemma 7.

Corollary 17. Let X be a smooth complex variety having small Chow groups up to rank
s. Then Sm−s−1ZmX ⊗Q = Sm−sZmX ⊗Q = · · · = SmZmX ⊗Q. In particular the last
s + 1 steps induced by the S-filtration on the any of the Q-Griffiths groups are constant.
In particular, algebraic and homological equivalence coincide for s + 1-cycles.

Let me end this section by giving some examples of varieties to which these results can
be applied.

Examples 18.

1). Any variety with Chhom
0 X = 0 has Sm−1Zm(X)⊗Q = SmZm(X)⊗Q, m = 0, . . .. In

particular this holds for rationally connected varieties (in particular Fano varieties up to
dimension 5).

2). In [E-L-V] are examples of varieties having small Chow groups up to arbitrary rank
s (the dimension of these varieties grows astronomically). The number s is bounded by
the degrees d1 ≤ d2 · · · ≤ dr of the defining equations for X in some projective space. For
instance s ≥ 2 for a degree d hypersurface in Pn+1 whenever d ≥ 3 and

(
d+2
3

)
≤ n + 1.
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