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Abstract

We prove a rigidity criterion for period maps of admissible variations of graded-
polarizable mixed Hodge structure, and establish rigidity in a number of cases, including
families of quasi-projective curves, projective curves with ordinary double points, the
complement of the canonical curve in families of Kynev–Todorov surfaces, period maps
attached to the fundamental groups of smooth varieties and normal functions.

1. Introduction

1.1 Historical background

The rigidity concept the title refers to, concerns a Hodge theoretic variant of a rigidity property
that S. Arakelov [Ara71] discovered. He showed that one cannot deform families {Cs}s∈S̄ of
curves of genus g ⩾ 2 parametrized by a smooth projective curve S̄ with varying moduli, keeping
S̄ fixed as well as the set, say Σ, over which singular fibers occur. In terms of Mg, the moduli
space of curves of genus g, this result states that if the moduli map µ : S = S̄ −Σ → Mg is not
constant, it is rigid, keeping source and target fixed.1 In the remainder of this introduction we
shall only consider deformations of maps keeping source and target fixed .

The cohomology groups H1(Cs,Z) admit a canonical polarizable weight one Hodge structure.
These are classified by a period domain, in this case the generalized Siegel upper half-space hg.
Since the group of integral automorphisms preserving the polarization is the symplectic group
SpZ(g), the period map in this case is a holomorphic map F : S → Ag := SpZ(g)\hg which
factors through the morphism Mg → Ag. The latter morphism is an embedding (this is Torelli’s
theorem).

It might be the case that, although µ is rigid keeping (S̄,Σ) fixed, this need not be the case
for F . Geometrically interpreted, polarized weight one Hodge structures are polarized Abelian
varieties and G. Faltings, in [Fal83] investigated the analog of Arakelov rigidity in this situation.
Let us recall his result in Hodge theoretic terms. The period domain hg classifies (polarized)
weight 1 Hodge structure on a free Z-moduleH. Such a Hodge structure induces Hodge structures
of weight 0 on End(H) as well on its subspace End(H,Q) of the Q-endomorphisms, that is those
u ∈ EndH for which Q(ux, y) + Q(x, uy) = 0 for all x, y ∈ H. By means of the period map
F : S → Ag, Hodge structures F (s) of weight one are put on H. The group Γ acts on H as well
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as End(H,Q). In particular, its commutant

EndΓ(HC, Q) := {u ∈ End(HC, Q) | γ◦u◦γ−1 = u}

inherits natural Hodge structures as well. By W. Schmid’s result [Sch73, Corollary 7.23], these
Hodge structures are independent of s. In technical terms, the period map defines a local system
on S carrying a variation of Hodge structure inducing one on the endomorphism bundles and the
Hodge decomposition extends as a flat decomposition, hence is independent of s. See Section 2.1.
G. Faltings’ result is as follows:

Theorem [Fal83, Theorem 2]. The space of infinitesimal deformations of a period map F : S →
Ag over a curve S can be canonically identified with the direct summand of EndΓ(HC, Q) of
Hodge type (−1, 1). Consequently, if F is not constant, F is rigid if and only if EndΓ(H,Q) is
pure of type (0, 0).

Faltings gave an example with g = 8 for which EndΓ(H,Q)−1,1 ̸= 0 and so this gives a
non-rigid (non-isotrivial) family of 8-dimensional Abelian varieties. M.-H Saito [Sai93] made a
systematic study and classified these in any dimension.

The Hodge-theoretic rigidity question for higher weight and over any quasi-projective smooth
base was first consider by the second author in [Pet90] and it turns out that G. Faltings’ result
is in essence valid for all weights. There are a couple of differences. Of course, since S is allowed
to be higher-dimensional, one has to impose the condition that the period map is generically
an immersion instead of being non-constant. Secondly, on a more fundamental level, one should
incorporate “Griffiths’ transversality” (cf. [Gri68]) an infinitesimal property of variations of ge-
ometric origin which is automatic for weight 1 but gives a constraint for most types of higher
weight variations. Geometrically this condition means that tangents to the image of the period
map belong to the so-called horizontal tangent bundle. This is encapsulated in the statement that
period maps are horizontal. It is natural to demand that deformations preserve this property.
The result from loc. cit. indeed takes this into account:

Theorem [Pet90, Theorem 3.4]. Let S be smooth and quasi-projective and F : S → Γ\D a
period map. The space of infinitesimal deformations of F remaining horizontal can be canonically
identified with EndΓ(HC, Q)−1,1.

The proof of this result is reviewed in Section 2.

1.2 Main results on deformations of mixed period maps

For the purpose of this introduction, a free Z-module H is said to carry a mixed Hodge structure,
if HQ = H ⊗ Q carries an increasing finite filtration W , the weight filtration and HC = H ⊗ C
carries a decreasing filtration F , the Hodge filtration which induces a pure Hodge structure of
weight k on GrWk H. If, moreover, each of those are polarized by Qk, we write Q for the collection
of the Qk and say that (H,W,F,Q) is a graded polarized mixed Hodge structure.

Motivated by geometry, for classifying purposes we keep the weight filtration and the po-
larization fixed. So on a fixed triple (H,W,Q) we allow only the Hodge filtration to vary. The
associated period domains and period maps have been studied in [Usu83, Pea00, Pea01, Pea06].

There are several important differences with the pure situation. First of all, HC does not
have a ”mixed” Hodge decomposition, but instead, a canonical decomposition, introduced by
Deligne [Del71], the Deligne-decomposition HC = ⊕Ip,q where Ip,q has the same dimension as
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the (p, q)-component of the Hodge structure on GrWp+q, but it is no longer the case that Iq,p is
the complex conjugate of Ip,q.

Secondly, although, as in the pure case the period domain D is homogeneous under a Lie
group G, say D = G/GF , the isotropy group GFneed not be compact. Moreover, the group G
has in general no real structure: it generally strictly contains GR, the automorphism group of
(HR,W,Q).

As in the pure case the polarization induces a Hodge metric on the tangent bundle to D,
which is equivariant with respect to GR, but not the full group G. Period maps are holomorphic,
there is a notion of Griffiths’ transversality and a concept of horizontal tangent bundle. Period
maps F have tangents in the latter bundle. As before, through the period map one gets mixed
Hodge structures on H depending on s, i.e., the holomorphic vector bundle H on S with fibers
≃ HC receives a variation of mixed Hodge structure (VMHS). The induced varying mixed Hodge
structures on the Lie algebra

gR = EndW (HR, Q)

of endomorphisms which preserveW and act by infinitesimal isometries on GrW defines a VMHS
on the holomorphic vector bundle

g(H) = EndW (H, Q)

over S and, again by [Sch73, Corollary 7.23], the Deligne decomposition on the space of global Γ-
equivariant sections of g(H) is a flat decomposition, that is, “constant in s ∈ S”. The horizontality
constraint implies that we restrict our attention to

U−1g(H) =
⊕
q⩽1

g−1,q(H),

the horizontal endomorphism bundle . The main result can now be stated as follows:

Theorem =Theorem 6.2.1. Let S be quasi-projective and F : S → Γ\D a horizontal holomor-
phic map to a mixed domain D parametrizing mixed Hodge structures on (H,W,Q) such that
the corresponding VMHS is admissible. Suppose that v ∈ U−1g(H) is Hodge-harmonic, that
moreover, v is equivariant with respect to the monodromy group Γ and that the Hodge norm
∥v∥ is bounded near infinity.

Then infinitesimal deformations of F that stay horizontal correspond one-to-one to Γ-equivariant
horizontal endomorphisms of g(H). The space of such deformations is smooth at F .

The statement requires some explanation. Let v(s) be a section of the bundle U−1g(H) on
S of the horizontal endomorphisms of g(H). In the pure case, as shown in the proof of [Pet90,
Theorem 3.2], negativity of the bisectional curvature in horizontal directions implies that its
Hodge norm gives rise to a plurisubharmonic function s 7→ ∥v(s)∥. One can do with a slightly
weaker condition which is more suitable in the mixed situation. This weaker condition is the
plurisubharmonicity of an endomorphism v of g(H) and will be explained in Section 4.2. In the
pure case it indeed implies plurisubharmonicity of the Hodge norm ∥v∥, and we show that this
is also true for several types of mixed Hodge structures of geometric interest. As is well known
(see for example [Lel68]), bounded plurisubharmonic functions on a quasi-projective manifold are
constant. To make use of this, it suffices to show that ∥v(s)∥ is bounded near infinity whenever v
is preserved by the local monodromy at infinity. This is indeed the case for pure Hodge structures
as follows from W. Schmid’s norm estimates in [Sch73]. Unfortunately, as Section 5.11 shows, the
desired estimates do not hold for mixed variations in general, not even for admissible variations.
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However, for several cases of geometric interest, boundedness still holds as shown in the remainder
of Section 5.

Remark 1.2.1. Although we only consider period maps to ”classical” mixed period domains, the
same methods apply to variations with extra structure corresponding to period maps to mixed
Mumford–Tate domains. To explain this, first of all, the differential geometric input based on
curvature calculations only uses Lie-theoretic calculations involving the mixed Hodge metric and
the Deligne types and these calculations remain the same. Indeed, a Mumford–Tate domain is a
homogeneous space of the formM/MF whereM is a subgroup of a group G acting transitively on
some mixed domain D andMF =M ∩GF so that the Hodge metric is the one from D restricted
to M/MF , and the Deligne types are the same as the ones for the mixed Hodge structure of the
Lie algebra of G. See also [PP19, Remarks 1.1, 2.4].

Secondly, the calculations for boundedness of the mixed Hodge metric are based on the SL2-
orbit theorem. Its proof uses Lie theory within a given group and one can show that these
calculations stay within M ⊂ G. See [KPR19, Section 4] where the pure case is treated. For the
mixed situation the arguments are the same.

1.3 Boundedness results

Although for our purposes we only need a one-variable boundedness result, there is one situation
where we prove a multivariable version which may be of independent interest:

Theorem =5.3.1. A flat section of an admissible Hodge–Tate variation H with unipotent mon-
odromy has bounded Hodge norm with respect to the mixed Hodge metric. Likewise, for a flat
sections of EndH.

Recall from [Pea06] that a variation is of type (I) if there exists an integer k such that the
Hodge numbers hp,q are zero unless p+ q = k, k − 1 (i.e. GrW has exactly two non-zero weight
graded-quotients which are adjacent) and it is of type (II) if there is an integer k such that
hp,q = 0 unless (p, q) = (k, k), (k − 1, k − 1) or p + q = 2k − 1 and hk,k, hk−1,k−1 are non-
zero. Using this terminology, we prove the following 1-variable results, similarly of independent
interest:

Theorem =Theorems 5.5.4, 5.9.1, Corollaries 5.8.4,5.10.3. Let H be a 1-variable admissible
variation with unipotent monodromy of one of the following types:
1. of unipotent type;
2. of type (I) or (II);
3. a variation whose sole weight graded quotients are GrW0

∼= R(0) and GrW−2;
4. a variation whose sole weight graded quotients are GrW0

∼= Z(0), GrW−2 and GrW−4
∼= Z(2).

Then a flat section of H or of g(H) has bounded mixed Hodge norm.

We also show that for variations whose sole weight graded quotients are GrW0 = Z and GrW−k

for k > 2, the norm estimates required to obtain rigidity need not hold. See Lemma 5.11.1.

1.4 Geometric applications

The first application concerns families of quasi-projective smooth curves of genus g. In
Example 7.1.2 we show that if the monodromy acts irreducibly on cohomology, the family is
rigid in the (−1, 0)-directions provided the curves can be completed by adding < 2g points. The
mixed Hodge structures on projective curves with k double points are in a certain sense dual to
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the ones on a quasi-projective curves which can be compactified to a smooth projective curves
upon adding k points. Indeed, there is a dual result for families of curves with > 2g double
points (see Example 7.2.2). Perhaps worth mentioning here is the use of the rather recent concept
of pure variations having maximal Higgs field , a concept introduced by E. Viehweg and
exploited in [VZ03]. For instance in Proposition 2.4.2 we state and prove that having a weight
one maximal Higgs field implies rigidity. Hence, for the preceding examples maximal Higgs leads
to period maps rigid in all horizontal directions.

Next we mention families of Kynev and Todorov surfaces. V. Kynev [Kyn77] has given
a construction of surfaces of general type with invariants h1,0 = 0, h2,0 = 1, K2 = 1 that violate
the infinitesimal Torelli theorem. Other counterexamples to infinitesimal Torelli were given by A.
Todorov [Tod81]. His surfaces have the same invariants h1,0 = 0, h2,0 = 1, but 2 ⩽ K2 ⩽ 8. The
period domain of both types of surfaces resemble that of a K3 surface. Like a K3 surface, there is
an up to scaling unique holomorphic 2-form but here it vanishes along the canonical curve which
is smooth for a generic such surface. Removing this curve gives an open surface intrinsically
associated to a Kynev or Todorov surface. Its cohomology then provides an example of a mixed
Hodge structure. The Todorov surfaces with K2 = 2, . . . , 8 generalize Kynev surfaces that were
previously also investigated in detail by F. Catanese [Cat80] and A. Todorov [Tod80] and so we
shall call these CKT-surfaces. We show (cf. Proposition 7.1.5) that a modular family of open
CKT-surfaces or of Todorov surfaces is rigid, as is any sufficiently generic subfamily.

We shall also consider deformations of certain unipotent variations. Firstly Hodge–Tate
variations (Section 4.3, Example (2)) and, secondly, variations associated to the funda-
mental group of an algebraic manifold (Section 4.3. Example (3)). For the latter, an explicit
rigidity criterion is stated later as Proposition 7.4.1. It involves the geometry of the exterior
algebra of the 1- and 2-forms of S.

Deformations of other types of algebraic families are investigated in Example 6.2.3 and, more
elaborately, in Section 7. These include normal functions, certain higher normal functions
and biextensions coming from higher Chow groups.

1.5 Structure of the paper

In Section 2 we recall in detail the pure case and the proof of the main result from [Pet90]. The
proof presented here differs slightly from the one given in loc. cit. since we want to highlight
where problems arise for the mixed case. Further basic developments have been taken place since
the publication of [Pet90] which we recall in Section 2.4. Several of these newer examples serve
as building blocks in the mixed situation to which we turn in later sections.

In Section 3 we recall some basic material concerning mixed period maps.

One of the main ingredients in the proof of our results is the curvature calculation from [PP19].
We explained in loc. cit. that, unlike in the pure case, the holomorphic sectional curvature is not
in general ⩽ 0 in horizontal directions and so this is a fortiori true for the holomorphic bisectional
curvature. The latter plays a central role in the proof of [Pet90] and our original strategy was to
list classes of types of mixed Hodge structure for which this is also true. In Section 4 we come
back to the calculations of [PP19] and show that instead of focusing on bisectional curvature, it
is better to use a new property, that of plurisubharmonicity of certain global endomorphisms of
the Hodge bundle.

The second main ingredient, the norm estimates for the Hodge metric are given in Section 5.
The techniques employed in this section are of an entirely different, mainly Lie-theoretic nature.
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The proper topic of this paper, deformation theory in the mixed situation, is treated in
Section 6 where we prove the main theorem, Theorem 6.2.1 and give criteria for rigidity. The
main technical result, Proposition 4.2.4, leads to the geometric examples which are treated in
detail in Section 7.

In Appendix A the notion of admissibility is reviewed, and in Appendix B we show that, like
in the pure case, the monodromy action on the period domain coming from a mixed variation
with an integral structure is properly discontinuous so that the quotient has the structure of an
analytic space.

2. The pure case

Although most material in this section concerns published results, we decided to include it for several

reasons. Firstly, the new results on deformations in the mixed case build upon the ones from [Pet90] valid

in the pure case, but since the mixed case is considerably more involved, it is instructive to explain the

pure case in a way that is geared towards techniques we use in the mixed case. Secondly, as explained in

the introduction, besides results from [Pet90] and [Pet92] we want to include new results in the pure case

since these lead to more examples in the mixed setting.

2.1 Basics on period domains and period maps

Recall that a period domain parametrizes polarized Hodge structures of weight k on a finite di-
mensional real vector space HR with given Hodge numbers {hp,q}, polarized by a non-degenerate
bilinear form Q of parity (−1)k. Such a domain D is homogeneous under the real Lie group
GR ⊂ GL(HR) of automorphisms of the polarization Q. The isotropy groups GF

R , F ∈ D are
compact. The domain D is an open set in the compact dual Ď upon which the complexification
GC of GR acts transitively:

GR/G
F
R = D ⊂ Ď = GC/G

F
C .

The Hodge structure on HR given by F induces a Hodge structure on the Lie algebra of GR as
a sub-Hodge structure of EndHR. It has weight zero with Hodge decomposition gC =

⊕
p g

p,−p

where gp,−p consists of those endomorphisms that send Hs,t to Hs+p,t−p.

A point F ∈ Ď can be considered as a filtration on HC. Then F 0gC is the Lie algebra of
the stabilizer of F in GC. Hence the tangent space TF Ď of Ď at F is isomorphic to gC/F

0gC.
Accordingly, since F pgC =

⊕
a⩾p ga,−a, it follows that

TFD = gC/F
0gC ≃

⊕
a>0

g−a,a. (1)

Every Hodge structure F ∈ D defines the Hodge metric on HC which is given by

hF (x, y) := Q(CFx, ȳ), x, y ∈ HC, (2)

where CF |Hp,q = ip−q is the Weil-operator. The Hodge metric is a hermitian metric relative
to which the Hodge decomposition of HC is orthogonal. The induced metric on gC satisfies
ga,−a ⊥ gb,−b unless a = b. In particular, via the isomorphism TFD ≃

⊕
a>0 g−a,a, we obtain a

Hodge metric on TFD. Moreover, since

hgF (x, y) = hF (g
−1x, g−1y), g ∈ GR.

it follows that the Hodge metric defines a GR-invariant metric on the tangent bundle of D.
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A (real) variation of polarized Hodge structure over a complex manifold S consists
of a local system HR of finite dimensional real vector spaces equipped with a weight k Hodge
structure polarized by a (−1)k-symmetric form Q such that

– the Hodge filtrations glue to a holomorphic filtration F of the holomorphic bundle H =
HR ⊗OS ;

– (Griffiths’ transversality) the natural flat connection ∇ induces a vector bundle map Fp →
Fp+1 ⊗ Ω1

S .

Remark. The motivation of this concept is geometric: if f : X → S is a smooth, proper morphism
between complex algebraic varieties, then, by the work of P. Griffiths [Gri68], the associated lo-
cal system HR = Rkf∗RX underlies a variation of pure Hodge structure of weight k. It comes
equipped with a natural polarization induced by the cup-product and the Lefschetz decompo-
sition in cohomology. In fact, we may instead consider cohomology with rational coefficients
and consider polarizations defined by ample classes. In this way we obtain a rational variation
of polarized Hodge structure. There is even a canonical flat integral structure equipped with a
polarizing form.

By its very definition, locally in a simply connected open neighborhood U of s ∈ S, the
assignment s 7→ Fs gives a holomorphic period map U → D. To make sense of this globally,
one needs to incorporate the effect of the fundamental group at s: giving a local system H is
equivalent to giving a representation on H, the fiber of H at s. This representation preserves Q
and so the image of the fundamental group is a subgroup Γ of G, the monodromy group of
the variation. For variations coming from geometry this subgroup belongs to GZ, the subgroup
preserving the integral structure coming from integral cohomology. The monodromy group being
closed and discrete, acts properly discontinuously on D. It follows that the quotient Γ\D is an
analytic space. The period map in its global incarnation is the holomorphic map

F : S → Γ\D.

The Griffiths’ transversality property is equivalent to the statement that the derivative of the
tangent map at s lands in

T hor
F (s)D = F−1gC/F

0gC ≃ g−1,1,

the horizontal tangent space at F . The corresponding vector bundle is the horizontal tan-
gent bundle

T horD = F−1g(H)/F0g(H) ≃ g(H)−1,1, (3)

where the isomorphism is in the category of C∞ hermitian vector bundles. Conversely, a holo-
morphic map from a complex manifold to a quotient of a period domain D by a discrete closed
subgroup of G is a period map provided it is locally liftable to D as a horizontal holomorphic
map.

2.2 Curvature properties

By [GS69, Theorem 9.1] the holomorphic sectional curvature of D along horizontal tangents
is negative and bounded away from zero. As shown in [Pet90], the full curvature tensor along
a (1, 0)-tangent vector of u ∈ g−1,1 is given by R(u, ū) = − ad ([u, ū]) so that the bisectional
curvature in the (u, v) unit-norm direction becomes

KF (u, v) = hF (R(u, ū)v, v) = −hF ([[u, ū]v], v) = ∥[u, v]∥2F − ∥[ū, v]∥2F .
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As recalled below, in geometric situations u and v commute, which implies KF (u, v) ⩽ 0. We
shall outline how this implies that for a global section η of g(H) which is of Hodge type (−1, 1),
the function F 7→ ∥η(F )∥2 is plurisubharmonic on S.

This phenomenon occurs more generally for sections η of any holomorphic vector bundle E
equipped with a hermitian metric h. Recall that there is a unique metric (1, 0)-connection D,
the Chern connection for (E , h). The bisectional curvature appears in a Bochner type formula
[CMSP17, Prop. 11.1.5], a special case of which reads

∂u∂ū∥v∥2 = ∥Duv∥2 − h(RD(u, ū)v, v)

u ∈ T 1,0
s S, v = η(s).

(4)

Recall that a real C2-function f on an open subset U of Cn is plurisubharmonic if i∂∂̄f is a
positive definite (1, 1)-form. This is equivalent to ∂u∂ūf ⩾ 0 for all type (1, 0)-tangent vectors
on U . If h(RD(u, ū)v, v) ⩽ 0, formula (4) shows that s 7→ ∥η(s)∥ is a plurisubharmonic function
on S.

We apply this to our situation with E the bundle g(H) on S. A holomorphic section η of
this bundle is invariant under the global monodromy and so in particular invariant under local
monodromy at infinity. We now invoke:

Proposition 2.2.1 [Sch73, Cor. 6.7’]. Let there be given a polarized variation over the punctured
disk. Then an invariant holomorphic section of the Hodge bundle remains bounded.

Quasi-projective manifolds do not admit bounded plurisubharmonic functions except con-
stants (cf. [Lel68]). Consequently, in the present situation the Hodge norm ∥η∥ is constant along
curves in S and hence on all of S. The bundles on S are pull backs under the period map F of
bundles on D and the calculation takes place on D. In particular, tangent vectors from ξ ∈ TsS
of type (1, 0) are pushed to u = F∗ξ ∈ F∗(TsS) ⊂ T hor

F (s)D = g−1,1
F (s). Summarizing the discussion

so far we have shown:

Lemma 2.2.2. Let there be given a polarized variation of Hodge structure (H, Q,F) over a quasi-
projective complex manifold S. Let η be a holomorphic section of the endomorphism bundle g(H)
which is of Hodge type (−1, 1).

Suppose that for all u ∈ T hor
F D tangent to the image of the period map at F = F (s), s ∈ S,

one has [u, v] = 0, v = η(s). Then ∥η∥ is a plurisubharmonic bounded (and hence constant)
function, Dη = 0 and [ū, v] = 0.

The next step is to relate the Chern connection and the Gauss–Manin connection ∇ as ex-
plained in [CMSP17, Prop. 13.1.1]. It uses the Higgs bundle structure on the Hodge bun-
dle H =

⊕
p+q=k Hp,q. To explain this, note that the Hodge decomposition is only a C∞-

decomposition. However, Hp,q receives a complex structure through the isomorphism Hp,q ≃
Fp/Fp+1. There is a corresponding operator ∂̄ : H → H ⊗ E0,1

S with the property that local
sections v of Hp,q are holomorphic if and only if ∂̄v = 0. The Gauss–Manin connection ∇ can be
decomposed as follows:

∇ = σ + ∂̄ + ∂︸ ︷︷ ︸
D

+σ∗. (5)

Here ∂ : H → H⊗ E1,0
S is a differential operator which preserves Hodge type. The operator

σ : H → H⊗ E1,0
S ,
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an endomorphism of H of Hodge type (−1, 1) with values in the (1, 0)-forms, is called the Higgs
field . Its adjoint with respect to the Hodge metric is the linear operator σ∗ ∈ g(H)1,−1 ⊗ E0,1

S .

By functoriality, a similar decomposition holds for the bundle g(H). Since the tangent bun-
dle comes from the adjoint representation of G on the endomorphism bundle, it follows from
[CMSP17, Prop. 11.4.3] that for any horizontal tangent vector u of type (1, 0) at F ∈ D we have:

∇u = ∂u + ad (u),

∇ū = ∂̄u + ad (ū).

Assuming, as before, that ad (u)v = [u, v] = 0, by Lemma 2.2.2, ∂uv = ∂̄uv = 0 and [ū, v] = 0.
Invoking Lemma 2.2.2, we may summarize the above discussion as follows:

Proposition 2.2.3. Let a η be a holomorphic section of g(H) of type (−1, 1). At a point F in
the image of the period map, set v = η(F ) and assume that [u, v] = 0 for all vectors u ∈ TFD,
tangent to the period map. Then η is parallel with respect to the Gauss–Manin connection.
Moreover, one has [ū, v] = 0.

2.3 Deformations of period maps

The kind of deformations we are interested in are deformations of holomorphic maps φ : X → Y
between complex spaces X and Y that keep X and Y fixed. By definition, these are given by
complex-analytic maps Φ : X × T → Y × T with (T, 0) a germ of an analytic space centered at
0 such that

– Φ(x, t) = (φt(x), t);

– Φ(x, 0) = φ(x).

Such deformations are in one-to-one correspondence to deformations of the graph of φ and as in
[Ser06, § 3.4.1] the tangent space at φ of such deformations is given by the space H0(X,φ∗T (Y )),
the space of infinitesimal deformations of φ keeping X and Y fixed. Here T (Y ) is the tangent
sheaf of Y , i.e., the dual of the cotangent sheaf of Y .

We apply this to period maps F : S → Γ\D. In geometric situations we are interested in
deformations of families of varieties and the corresponding deformations S×T → Γ\D of period
maps F that stay locally liftable and horizontal. We pass to the smallest unramified cover of
S over which there is no monodromy and lift the period map accordingly, say to F̃ : S̃ → D
and then the space of infinitesimal deformations in which we are interested is the subspace of
H0(F̃ ∗T hor(D)) consisting of sections commuting with the monodromy action. In view of the
isomorphism (3), such a deformation lifts to a holomorphic section of g(H) which at any given
point F ∈ D in the image of the period map projects to g−1,1. In this situation we can apply
Proposition 2.2.3 since the condition [u, v] = 0 follows from horizontality (see [CMSP17, Prop.
5.5.1]) and we conclude:

Theorem 2.3.1. Let S be smooth and quasi-projective and F : S → Γ\D a period map. The
space of infinitesimal deformations of F remaining horizontal is isomorphic to the space of flat
sections of type (−1, 1) of the bundle g(H). Moreover, at a point F in the image of the period
map, setting v = η(F ), one has [ū, v] = 0, v = η(F ), for all tangent vectors at F tangent to the
period map.

Complementing this result we remark that according to an argument generalizing the one
given by Faltings [Fal83] for weight 1, the corresponding deformation space is smooth at F (See
also the proof of Theorem 6.2.1. (2)):

9
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Proposition 2.3.2. The space of deformations of a period map F which keep source and target
fixed, and stay locally liftable and horizontal, is smooth at F .

It follows that F is locally rigid precisely when EndΓ(HC, Q)−1,1 = 0. This gives criteria for
rigidity. From the last property, [ū, v] = 0, we see that the concept of a regularly tangent period
map as introduced in [Pet90] comes up naturally:

Definition 2.3.3. The period map F is called regularly tangent at s ∈ S if the only vector
v ∈ g−1,1

F (s) with [ ū, v] = 0 for all u ∈ F∗TsS is the zero vector. If this is the case for all s we speak
of a period map which is regularly tangent along S.

Corollary 2.3.4. A period map F : S → Γ\D is rigid (as a period map) if one of the following
two conditions hold:

– The only flat endomorphism of the underlying local system which is of Hodge type (−1, 1)
is the zero endomorphism.

– F is everywhere regularly tangent.

2.4 Examples of rigid period maps

We first recall the following concept:

Definition 2.4.1. (1) A polarized real variation of weight k has Higgs field of Hodge–Lefschetz
type a if

– the Hodge depth is a, that is the only non-zero Hodge numbers are in the range (a, k −
a), . . . , (k − a, a);

– the Higgs field in some, or equivalently, in a generic direction has components uj : Hk−j,j
s →

Hk−j−1,j+1
s , j = a, . . . , k − a which are all isomorphisms.

This implies that the Hodge depth is exactly a and all non-zero Hodge numbers are equal.
(2) A polarized pure variation has (strictly) maximal Higgs field if it is a direct sum of
variations with Higgs field of Hodge–Lefschetz type, the strands of the field.2

Proposition 2.4.2. A pure variation which has maximal Higgs field is regularly tangent and
hence rigid.

Proof. Let ξ ∈ TsS be generic so that the components of u = F∗ξ are isomorphisms on each
Hodge–Lefschetz strand of the variation. Assume [ū, v] = 0 which at an extremal Hodge compo-
nent means either ū◦v = 0 or v◦ū = 0. But since the Hodge components u and its adjoints are
isomorphisms on each strand, this implies that the extremal components of v vanish and hence,
by induction, all components.

The preceding result confirms the result [VZ03, Lemma 4.3] for strictly maximal Higgs fields
over curves. In loc. cit. several examples are given of families {Xs}s∈S of d-dimensional Calabi–
Yau’s over a curve for which the middle dimensional cohomology gives variation with strictly
maximal Higgs field.

We can now enumerate some examples.

2For complex variations of Hodge structure, the definition as given in [VZ03] is more complicated, but for real
variations it reduces to the one given here.
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(1) Maximal Higgs fields, weight 1. Let (HR, Q) be a weight one polarized Hodge struc-
ture and set V = H1,0. Consider the hermitian inner product h(x, y) = iQ(x, ȳ) on V . The
anti-complex linear map x̄ 7→ h(−, x) induces an identification V = V ∗. The Higgs field becomes
a Q-symmetric endomorphism u ∈ Hom(V, V ∗) and hence can be identified with Pu ∈ S2V ∗, a
quadratic homogeneous polynomial function on V . Under this identification, u is an isomorphism
precisely when Pu has maximal rank. Hence a polarized weight one variation has maximal Higgs
field if and only if the corresponding quadratic polynomial has generically maximal rank.

(2) Maximal Higgs fields, weight two. We recall some general properties of weight
two polarized Hodge structures (HR, Q), say V = H2,0, W = H1,1. The hermitian product
h(x, y) = Q(x, ȳ) restricts non-degenerately on V and under the anti-linear map x̄ 7→ h(−, x)
there are identifications V = V ∗ and W = W ∗. If A : V → W is linear, the anti-linear dual is
denoted Â :W → V . Suppose that u ∈ EndH,Q is horizontal, that is, of type (−1, 1). Then we
have V

u1−−→ W =W
u2−−→ V with u2 = û1.

One easily sees that Z := Im(u1) = [Ker(u2)]
⊥ and that u∗ = (u∗1, u

∗
2) is such that u∗1 = 0 on

Z⊥ and u∗2 : V → Z ⊂W =W . Applying this to a weight two variation we see that subvariation
associated to (H2,0, Z,H0,2) is of Hodge–Lefschetz type if and only if u1 is an injection. Note
that the Higgs field is zero on Z⊥ and so it can only be of Hodge–Lefschetz type if it vanishes.
Concluding, we can only have a maximal Higgs field if Z⊥ = 0 and then h2,0 = h1,1 = h0,2.

(3) Irreducible modules. If (H,Q) is the typical stalk of a variation of pure polarized Hodge
structure on S and HC is irreducible as a π = π1(S)-module, EndπC(H,Q) is 1-dimensional and
since it has a pure Hodge structure, it has type (0, 0). Consequently we have Endπ,hor(H,Q) = 0
and so, by Corollary 2.3.4, such a variation is rigid.

As a geometric example we may consider a Lefschetz pencil of complete intersections in
projective space. By S. Lefschetz’ theory of the variable cohomology (cf. e.g. [CMSP17, Section
4.2.]) the latter is always absolutely irreducible under the action of the monodromy group. The
period map for the family is an immersion except for a cubic surface or an even dimensional
intersection of two quadrics (see e.g. [Fle86, Thm. 2.1.]). Hence the Lefschetz pencil itself is rigid
as well.

(4) Abelian varieties (or polarizable weight one variations). Ma. Saito [Sai93] gives
a complete classification of the non-rigid families {As}s∈S of g-dimensional abelian varieties As.
From this it follows that rigid families occur in abundance as we now show. We can decompose
the variation into irreducible factors. Assume that none of these factors are isotrivial. Then the
family is rigid if one of the following situations occur:

– g ⩽ 7;

– the variation is irreducible and g is prime;

– S is non-compact, the variation is irreducible and some local monodromy operator at the
boundary has infinite order.

Observe that any weight one variation coming from curves is irreducible since the polarization
comes from the irreducible theta-divisor. So non-isotrivial families of genus g curves have rigid
period map if for example g is an odd prime number, or if the family has infinite order local
monodromy at infinity.

(5) K3-type variations. A variation of Hodge structure on a local system is of K3-type , if
it has weight 2 and h2,0 = 1. In general such a system splits as S⊕T where S is locally constant.
If T ̸= 0 it is an irreducible variation, again of K3-type. Geometric examples come from the

11
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primitive 2-cohomology of a projective algebraic K3 surface X which splits as

H2
prim(X) = S(X)⊕ T (X),

where S(X) is spanned by the classes of the algebraic cycles and T (X) = S(X)⊥. In a family
of K3 surfaces, {Xs}s∈S , there is a maximal locally constant part S of the variation given by
algebraic cycles classes, and so the variation splits as S ⊕ T . In [SZ91] T is called the essential
variation. The subset D(S) of the period domain corresponding to projective K3 surfaces for
which the Picard lattice contains S has dimension 20 − ρ where ρ = rank(S). The generic K3
with period point in D(S) has Picard lattice isomorphic to S. The period map of an essential
variation has D(S) as its target. As a special case of the results of [SZ91] we mention:

Proposition 2.4.3. An essential K3-type variation of rank k on a quasi-projective variety S
with immersive period map is rigid in each of the following cases:

(i) k is not divisible by 4;

(ii) S is not compact and some local monodromy operator at infinity has maximal order of
unipotency 3.

(4—5 bis) In addition to the results mentioned under (4) and (5) the rigidity results from
[Pet92] in particular concern abelian varieties and K3-variations:

Proposition 2.4.4. Families of Abelian varieties and K3-type variations having period maps of
rank ⩾ 2 are rigid.

(6) Calabi–Yau manifolds. Proposition 2.4.3 (2) generalizes to Calabi–Yau’s:

Theorem. [Pet10, Cor. 3.5] Let f : X → S be a non-isotrivial family of k-dimensional Calabi-
Yau’s over a non-compact curve S and suppose that there is a point at infinity where the local
monodromy operator for Hk has maximal order of unipotency k + 1. Then f is rigid.

3. Mixed period domains and Hodge metrics

We recall some material from [Del71, Pea00, Pea01, Pea06, Usu83] on mixed Hodge structures
and related period domains.

3.1 Basics on mixed Hodge structure

Fix a finite dimensional Q-vector space HQ endowed with a finite increasing weight filtration
W whose graded pieces GrWk are equipped with non-degenerate (−1)k-symmetric real-valued
bilinear forms Qk. These data are denoted (H,W, {Qk})Q. Associated to these data the following
groups are relevant: the real Lie group

GR = {g ∈ GL(HR) | g(Wk) ⊂Wk,GrW(g) ∈ Aut(GrW (HR, Q))}

and its complexification GC as well as an intermediate group

G = {g ∈ GC | g induces a real transformation on GrW (H)}. (6)

A decreasing filtration F on HC together with the data (H,W, {Qk})R define a graded polarized
mixed Hodge structure if F induces a pure weight-k Hodge structure on GrWk polarized by Qk.
A basic tool is the Deligne splitting (or bigrading) [Del71] for the mixed Hodge structure, a
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unique functorial bigrading,

H = HC =
⊕
p,q

Ip,q (7)

such that F p =
⊕

a⩾p I
a,b, Wk ⊗ C =

⊕
a+b⩽k I

a,b and

Ip,q = Iq,p mod
⊕

a<p,b<q

Ia,b.

The graded polarized mixed Hodge structures (H,W, {Qk})R with fixed Hodge numbers hp,q =
dim Ip,q are parametrized by a mixed period domain which we always denote D.

Remark 3.1.1. A mixed Hodge structure is split over R if Ip,q = Iq,p. Examples occur if the
weight filtration has only two adjacent weights. Consider for instance mixed Hodge structures
with h0,0 = h−1,−1 = 1, an example of a Hodge–Tate structure. The corresponding mixed domain
is C (while the extension data are isomorphic to Ext(Z(0),Z(1)) = C∗).

In analogy with the pure case, D is a complex manifold. Moreover, D is a homogeneous
domain under the group G defined by (6) and so

D = G/GF , GF = stabilizer of F in G.

There are important differences with the pure case since the group GF is in general not compact
in contrast to GF

R . The real Lie group GR = G ∩ GL(HR) acts only transitively on the locus of
split mixed Hodge structures which need not be a complex manifold. However, if D parametrizes
split mixed Hodge structures, D = GR/G

F
R = G/GF , although in general we have G ̸= GR and,

while GF
R is compact, GF need not be compact. See [Usu83] for the case of adjacent weights.

As in the pure case, there is a “compact dual” of D,

Ď = GC/G
F
C . (8)

By functoriality, any point F ∈ D induces a mixed Hodge structure on End(H) with Deligne
splitting

End(H) =
⊕

p,q End
p,q(H),

Endp,q(H) = {u ∈ End(H) | u(Ir,s) ⊂ Ir+p,s+q for all r, s}. (9)

and also on the space gC = Lie(GC) = End(H,W,Q)C of endomorphisms preserving Q:

gr,s = gC ∩ Endr,s(H) r + s ⩽ 0.

The restriction on the bigrading comes from the weight preserving property of elements of GC.

There is also an analog of (1). To see this, first observe that the exponential map u 7→ eu maps
a neighborhood U of 0 biholomorphically to an open neighborhood of GC and so, composing with
the orbit map yields a biholomorphic map

φ : U ∩ qF
≃−→ Im(φ) ⊂ D (10)

u 7→ eu .F .

Since the Lie algebra of GF
C equals F 0gC =

⊕
r⩾0 gr,s, the subspace

qF =
⊕
r<0

gr,s (11)

is a vector space complement to F 0gC in gC. Accordingly, dφ(0) induces a natural isomorphism
of complex vector spaces

TF (D) ≃ qF . (12)

13



Gregory Pearlstein and Chris Peters

3.2 Period maps for variations of mixed Hodge structure

Similarly to a pure variation, one can speak of a variation of graded polarized mixed Hodge
structure on S. The only difference with the pure case is the presence of a weight filtration with
the property that on its k-graded quotients the Hodge filtration induces a pure polarized variation
of weight k. Such variations are in one to one correspondence with period maps to the mixed
period domain D for the graded polarized mixed Hodge structure on a typical fiber. The map
sending s to the point F (s) ∈ D corresponding to the mixed Hodge structure on the fiber over
s of the local system is well defined locally, for instance if S is a polydisc or, more generally, a
simply connected manifold. We say that we have a local period map S → D, s 7→ F (s). As in
the pure case, there is a monodromy group Γ and we get a well defined (global) period map

F : S → Γ\D.

Again, as in the pure case, variations coming from geometry have an underlying integral structure.
In particular, this implies that Γ acts properly discontinuously on D and so Γ\D is an analytic
space. For lack of a good reference, we provide a proof of this fact in Appendix B.

The period map is horizontal, meaning that the derivative at s ∈ S sends TsS to the subspace
of the tangent space TF (s)D given by

Gr−1
F g(H)s =

⊕
q⩽1

g−1,q
F (s).

This is a consequence of Griffiths’ transversality. Since one only uses the Hodge filtration to
describe of the tangent bundle as well as the horizontal tangent bundle the description in the
mixed case parallels the one in the pure case. For later reference we make this more explicit.
Using the induced Hodge filtration on the endomorphism bundle, we have a surjective map of
holomorphic vector bundles on Ď

F−1g(H)
πhor
// T hor(Ď) = Gr−1

F g(H). (13)

Mixed period maps of geometric origin have all of the above properties. See e.g. [SZ85, Usu83].

To close this section, we observe that the same argument used in the pure case shows:

Lemma 3.2.1. For a local period map F : S → D, the image of the tangent space at s is an
abelian subalgebra of gC contained in U−1gF (s) =

⊕
q⩽1 g

−1,q
F (s).

3.3 Mixed Hodge metrics

The mixed Hodge metric h(F,W ) on H is defined as follows. We first declare the splitting (7)
to be orthogonal and then define the metric on Ip,q making use of the graded polarization on
GrWH as follows. The summand Ip,q maps isomorphically onto the subspace Hp,q of GrWp+q. So
on classes [z] of elements z ∈ Ip,q ⊂ Wp+q modulo Wp+q−1 the metric hF,W can be defined by
setting:

h(F,W )(x, y) = (Grh)F ([x], [y]), x, y ∈ Ip,q. (14)

Let ∗ denote the adjoint with respect to the metric hF . Then,

∗ : Endp,q(H) → End−p,−q(H). (15)

The Hodge metric induces a metric on EndH given by

hF (α, β) = Tr(αβ∗) (16)

14



Deformations and Rigidity for mixed period maps

where β∗ is the adjoint of β with respect to hF,W . The Deligne splitting (9) of EndH is then
orthogonal with respect to the associated metric. The induced Hodge metric on the holomorphic
tangent space TD,F of D at F comes from the natural identification (12).

In the sequel, we make use of the following orthogonal splittings.

gC = n+ ⊕ g0,0F︸ ︷︷ ︸
Lie(GF

C )

⊕ n− ⊕ Λ−1,−1
F︸ ︷︷ ︸

qF

,

where

n+ =
⊕

a⩾0,b<0 g
a,b
F ,

n− =
⊕

a<0,b⩾0 g
a,b
F ,

Λ−1,−1
F =

⊕
a⩽−1,b⩽−1 g

a,b
F .

See Figure 1 below.

a

b

g0,0F

(1,−1)
(−1,−1)

(−1, 0)

(−1, 1)

(0,−1)

n+

n−

qF

{

Λ−1,−1
F = Λ̄−1,−1

F

Figure 1. Decomposition of gC

The orthogonal decomposition gC = n+ ⊕ g0,0 ⊕ n− ⊕ Λ−1,−1
F defines respective orthogonal

projectors

π± : gC −−→ n±,
π0 : gC −−→ g0,0,

πΛ−1,−1 : gC −−→ Λ−1,−1
F ,

πq : gC −−→ qF .

(17)

3.4 Higgs bundles in the mixed setting

As in the pure case, the Hodge filtration F• defines a Higgs bundle structure on a variation of
mixed Hodge structure over S. Using the Deligne splitting (7) on the fiber F , the role of Hp,q is
played by

Up
F :=

⊕
q

Ip,qF ≃ F p/F p+1,
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which cuts out Hp,q on GrWp+qH. These form the fibers of the C∞ bundles

Up =
⊕
q

Ip,q ≃ Fp/Fp+1. (18)

The Higgs structure is slightly more involved than in the pure case: by [Pea00], the Gauss–Manin
connection of H decomposes as

∇ = τ0 + ∂̄ + ∂ + θ. (19)

Here ∂̄ and ∂ are differential operators of type (0, 1) and (1, 0) which preserve Up. The first, ∂̄,
gives the holomorphic structure induced by the C∞-isomorphism Up ≃ Fp/Fp+1 which defines
the Higgs bundle UHiggs. The Higgs field in this setting is the operator θ, an endomorphism
of H sending Up to Up−1 with values in the (1, 0)-forms and τ0 is an endomorphism sending Up

to Up+1 with values in the (0, 1)-forms. The Higgs field has a geometric interpretation which
directly follows from its construction:

Lemma 3.4.1. Let F : S → D be a local period map. Under the correspondence (12), the
Higgs field in a tangent direction ξ ∈ TsS can be identified with F∗ξ viewed as a degree −1
endomorphism of UHiggs:

θ1,0ξ = F∗ξ : UHiggs,s → UHiggs,s, F∗ξ ∈ qhorF (s).

In particular, the period map is injective, if and only if for all non-zero directions ξ the map θ1,0ξ

is not the zero-map.

By functoriality all this applies to the endomorphism bundle g(H) with induced variation of
mixed Hodge structure. In the latter set-up we have:

Lemma 3.4.2. Let η be a local holomorphic section of U−1g(H) at s ∈ S and ξ ∈ Ts(S) a tangent
vector of type (1, 0) at s. Set v = η(s), u = F∗ξ ∈ ghorF (s). Then

∇ξv = ∂ξv + ad (u)v, (20)

∇ξ̄v = π(0) ad (π+ū)v. (21)

Here the bundle map π(0) stands for the orthogonal projection onto U0.

Proof. First consider the general case of a mixed variation H and u ∈ Up. The operator ∂̄ in (19)
breaks up in a component of bi-degree (0, 0) and a component τ− of bi-degrees (0,−1)+(0,−2)+
. . . . Comparing with [Pea00, Lemma 5.11], letting π(p) stands for the orthogonal projection onto
Up, we see

π(p)π+(ū) = τ−, π(p+1)π+(ū) = τ0.

Since the action of gF (0) on End(HF (0)) is through the adjoint action, setting p = −1 we see

that τ0 gives rise to π(0) ad (π+(ū))v. Since η is holomorphic, ∂̄η = 0. As to θ, comparing with
equation (5.20) in loc. cit. we see that θ gives ad (u)v. This proves the result.

4. Differential geometry

4.1 The Chern connection on the endomorphism bundle

Let D be the Chern connection on the endomorphism bundle. In [PP19, § 5] we calculated it for
the bundles U (p) and found

D = ∂̄ + ∂ − τ∗−,
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where τ∗− is the adjoint of the operator τ− with respect to the mixed Hodge metric. We already
calculated τ− = π(p)π+(ū) and so τ∗− = π(p)(π+(ū))

∗. By functoriality this holds also for the
endomorphism bundle using the adjoint action, where we apply it for U (−1). Since in this situation
π(−1) is the same as projection onto q, we get:

Dξη = ∂ξv − πq[(π+ū)
∗, v], u = F∗ξ, v = η(s). (22)

4.2 Curvature and plurisubharmonicity of Hodge norms

In contrast to the pure case, the biholomorphic bisectional curvature of the horizontal tangent
bundle is not always semi-negative as expressed by the following theorem.

Proposition 4.2.1. The bisectional curvature of the Hodge metric in unit directions u, v ∈
U−1gF equals

K(u, v) = ∥[u−1,1, v]∥2 + ∥πq[(π+ū)∗, v]∥2 − ∥[π+ū, v]∥2 − Reh(πq[π+[u, ū], v]).

Proof. We use the curvature tensor for the Hodge metric h as given in [PP19, Theorem 3.4]:

Rh(u, ū) = R1 +R2 +R3

R1 = −[πq ad ((π+ū)
∗), πq ad ((π+ū)]

R2 = − ad (π0[u, ū])

R3 = πq (ad (π+[ū
∗, u])) + πq (ad (π+[ū, u])) .

To calculate K(u, v) from this, we follow the proof of [PP19, Theorem 4.1] and calculate the
terms h(Rjv, v) for j = 1, 2, 3 of the biholomorphic sectional curvature. With ∥− ∥ = ∥− ∥F the
Hodge norm on EndH we have

h(R1v, v) = −∥πq[π+(ū), v]∥2︸ ︷︷ ︸
A1

+ ∥πq[(π+ū)∗, v]∥2︸ ︷︷ ︸
A2

h(R2v, v) = −h([π0[u, ū], v], v) = A3

h(R3v, v) = −Reh(πq[π+[u, ū], v], v).

To calculate A3 remark that πq(ad (π0[u, ū])) = ad ([u−1,1, (u−1,1)∗]) and so

A3 = h(R2v, v) = ∥[u−1,1, v]∥2 − ∥[(u−1,1)∗, v]∥2.

Next, observe that [(u−1,1)∗, v] ∈ U0
F and πq[π+ū, v] ∈ U−1

F have different bidegrees and hence
are mutually orthogonal with sum equal to [π+ū, v]. Consequently,

−∥[(u−1,1)∗, v]∥2−∥πq[π+ū, v]∥2︸ ︷︷ ︸
A1

= −∥[π+ū, v]∥2.

The result follows.

We consider now Eqn. (4) in the present situation. As a consequence of Eqn. (22) and Propo-
sition 4.2.1, we have

∂u∂ū∥v∥2 = ∥Duη∥2 −K(u, v)
= ∥∂uv(s) + πq[π+ū

∗, v]∥2 − ∥πq[π+ū∗, v]|2 + ∥[π+ū, v]∥2
−∥[u−1,1, v]∥2 +Reh(πq[π+[u, ū], v], v).
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If πq[π+ū
∗, v] and v are orthogonal, this simplifies to give

∂u∂ū∥v∥2 = ∥∂ξv(s)∥2 + ∥[π+ū, v]∥2
−
(
[u−1,1, v]∥2 +Reh(πq[π+[u, ū], v]), v

)
.

(23)

A direct consequence of (23) and Lemma 3.4.2 gives the following variant of Proposition 2.2.3
in the mixed case:

Proposition 4.2.2. Let there be given a graded polarized mixed variation of Hodge structure
(H, Q,F) over a quasi-projective complex manifold S. Let η a holomorphic section of U−1(g(H)).
For s ∈ S, let v = η(s), viewed as a horizontal tangent vector at F = F (s) ∈ D. Suppose that
for all u ∈ T hor

F D tangent to the image of the period map at all images F ∈ D of the period
map, one has

[u−1,1, v] = 0 (24)

h(πq[π+ū
∗, v], v) = 0 (25)

Reh(πq[π+[u, ū], v], v) = 0. (26)

Then the function ∥v∥2 is plurisubharmonic and, if bounded (and hence constant), we have

∂ξv = [π+ū, v] = 0. (27)

If, moreover, [u, v] = 0, η is a flat section.

Conversely, if η is flat, then ∥v(s)∥ is constant and (27) holds.

Remark 4.2.3. (1) In the cases of interest to us, flat sections are bounded in the mixed Hodge
norm. See Section 5, although this is not the case in general as shown in Subsection 5.11.
(2) In the pure case the conditions [u, v] = 0 and [u1,1, v] = 0 are equivalent and the two remaining
conditions hold for type reasons.

For easy reference, a section η with the property that for all tangent vectors u along S the
conditions (24)–(25) hold, is called a pluri-subharmonic endomorphism .

To give geometric examples where this phenomenon occurs, we first prove:

Proposition 4.2.4. In the situation of Proposition 4.2.2, assuming that [u, v] = 0, the endo-
morphism η is plurisubharmonic in the following cases:

(i) the pure case;

(ii) R-split variations (e.g. two adjacent weights) in directions v = v−1,0;

(iii) in the setting of unipotent variations (i.e. u−1,1 = 0) provided either Λ−1,−1 = 0 and
v = v−1,0, or u ∈ Λ−1,−1 and v−1,1 = 0.

(iv) variations with u = u−1,1 + u−1,−1 in directions v = v−1,−1.

(v) two non-adjacent weights, say 0, k, |k| ⩾ 2 with h0,0 = 1, hp,−p = 0 for p ̸= 0, in directions
v = v−1,−k+1.

(vi) A variation of type

I0,0

u−1,−1

��
u0,−2

$$
I−2,0

u0,−2 $$

I−1,−1oo u
−1,1
oo u

−1,1
oo

u−1,−1

��

I0,−2u−1,1
oo

I−2,−2
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in directions v = v−1,−1.

In cases (1), (4) and (5), one has K(u, v) ⩽ 0.

In all cases, if ∥η∥ is bounded, then η is parallel for the Gauss–Manin connection.

Proof. The pure case is Lemma 2.2.2. In the remaining cases we consider the conditions for v to
be pseudo-plurisubharmonic separately. Condition (24) follows either trivially since u−1,1 = 0 ,
or it follows from [u, v] = 0 since u has two Hodge types while v−1,1 = 0.

For conditions (25) and (26) we write

u = α+ β + λ, α = u−1,1, β = u−1,0, λ = π−1,−1
Λ u.

Observe that

ū = α∗ + ϵ+ δ,

ϵ = π(0)(ū) ∈
⊕
q⩾2

g0,−q,

δ = π+(ū
−1,0) ∈ g0,−1

and so

πq[π+[u, ū], v] = [[β, α∗], v] + [[λ, α∗], v],

[β, α∗] ∈ g0,−1,

[λ, α∗] ∈
⊕
k⩾2

g0,−k.

First consider condition (26). In case (3) one has π+[u, ū] = 0. In case (2), π+[u, ū] = [β, α∗] has
bi-degree (0,−1) and so sends v = v−1,0 to 0. In case (4) and (6), π+[u, ū] = [λ, α∗] has bi-degree
(0,−2) and so sends v = v−1,−1 to zero. In case (5) π+[u, ū] has bi-degree (0,−k) and so sends
v = v−1,1−|k|to zero.

Next, consider (25) and remark that

(π+ū)
∗ = α+ ϵ∗ + δ∗,

ϵ∗ ∈
⊕
q⩾2

End0,q, δ∗ ∈ End0,1 .

(i) In the R-split case, ϵ = 0. In πq[(π+ū)
∗, v] the terms of bi-degree (−1, 1) come from

[δ∗, v−1,0]+[ϵ∗, πΛ−1,−1v]. This proves (25) since then πq[(π+ū)
∗, v] = [u−1,1, v−1,0]+[δ∗, v−1,0]

has bi-degree (−2, 1)+ (−1, 1) and hence is orthogonal to ∂ξv since it has bi-degree (−1, 0).

(ii) In the unipotent situation we also have ϵ = 0 and now π+ū
∗ = δ∗ which vanishes if u ∈ Λ−1,−1

and else has pure type (0, 1). But then πq[(π+ū)
∗, v−1,0] has bi-degree (−1, 1) and so is

orthogonal to v = v−1,0 + vΛ−1,−1 .

(iii) In this case ϵ = 0 and δ = 0, we find that (π+ū)
∗ = α so that πq[(π+ū)

∗, v] = [u−1,1, v] = 0
which is condition (24) and we just proved it.

(iv) Here we show that πq[(π+ū)
∗, v] = 0 using:

Lemma 4.2.5. Let a ∈ End0,k, b ∈ g−1,1−k and let c = πq(a◦b) ∈ g−1,1. Suppose that hp,q = 0
unless p+ q = k ⩾ 1 or p = q = 0. Then c = 0.

Proof. Let x ∈ I1,k−1. Then c(x) ∈ I0,k. To show that c(x) = 0 it suffices to show that it is
orthogonal to I0,k. Observe that every element y ∈ I0,k is of the form y = z̄ for some z ∈
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Ik,0I1,k−1I0,k

Ik−1,1−k = 0I0,0
a b b = 0

Ik,0 which is the case because of the assumption on the Hodge numbers. But ±ikh(c(x), y) =
Q(c(x), z) = −Q(x, c(z)) = 0 since b(z) = 0.

We apply this lemma with a = π+ū
∗ = ϵ∗ ∈ End0,k, b = v ∈ g−1,1−k.

(v) The last case is clear from type considerations.

For the assertion about the curvature, observe that the only term in the expression forK(u, v)
given in Proposition 4.2.1 that causes trouble is πq[(π+ū)

∗, v] which, as we showed above, vanishes
in cases (4) and (5).

4.3 Horizontal plurisubharmonic endomorphisms: geometric examples

We indicate how some of the geometric examples mentioned in the introduction fit in with the
cases exhibited in Proposition 4.2.4.

(i) Normal functions. We explain how to interpret a classical normal function as a varia-
tion of Z-mixed Hodge structure. Suppose that X = Xo is a smooth projective variety. A
homologically trivial algebraic p-cycle Z in X canonically determines an extension

νZ ∈ Ext1MHS(Z(0), H2p+1(X,Z(−p))).

in the category of Z-mixed Hodge structures by pulling back the exact sequence

0 → H2p+1(X,Z(−p)) → H2p+1(X,Z,Z(−p)) → H2p(Z,Z(−p)) → · · ·

along the inclusion Z(0) ↪→ H2p(Z,Z(−p)) sending 1 to the class of Z. It is well known (cf.
[Car87]) that

Ext1MHS(Z(0), H2p+1(X,Z(−p))) ≃ Jp(X),

the intermediate Jacobian of X. The point in JH2p+1(X,Z(p)) corresponding to the cycle Z
under this isomorphism is

∫
Γ, where Γ is a real 2p+ 1 chain that satisfies ∂Γ = Z.

If X = Xo varies in a smooth family Xs with smooth base S, say π : X → S, the groups
H2p+1(Xs,Z(−p)) form a local system H2p+1(−p) defining a variation of Hodge structure.
The intermediate Jacobians vary holomorphically, and glue together to give the relative in-
termediate Jacobian Jp(X/S).
Suppose that Z is an algebraic cycle in X which is proper over S of relative dimension p and
such that Zs the fiber over s ∈ S is homologous to zero. Then Zs defines a point νZs in the
intermediate Jacobian Jp(Xs). These give a holomorphic section νZ of Jp(X/S), and this is
the classical normal function. It can be viewed as an extension

Ext1VMHS(Z(0), H2p+1(−p))

in the category of variations of mixed Hodge structures. Such a variation has two adjacent
weights 0,−1 and by case (2) of Proposition 4.2.4, ∥v−1,0∥ is plurisubharmonic. For this exam-
ple the term πq[(π+ū)

∗, v] need not vanish and so we cannot conclude from Proposition 4.2.1
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that K(u, v) ⩽ 0. However, a more sophisticated argument as in [PP19, proof of Prop. 6.2]
reveals that K(u−1,0, v−1,0) ⩽ 0.

(ii) Hodge–Tate variations. Only extension data can be deformed. These are deformations
with v = v−1,−1. Case (3) of Proposition 4.2.4 shows that ∥v−1,−1∥ is harmonic. Of course
the biholomorphic curvature is 0 since D is flat. As a simple example of a 1-parameter
variation, suppose h−1,−1 = 2, h0,0 = 1 and let {e1, e2, e3} be a basis of the lattice HZ. Let
Fo denote the reference filtration

I0,0(Fo,W ) = Ce1, I−1,−1
(Fo,W ) = Ce2 ⊕ Ce3.

Then the period domain D = G/GFo is isomorphic to the unipotent group UC consisting of
the matrices

ga,b =

1 0 0
a 1 0
b 0 1

 , a, b ∈ C

via the action of UC on Fo. Consider the period map C∗ → Γ\C2 given by u 7→ glog u,0.Fo

and with monodromy group Γ the unipotent group consisting of elements ga,0 ∈ G, a ∈ Z.
This variation clearly has a deformation leading to a variation over C∗ ×C given by the map
(u, v) 7→ glog u,v.Fo.
Contrast this with the following example of a biextension of Hodge Tate type with Hodge
numbers h0,0 = h−1,−1 = h−2,−2 = 1. Let {e1, e2, e3} be a basis of HZ. Let Fo denote the
reference filtration such that

I−2,−2
(Fo,W ) = Ce3, I−1,−1

(Fo,W ) = Ce2, I0,0(Fo,W ) = Ce1

The period domain D = G/GF is isomorphic to the unipotent group UC consisting of matrices
of the form

ga,b,c =

1 0 0
a 1 0
c b 1

 , a, b, c ∈ C

by the action of UC on Fo. Let Eij denote the 3× 3 matrix whose only non-zero entry is 1 in
row i and column j. Then, the Lie algebra of UC is equal to g−1,−1 ⊕ g−2,−2 where g−1,−1 is
spanned by u0 = E21 and u1 = E32 while g−2,−2 is spanned by u2 = E31 = [u1, u0]. Now a
period map can be given locally as z 7→ exp(Γ(z)).Fo where

Γ(z) = f0u0 + f1u1 + f2u2 =⇒ exp(Γ(z)) =

 1 0 0
f0 1 0

f2 +
1
2f0f1 f1 1

 .

If it is injective we may assume that f0 = z. The commutativity condition for horizontal
directions gives df0 ∧ df1 = 0 and so f1 = φ(z) for some function φ with φ(0) = 0. The
horizontality condition gives df2 +

1
2(f1df0 + f0df1) = 0 and so f2 = ψ(z) for some function ψ

with ψ(0) = 0. This implies that a non-trivial injective period map has a curve as its image
and hence must be rigid.
As a concrete example we take the Hodge–Tate variation associated to the dilogarithm. Here
S = P1 − {0, 1,∞} with global coordinate s. The period map

P1 − {0, 1,∞} → UZ\D

is then given by the functions f0(s) = −(log 2 + log(1 − s)) and f1(s) = log 2 + log s which
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vanish at s = 1
2 . The horizontality condition gives

f2(s) = −1

2

∫ s

1
2

(
log t

1− t
+

log(1− t)

t

)
dt = −1

2
Li2s+

1

2
Li2(1− s).

(iii) Variations of mixed Hodge structures attached to fundamental groups.
Let us briefly explain which variations we are considering. LetX be a smooth algebraic variety
and let Jx be the kernel of the ring homomorphism Zπ1(X,x) → Z given by

∑
nγγ 7→

∑
nγ ,

γ ∈ π1(X,x). There are mixed Hodge structures on Jx/J
n
x which depend on the base point

x ∈ X. For n = 3 these can be explicitly described, following [Hai87, Section 6]: the mixed
Hodge structure on the dual, HomZ(Jx/J

3
x ,C) is an extension

0 → H1(X) → HomZ(Jx/J
3
x ,C)

p
−→ Ker(H1(X)⊗H1(X) → H2(X)) → 0,

provided H1(X) is torsion free. Here we want pure Hodge structures and this forces H1 to
be of pure weight ℓ = 1 or 2 and weight H2 = 2ℓ. Geometric examples include X smooth
projective or X = P1 − Σ, Σ a finite set of points. The extension depends on x, but the two
pure Hodge structures remain fixed so that u−1,1 = 0 and we are in the unipotent situation
with v = v−1,−ℓ+1, u = u−1,−ℓ+1. If ℓ = 1 we have Λ−1,−1 = 0, v = v−1,0 and if ℓ = 2,
u, v ∈ Λ−1,−1 and so case (3) of Proposition 4.2.4 shows that ∥v−1,−ℓ+1∥ is plurisubharmonic.
One can directly verify that also K(u−1,−ℓ+1, v−1,−ℓ+1) ⩽ 0.

(iv) Nilpotent orbits associated to Kähler classes. As explained in the introduction, these
variations have Hodge types (−1, 1) and (−1,−1). However, v can a priori have any type
(−1, k), k ⩽ 1. By case (4) of Proposition 4.2.4, endomorphisms for which v = v−1,−1 are
plurisubharmonic and then K(u, v) ⩽ 0. Note that for a family of projective manifolds over
a quasi-compact base S we can assume that we have a variation of integral Hodge structures
polarized by a family of independent flat integral Kähler classes (corresponding to ample
divisors).

(v) Higher normal functions.
Let π : X → S be a smooth projective family. Recall (see the introduction) that a higher
normal function is an extension in

Ext1VMHS(Q(0), Rp−1π∗Q(q)), w = p− 2q − 1 < 0.

Case (5) of Proposition 4.2.4 tells us that ∥v−1,w+1∥ is plurisubharmonic and K(u, v−1,w+1) ⩽
0.

(vi) Biextensions of bidegrees (0, 0), (−2,−2), (−2, 0), (−1,−1), (0,−2). Case (6) of Proposi-
tion 4.2.4. shows that ∥v−1,−1∥ is plurisubharmonic. Geometric examples arise as a special
case of a more general construction given by J. Burgos Gill, S. Goswami and the first au-
thor in [BGGP22], two higher Chow cycles in Zp(X, 1) on a d-dimensional variety X with
p+q = d+2 determine in a canonical way a special type of mixed Hodge structure. For a fam-
ily of surfaces, we have d = 2 and the resulting variation is of biextension type with bidegrees
(0, 0), (−2,−2), (−2, 0), (−1,−1), (0,−2). For more details on this example see Section 5.10.

5. Norm Estimates for admissible variations

Let H → ∆∗ be an admissible variation of graded-polarized mixed Hodge structure over the punctured
disk ∆∗ with unipotent monodromy T = eN . Recall that g(H) ⊂ H ⊗ H∗ is the sub-variation of mixed
Hodge structure generated by local sections which preserveW and induce infinitesimal isometries on GrW .
In this section, we show that in the cases enumerated below, the mixed Hodge norm of a monodromy
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invariant section of g(H) is bounded. In section (5.11), we show that ∥N∥ can be unbounded on ∆∗ for
higher normal functions.

In section 12 of [KNU08], K. Kato, C. Nakayama and S. Usui prove mixed Hodge norm estimates
using their SL2-orbit theorem. However, the metric used in [KNU08] involves an artificial twisting of the
Hodge metric on each GrW , and hence is different than the metric used in this paper. In [HP15], The first
author and Tatsuki Hayama construct an intrinsic “twisted metric” on D which which gives the same
norm estimates as [KNU08] for admissible variations for which the limit MHS is not split over R. The
twisted metric considered in [HP15] is only invariant under GR, i.e. g ∈ exp(Λ−1,−1

(F,W )) need not induce

an isometry Lg∗ : TF (D) → Tg.F (D) by left translation. For this reason, the curvature computations
of [PP19] do not apply to this metric on D.

The material in this section assumes familiarity with the definition and basic theory of admissible
variations of mixed Hodge structure as outlined in Appendix (A).

Before continuing, we emphasize that if (F,W ) is a graded-polarized mixed Hodge structure
with underlying vector space V and

g ∈ GR ∪ exp(Λ−1,−1
(F,W )), α ∈ gl(V ), (28)

then

∥α∥(g.F,W ) = ∥g−1.α∥(F,W ) (29)

where g.α = Ad(g)α. Indeed, if {vj} is an unitary frame with the respect to the mixed Hodge
metric h(F,W ) then {gvj} is a unitary frame for h(g.F,W ). Therefore,

∥α∥2(g.F,W ) =
∑
j

h(g.F,W )(α(gvj), α(gvj))

=
∑
j

h(F,W )(g
−1α(gvj), g

−1α(gvj))

=
∑
j

h(F,W )((g
−1.α)(vj), (g

−1.α)(vj)) = ∥(g−1.α)∥(F,W )

In particular, if H is a variation of type I or II as defined in section (5.8) it will not be the case
that g(H) is type I or type II. Nonetheless, all of the calculations in section (5.8) depend only
on (29) and a version of the SL2-orbit theorem for nilpotent orbits of type I or II.

By way of notation z = x+iy throughout this section. In the several variable case zj = xj+iyj .

5.1 Variations of Pure Hodge Structure

Let H → ∆∗ be a variation of pure Hodge structure over the punctured disk with unipotent local
monodromy. By Corollary (6.7) of [Sch73], the Hodge norm of an invariant class is bounded.
This result is a consequence of Schmid’s SL2-orbit theorem [Sch73]. If H is a variation of pure
Hodge structure then so is H⊗H∗, and hence if α ∈ H ⊗H∗ is monodromy invariant then ∥α∥
has bounded Hodge norm.

For future use, we recall that by the Monodromy Theorem (see Theorem (6.1), [Sch73]) if
H → ∆∗ is a variation of pure Hodge structure with unipotent monodromy T = eN , then N ℓ = 0
where ℓ is the maximum number of successive non-zero Hodge summands of H (e.g. for a family
of curves of positive genus, ℓ = 2 since H = H1,0 ⊕H0,1).

Applied to a variation of graded-polarized mixed Hodge structure H → ∆∗ with unipotent
monodromy T = eN , it follows that if GrW2p(H) is pure of type (p, p) then N acts trivially on

GrW2p .
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5.2 Local Normal Form

In connection with deformations of mixed period maps and the derivation of the norm estimates
below, we recall the following (eq. (2.5) [CK89], eq. (6.8) [Pea00]).

Let (s1, ..., sa+b) be holomorphic coordinates on the polydisk ∆a+b and ∆∗a ×∆b denote the
complement of the divisor s1 · · · sa = 0. Let Ua denote the a-fold product of the upper half-plane
with Cartesian coordinates (z1, . . . , za) and covering map Ua×∆b → ∆∗a×∆b ⊂ ∆a×∆b given
by the formula

(z1, . . . , za; sa+1, . . . , sb) 7→ (e2πiz1 , . . . , e2πiza , sa+1, . . . , sb)

Let H be an admissible variation of graded-polarized mixed Hodge structure over ∆∗a×∆b with
unipotent monodromy Tj = eNj about sj = 0. Then, (cf. (82)), admissibility implies that the
period map of H can be lifted to a holomorphic, horizontal map of the form

F (z1, . . . , za; sa+1, . . . , sb) = e
∑

j zjNj .ψ(s) (30)

where ψ(s) is a holomorphic map ∆a+b → Ď with ψ(0) = F∞.

To continue, define:

C = {
∑
j

λjNj | λ1, . . . , λa > 0 } (31)

Then, by admissibility, there exists an increasing filtration M(C,W ) such that if N ∈ C then
M(N,W ) equals M(C,W ). The results of Kashiwara show that if H is admissible then (F∞,M)
is a mixed Hodge structure relative to which each Nj is a (−1,−1)-morphism. Moreover, if gC is
the Lie algebra attached to the period map (30) of H, then (F∞,M) induces a graded-polarizable
mixed Hodge structure on gC.

In particular, if gC = ⊕p,q g
p,q is the Deligne bigrading induced by (F∞,M), then

q =
⊕
p<0

gp,q (32)

is a vector space complement to the stabilizer gF∞
C in gC. Therefore, after shrinking ∆a+b as

needed, it follows that there exists a unique q-valued holomorphic function Γ(s) which vanishes
at 0 such that

ψ(s) = eΓ(s).F∞ (33)

Let Γ−1 =
∑

q Γ−1,q(s). By equation (6.14) and Theorem (6.16) of [Pea00], the function
Γ−1(s) satisfies the following integrability condition[

Nj + 2πisj
∂Γ−1

∂sj
, Nk + 2πisk

∂Γ−1

∂sk

]
= 0 (34)

for all j and k (with Nℓ = 0 for ℓ > a).

Conversely, given an admissible nilpotent orbit

θ(z1, . . . , za) = e
∑

j zjNj .F∞

and a holomorphic function Γ−1 : ∆a+b → ⊕q g
−1,q
C which vanishes at zero and satisfies the

integrability condition (34), there exists a unique holomorphic function Γ : ∆a+b → q which
vanishes at 0 such that

F (z1, . . . , za; sa+1, . . . , sb) = e
∑

j zjNjeΓ(s).F∞ (35)
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arises from the period map of a variation of graded-polarized mixed Hodge structure defined for
ℑ(z1), . . . ,ℑ(za) ≫ 0 and sa+1, . . . , sb ∼ 0 with Γ−1 =

∑
q Γ−1,q. We call (35) the local normal

form of the period map.

Remark 5.2.1. A published version of (34) and (35) for variations of pure Hodge structures
appears in [CF01]. The key point is that the reconstruction of Γ from Γ−1 is really a statement
about the horizontal distribution, and hence applies equally well to the mixed case. The full
mixed case appears in [Pea00].

5.3 Hodge–Tate Variations

In section (5.5) it will be shown that if H → ∆∗ is a unipotent variation of mixed Hodge structure
in the sense of R. Hain and S. Zucker then any flat section of H has bounded mixed Hodge norm.
In this section, we prove the following several variable result:

Theorem 5.3.1. Let H → ∆∗a × ∆b be an admissible Hodge–Tate variation with unipotent
monodromy Tj = eNj about sj = 0. Let v be a flat section of H. Then, v has bounded Hodge
norm ∥v∥ with respect to the mixed Hodge metric of H. Likewise, if α is a flat section of H⊗H∗

has bounded mixed Hodge norm ∥α∥.

Proof. By Prop. (2.14), [SZ85] if N acts trivially on GrW then M =M(N,W ) exists if and only
if N(Wℓ) ⊆Wℓ−2 for all ℓ, wherefrom M =W .

To continue, recall H is Hodge–Tate means Hp,q = 0 if p ̸= q. Therefore, by the Monodromy
theorem discussed at the end of (5.1), it follows that N acts trivially on GrW .

In particular, it follows from the previous paragraph that each Nj = log(Tj) acts trivially on
GrW . By admissibility, it follows there exists a fixed increasing filtrationM =M(C,W ) such that
M =M(N,W ) for each N ∈ C. As each N ∈ C acts trivially on GrW it follows that M =W and
N(Wℓ) ⊂Wℓ−2 for each ℓ. Accordingly, since C consists of arbitrary positive linear combination
of N1, . . . , Na it follows that Na(Wℓ) ⊂Wℓ−2 for each index ℓ.

SinceM =W , it follows that F∞ ∈ D and hence ψ(s) also takes values in D. Moreover, since
D classifies Hodge–Tate structures it follows that for any F ∈ D,

W−2gC =
⊕
p<0

gp,p(F,W ) = Λ−1,−1
(F,W ) (36)

and hence N1, . . . , Na ∈ Λ−1,−1
(F,W ).

Relative to the fixed reference fiberH ofH used to define the period map into D, a flat section
of H corresponds to an element of H which is contained in

⋂
j Ker(Nj). Thus, by equation (36),

∥v∥(F (z;s),W ) = ∥v∥
(e

∑
j zjNj eΓ(s).F∞,W )

= ∥e−
∑

j zjNjv∥(eΓ(s).F∞,W )

= ∥v∥(eΓ(s).F∞,W )

where the middle step is justified by the fact that
∑

j zjNj belongs to W−2gC and equation

(36). As eΓ(s).F takes values in a compact subset of D, it follows from the last line of the
equation that ∥v∥(F (z;s),W ) is bounded. The proof for the case of H⊗H∗ is identical, except that

α ∈ ∩j Ker(ad (N)j) and e
−

∑
j zjNjv is replaced by e−

∑
j zj ad (N)jα.
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5.4 Gradings and Splittings of Mixed Hodge Structures

Let V be finite dimensional vector space over a field of characteristic zero. Then, a grading of
V is a semisimple endomorphism Y of V with integral eigenvalues. In particular, a grading of V
determines an increasing filtration

Wk(Y ) =
⊕

ℓ∈λ(Y ),ℓ⩽k

Eℓ(Y ) (37)

where λ(Y ) is the set of eigenvalues of Y and Eℓ(Y ) is the ℓ-eigenspace of Y . IfW is an increasing
filtration of V we say Y grades W if W (Y ) =W . In particular, a mixed Hodge structure (F,W )
determines a grading Y(F,W ) which acts a multiplication by p+ q on each non-zero summand Ip,q

of the Deligne bigrading of (F,W ).

As discussed in Remark (3.1.1), the mixed Hodge structure (F,W ) is split over R if Ip,q = Iq,p.
Equivalently, (F,W ) is split over R if Y(F,W ) = Y(F,W ). In general, we say a grading Y is defined

over R if Y = Y .

By Proposition (2.20) of [CKS86], given a mixed Hodge structure (F,W ) there exists a unique,
real element

δ ∈ Λ−1,−1
(F,W ) (38)

such that (F̂ ,W ) = (e−iδ.F,W ) is an R-split mixed Hodge structure. Moreover, δ commutes
with all morphisms of (F,W ) 3. We henceforth call (F̂ ,W ) the Deligne δ-splitting of (F,W ).

Suppose now that if θ(z) = ezN .F is a nilpotent orbit of pure Hodge structure of weight k
polarized by Q. Let W = W (N)[−k] and (F̂ ,W ) = (e−iδ.F,W ) be the Deligne δ-splitting of
(F,W ). Then, by equation (3.11) in [CKS86], δ is an infinitesimal isometry of Q. Likewise if
θ(z) = ezN .F is an admissible nilpotent orbit of mixed Hodge structure the Deligne δ-splitting
of the limit mixed Hodge structure (F,M) is given by an element δ ∈ gR. The proof of this
last statement boils down to showing the compatibility of Deligne’s construction with passage
to GrW .

If Y is a grading of W , y > 0 and α ∈ R we define

yαY = exp(α log(y)Y )

wherefrom yαY acts on GrWk as multiplication by yαk. Accordingly, if γ belongs to the Lie algebra
gC attached to a classifying space D with weight filtration W then

yαY .γ = Ad(yαY )γ = yαY γy−αY

induces the same action on GrW as γ. Therefore yαY .γ ∈ gC. If Y is defined over R then the
adjoint action of yαY preserves gR.

5.5 Unipotent Variations of Mixed Hodge Structure

Let H be a variation of graded-polarizable mixed Hodge structure over a smooth, complex alge-
braic variety S. Then, H is said to be unipotent [HZ87] if the global monodromy representation
of H is unipotent. Equivalently, the variations of Hodge structure induced by H on GrW are
constant ((1.4), [HZ87]). The global structure of admissible unipotent variations of mixed Hodge
structure on S is governed by mixed Hodge theoretic representations of the fundamental group
of S (Thm. (1.6), [HZ87]).

3This means (−k,−k)-morphisms for any integer k.
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For the remainder of this section we assume H → ∆∗ is admissible and unipotent in the sense
of Hain and Zucker. We prove that the mixed Hodge norm of a flat section of H is bounded.

To begin, we note that in this case, we again have M = M(N,W ) equals W (see Prop.
(2.14), [SZ85] or (1.5), [HZ87]). Thus, as in (33) and (82), we can write the lift of the period map
of H to the upper half-plane in the form

F (z) = ezNeΓ(s).F∞ (39)

where Γ(s) is a q-valued function which vanishes at s = 0.

Remark 5.5.1. In the unipotent case, the function Γ(s) takes values in the subalgebra W−1q of
q consisting of elements which act trivially on GrW .

To continue, let (F̂∞,M) = (e−iδ.F∞,M) be Deligne’s δ-splitting (38) of (F∞,M), keeping
in mind that M =W . Let

Y = Y(F̂∞,M) (40)

and note that Y = Y since (F̂∞,M) is split over R. Note that since [Y,N ] = −2N we have

y−Y/2eiNyY/2 = eiyN (41)

Define

eΓ(s,y) = Ad ( eiN )Ad ( yY/2)eΓ(s)

eiδ(y) = Ad ( yY/2)eiδ
(42)

Lemma 5.5.2. If H → ∆∗ is unipotent in the sense of Hain and Zucker then (we are using the
linear action and not the adjoint action here)

F (z) = exNy−Y/2eΓ(s,y)eiδ(y)eiN .F̂∞ (43)

Proof. Starting from (39), we have

F (z) = exNeiyNeΓ(s).F∞

= exNeiyNeΓ(s)eiδ.F̂∞

= exNy−Y/2eiNyY/2eΓ(s)eiδ.F̂∞

(44)

To further refine (44), we note that [N, δ] = 0 as N is a (−1,−1)-morphism of (F̂∞,M) and
Y (F̂ p

∞) ⊆ F̂ p
∞ since Y = Y(F̂∞,M). Therefore,

eiδ.F̂∞ = y−Y/2yY/2e−iyNeiyNeiδ.F̂∞

= y−Y/2e−iNyY/2eiyNeiδ.F̂∞

= y−Y/2e−iNyY/2eiδeiyN .F̂∞

= y−Y/2e−iNeiδ(y)yY/2eiyN .F̂∞

= y−Y/2e−iNeiδ(y)eiNyY/2.F̂∞

= y−Y/2e−iNeiδ(y)eiN .F̂∞

(45)

Inserting (45) into (44) and simplifying gives (43).

Fix a norm | ∗ | on gC. Observe that since Γ(0) = 0 it follows that |Γ(s, y)| can be bounded
by a constant multiple of |s|(− log |s|)b. Likewise, since

δ ∈ Λ−1,−1
(F∞,M) = Λ−1,−1

(F̂∞,M)
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it follows that δ decomposes as δ = δ−2 + δ−3 + · · · relative to ad (Y ) since Y = Y(F̂∞,M).

Accordingly, by equation (42) it follows that |δ(y)| can be bounded by a multiple of 1/y.

To continue, let F ∈ D and qF = ⊕p<0 g
p,q
(F,W ). Then, since qF is a vector space complement

to gFC in gC it follows from the inverse function theorem that there exists a neighborhood N of
0 in gC and unique holomorphic functions v : N → qF , ϕ

† : N → gFC such that

u ∈ N =⇒ eu = ev(u)eϕ
†(u) (46)

In particular, by uniqueness v(0) = ϕ†(0) = 0.

On the other hand, by [Pea00] there exists a neighborhood Q of 0 in qF and distinguished
real analytic functions γ̃ : Q → gR, λ̃ : Q → Λ−1,−1

(F,W ) and ϕ̃ : Q → gFC such that

v ∈ Q =⇒ ev = eγ̃(v)eλ̃(v)eϕ̃(v) (47)

Combining (46) and (47) it follows that after shrinking N , we have a real-analytic decomposition

eu = eγ(u)eλ(u)eϕ(u) (48)

upon setting γ(u) = γ̃(v(u)), λ(u) = λ̃(v(u)) and ϕ(u) = ϕ̃(v(u))ϕ†(u).

Denote the dependence of the functions appearing in (48) on F by γF , λF and ϕF . Then,
since the decomposition

V =
⊕
p,q

Ip,q(F,W )

is C∞ with respect to F ∈ D, it follows that γF , λF and ϕF also have a C∞ dependence on
F . Accordingly, a soft analysis argument shows that given Fo ∈ D there exists a compact set
K ⊂ D containing Fo and constants ρ and C such that

F ∈ K, |u| < ρ =⇒ |γF (u)|, |λF (u)|, |ϕF (u)| < C|u| (49)

For the remainder of this section, we will drop the subscript F from γ, λ and ϕ.

Let Fo = eiN .F̂∞ ∈ D with corresponding compact set K and constants ρ and C as in (49).
Let F (y) = eiδ(y).Fo. Then, by our previous estimates of δ(y) and Γ(s, y) it follows that there
exists a constant a > 0 such that |s| = e−2πy < e−2πa implies F (y) ∈ K and |Γ(s, y)| < ρ.
Therefore, by (49)

eΓ(s,y) = eγ(s,y)eλ(s,y)eϕ(s,y) (50)

relative to F (y).

Remark 5.5.3. Since Γ(s) takes values in W−1gC, so does Γ(s, y). Therefore, γ(s, y), λ(s, y) and
ϕ(s, y) take values in the subalgebra W−1gC ⊆ gC consisting of elements which act trivially on
GrW .

Theorem 5.5.4. Let H → ∆∗ be a unipotent variation of mixed Hodge structure and v be a flat
section of H. Then, the mixed hodge norm ∥v∥ is bounded.

Proof. To reduce notation, we write the mixed Hodge norm with respect to (F,W ) as ∥ ∗ ∥F
since W is fixed throughout the proof. Returning to equation (43), we have

∥v∥F (z) = ∥v∥exNy−Y/2eΓ(s,y)eiδ(y)eiN .F̂∞

= ∥e−xNv∥y−Y/2eΓ(s,y)eiδ(y)eiN .F̂∞

= ∥v∥y−Y/2eΓ(s,y)eiδ(y)eiN .F̂∞

= ∥v∥y−Y/2eΓ(s,y).F (y)

(51)
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because exN ∈ GR, v ∈ Ker(N) and F (y) = eiδ(y)eiN .F̂∞. Inserting (50) into (51) and noting
that eϕ(s,y) preserves F (y) it follows that

∥v∥F (z) = ∥v∥y−Y/2eγ(s,y)eλ(s,y).F (y)

= ∥v∥y−Y/2eγ(s,y)yY/2y−Y/2eλ(s,y).F (y)

= ∥y+Y/2e−γ(s,y)y−Y/2v∥y−Y/2eλ(s,y).F (y)

= ∥ exp(−Ad ( y+Y/2)γ(s, y))v∥y−Y/2eλ(s,y).F (y)

(52)

since Ad ( y−Y/2) preserves gR and γ(s, y) takes values in gR. As noted after Lemma (5.5.2),
|Γ(s, y)| can be bounded by a constant multiple of |s|(− log |s|)b. By (49), at the price of adjusting
the constant multiplier, the same is true of |γ(s, y)| and |λ(s, y)|. Likewise, as Y is semisimple
with a finite number of eigenvalues, |Ad ( y+Y/2)γ(s, y)| can be bounded by c.|s|(− log |s|)m,
c ∈ C. Since Ad ( y+Y/2)γ(s, y) takes values in a nilpotent Lie algebra W−1gC, it follows that

exp(−Ad ( y+Y/2)γ(s, y)) = ⊮+ ϵ(s, y)

where |ϵ(s, y)| can be bounded by a constant multiple of |s|(− log |s|)m for |s| sufficiently small.

To continue, we note that since λ(s, y) takes values in Λ−1,−1
(F (y),W ), Y = Ȳ and Ad ( y−Y/2) acts

on gC it follows that

Ad ( y−Y/2)λ(s, y) ∈ Λ−1,−1

(y−Y/2.F (y),W )

By construction,

y−Y/2.F (y) = y−Y/2eiδ(y)eiN .F̂∞

= y−Y/2yY/2eiδy−Y/2eiN .F̂∞

= eiδy−Y/2eiNyY/2y−Y/2.F̂∞

= eiδeiyN .F̂∞

since Y preserves F̂∞. Accordingly, since δ commutes with N we have

y−Y/2.F (y) = eiyN .F∞

Putting the last three equations together, we have

y−Y/2eλ(s,y).F (y) = exp(Ad ( y−Y/2)λ(s, y))eiyN .F∞

where Ad ( y−Y/2)λ(s, y) ∈ Λ−1,−1
(eiyN .F∞,W )

.

Returning to (52), we have

∥|v∥F (z) = ∥(1 + ϵ(s, y))v∥y−Y/2eλ(s,y).F (y)

= ∥(1 + ϵ(s, y))v∥exp(Ad ( y−Y/2)λ(s,y))eiyN .F∞

= ∥ exp(−Ad ( yY/2)λ(s, y))(1 + ϵ(s, y))v∥eiyN .F∞

since Ad ( y−Y/2)λ(s, y) ∈ Λ−1,−1
(eiyN .F∞,W )

.

As above, |Ad ( yY/2)λ(s, y)| is bounded by a constant multiple of |s|(− log |s|)m′
. Therefore,

exp(−Ad ( yY/2)λ(s, y)) = ⊮+ µ(s, y)

where |µ(s, y)| can be bounded by a multiple of |s|(− log |s|)m′
for |s| sufficiently small. Thus,

∥v∥F (z) = ∥(1 + µ(s, y))(1 + ϵ(s, y))v∥eiyN .F∞
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Finally, since N ∈ Λ−1,−1
(F,W ) and v ∈ Ker(N) we have

∥v∥F (z) = ∥e−iyN (1 + µ(s, y))(1 + ϵ(s, y))v∥F∞

= ∥e−iyN (1 + µ(s, y))(1 + ϵ(s, y))eiyNv∥F∞

Therefore, since |y| = −1
2π log |s| it follows that

e−iyN (1 + µ(s, y))(1 + ϵ(s, y))eiyN → ⊮

as y → ∞. Thus, ∥v∥F (z) is bounded.

Remark 5.5.5. If A and B are unipotent variations of mixed Hodge structure then so is A⊗ B.
In particular, we can apply the previous theorem to flat sections of H⊗H∗.

5.6 Hodge theory of sl2-pairs

By equation (3.11) in [CKS86], if θ(z) = ezN .F is a nilpotent orbit of pure Hodge structure of
weight k polarized by Q, W = W (N)[−k] and Y = Y(F,W ) then H = Y − k⊮ is belongs to the

complex Lie algebra of infinitesimal isometries of Q. Likewise, if (F̂ ,W ) is the Deligne δ-splitting
of (F,W ) then Ĥ = Y(F̂ ,W ) − k⊮ belongs to the Lie algebra of real infinitesimal isometries of Q.

As discussed in § 2 of [CKS86], given a nilpotent element N ∈ gl(V ), there is a bijective
correspondence between gradings H of W (N) such that [H,N ] = −2N and representations
ρ : sl2 → gl(V ) such that

ρ

(
0 0
1 0

)
= N, ρ

(
1 0
0 −1

)
= H (53)

We call such a pair (N,H) an sl2-pair, and (N,H,N+) the associated sl2-triple, where

N+ = ρ

(
0 1
0 0

)
If N and H are infinitesimal isometries of Q then so is N+. Thus, by the previous paragraph, a
nilpotent orbit θ of pure, polarized Hodge structure of weight k determines a representation of
sl2(C) into the complex Lie algebra of infinitesimal isometries of the polarization via the sl2-pair

(N,Y(F,W ) − k⊮) (54)

Likewise, the sl2-pair (N,Y(F̂ ,W ) − k⊮) defines a representation of sl2(R) into the Lie algebra of
real, infinitesimal isometries of the polarization.

5.7 Two theorems of P. Deligne

Let W be an increasing filtration of a finite dimensional vector space V over a field of character-
istic zero. Let EndW (V ) denote the subspace of End(V ) consisting of elements which preserve
W .

Let GrW = ⊕k GrWk and Y be the grading of GrW which acts on GrWk as multiplication by
k. For clarity, given an element A ∈ EndW (V ) we let GrW (A) denote the induced action of A on
GrW . Then, an element α ∈ End(GrW ) commutes with Y if and only if there exists an element
A ∈ EndW (V ) such that GrW (A) = α.

More precisely, given a grading Y ′ of W and element A ∈ EndW (V ) we have a decomposition

A =
∑
k⩾0

A−k, [Y ′, A−k] = −kA−k (55)
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of A into eigencomponents with respect to ad (Y ′). Moreover, GrW (A0) = GrW (A). Therefore,
given α ∈ End(GrW ) which commutes with Y and a grading Y ′ of W there exists a unique
element α0 ∈ EndW (V ) which commutes with Y ′ such that GrW (α0) = α. We call α0 the lift of
α with respect to Y ′.

Suppose now that (ezN .F,W ) is an admissible nilpotent orbit and let M =M(N,W ). Then,
YM = Y(F,M) is a grading of M which preserves W and satisfies [YM , N ] = −2N . In [Del93],
P. Deligne constructs a grading Y = Y (N,YM ) of W and an associated sl2-pair (N0, YM − Y )
which generalizes the construction (54) as follows: Let N be a nilpotent element of EndW (V )
such that M = M(N,W ) exists. Let YM be a grading of M which preserves W and satisfies
[YM , N ] = −2N . Then, it follows from the definition of the relative weight filtration that

(GrW (N),GrW (YM )−Y)

is an sl2-pair which commutes with Y. Let Ñ+ be the third element of the associated sl2-triple.
By construction, Ñ+ commutes with Y. Given a choice of grading Y ′ of W let N0 and N+

0 the
corresponding lifts of GrW (N) and Ñ+. Note the lift of GrW (YM )−Y is just H = YM − Y ′.

Theorem 5.7.1. (P. Deligne, [Del93]) Let YM be a grading of M which preserves W , i.e.
YM (Wk) ⊆ Wk for all k, such that [YM , N ] = −2N . Then, there exists a unique grading
Y = Y (N,YM ) of W such that [Y, YM ] = 0 and

[N −N0, N
+
0 ] = 0

Another way of stating this result is that there exists a unique choice of grading Y of W
which commutes with YM such that (N0, YM − Y ) is an sl2-pair with the following property: If

N =
∑
k⩾0

N−k, [Y,N−k] = −kN−k

is the decomposition of N with respect to ad (Y ) then for each positive integer k, N−k is either
zero or a vector of highest weight k − 2 for the associated adjoint representation of sl2. In
particular, N−1 is either zero or a vector of highest weight −1 with respect to the sl2-triple
(N0, YM −Y,N+

0 ). Therefore, N−1 = 0. Likewise, N−2 commutes with N0, YM −Y and N+
0 since

it is a vector of highest weight zero for the adjoint representation.

Lemma 5.7.2. If (ezN .F,W ) is an admissible nilpotent orbit,M =M(N,W ) and Y = Y (F, Y(F,M))
is the grading of Theorem (5.7.1) then Y preserves F .

Proof. See Theorem 4.15, [Pea01].

Corollary 5.7.3. Let (ezN .F,W ) be an admissible nilpotent orbit with limit mixed Hodge
structure (F,M) split over R. Let Y = Y (N,Y(F,M)) andN = N0+N−2+· · · be the corresponding
decomposition of N with respect to ad (Y ). Then, Y = Y and

Y(ezN0 .F,W ) = Y

for ℑ(z) > 0.

Proof. By definition N = N , whereas Y(F,M) = Y(F,M) since (F,M) is split over R. Therefore, by
virtue of the linear algebraic nature of Deligne’s construction, Y = Y . By the previous Lemma,
Y preserves ezN0 .F and hence Y = Y(ezN0 .F,W ) since Y = Y .

One important consequence of W. Schmid’s SL2-orbit theorem [Sch73] is the construction of
another splitting operation (F,W ) 7→ (e−ξ.F,W ), which we call the sl2-splitting, on the category
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of mixed Hodge structures. If (F,W ) 7→ (e−iδ.F,W ) is Deligne’s δ-splitting then ξ (resp. δ) can
be expressed as universal Lie polynomials in the Hodge components of δ (resp. ξ) relative to
(F,W ).

Theorem 5.7.4. (P. Deligne, [Del93]) Let (ezN .F,W ) be an admissible nilpotent orbit with limit
mixed Hodge structure (F,M) split over R. Let Y = Y (N,Y(F,M) and N = N0 +N−2 + · · · be

the decomposition of N into eigencomponents with respect to ad (Y ). Then, (ezN0 .F,W ) is the
sl2-splitting of (ezN .F,W ) and eξ = ezNe−zN0 .

Proof. See [BP13]. For the simpler statement that

eiyNe−iyN0 ∈ exp(Λ−1,−1

(eiyN0 .F,W )
) (56)

see the last section of [KP03].

Remark. For proofs an extensive discussion of these results and their history, see [BP13], [BPR17]
and references therein.

5.8 Normal Functions and Biextensions

Recall (cf. [Pea06]) that a variation is type (I) if there exists an integer k such that its Hodge
numbers hp,q are zero unless p+ q = k, k− 1 (i.e. GrW has exactly two non-zero weight graded-
quotients which are adjacent). We say that a variation is type (II) if there is an integer k such
that hp,q = 0 unless (p, q) = (k, k), (k−1, k−1) or p+q = 2k−1 and hk,k, hk−1,k−1 are non-zero.

To continue, given a classifying space D for period maps of type (I) or (II), with ambient
vector space V (contrasting previous usage of H), we let H be the subgroup of G consisting
of elements which induce real automorphisms on Wk/Wk−2 for each index k. In the case where
D is classifying space of type (I), H = GR. When D is of type (II), H will also contain the
complex subgroup exp(W−2(gC)). Moreover, by the form of the Hodge diamond of a type (II)
mixed Hodge structure, it follows that

Λ−1,−1
(F,W ) =W−2(gC) (57)

for any element F ∈ D. For this reason (see Theorem (2.19), [Pea06]), it follows that H acts by
isometries on D. Set h = Lie(H).

Theorem 5.8.1. (see [Pea06, Theorem 4.2]) Let ezN .F be an admissible nilpotent orbit of type
(I) or (II), with relative weight filtration M = M(N,W ) and δ-splitting (F,M) = (eiδ.F̂ ,M).
Let (N0, H,N

+
0 ) denotes the sl2 triple attached to the nilpotent orbit ezN .F̂ by Theorem (5.7.4),

and N = N0 + N−2 denote the corresponding decomposition of N with respect to adY where
H = Y(F̂∞,M) − Y . 4 Then, there exists an element

ζ ∈ h ∩Ker(N) ∩ Λ−1,−1

(F̂ ,M)

and distinguished real analytic function g : (a,∞) → H such that

(a) eiyN .F = g(y)eiyN .F̂ ;

(b) g(y) and g−1(y) have convergent series expansions about ∞ of the form

g(y) = eζ(1 + g1y
−1 + g2y

−2 + · · · )
g−1(y) = (1 + f1y

−1 + f2y
−2 + · · · )e−ζ

4Of course N−2 = 0 for variations of type (I).
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with gk, fk ∈ Ker((adN0)
k+1) ∩Ker(adN−2).

Corollary 5.8.2. (see, Corollary 4.3, [Pea06]) Let H → ∆∗ be an admissible variation of type
(I) or (II), with period map F (z) : U → D and nilpotent orbit ezN .F . Then, adopting the
notation of Theorem (5.8.1), there exists a distinguished, real–analytic function γ(z) with values
in h such that, for ℑ(z) sufficiently large,

(i) F (z) = exNg(y)eiyN−2y−H/2eγ(z).Fo;

(ii) |γ(z)| = O(ℑ(z)βe−2πℑ(z)) as y → ∞ and x restricted to a finite subinterval of R, for some
constant β ∈ R.

where Fo = eiN0 .F̂ .

Lemma 5.8.3. If H is a variation of type (II) then α ∈ gC ∩ Ker(adN) if and only if α ∈
gC ∩Ker(adN0) ∩Ker(adN−2).

Proof. Since N = N0+N−2, clearly Ker(adN0)∩Ker(adN−2) ⊆ Ker(adN). Conversely, suppose
α ∈ gC ∩Ker(adN). The non-zero weight graded-quotients of gl(V )W are

GrWℓ (V ⊗ V ∗) ∼=
⊕

j+k=ℓ

GrWj (V )⊗GrWk (V ∗), ℓ ⩽ 0

from which it follows that the only non-zero weight graded quotients of gl(V )W occur in weights
0, −1 and −2. Using ad(Y ) we can write α = α0 + α−1 + α−2. Then,

0 = [N,α] = [N0 +N−2, α0 + α−1 + α−2]

and hence [N0, α0] = 0, [N0, α−1] = 0, [N−2, α−1] = 0, [N−2, α−2] = 0 and

[N0, α−2] + [N−2, α0] = 0

By the Monodromy theorem discussed at the end of (5.1), it follows that N acts trivially on GrW0
and GrW−2. Therefore, N0(V ) ⊆ W−1 and hence α−2(N0(V )) = 0. Likewise, α−2(V ) ⊆ W−2 and
GrW−2 =W−2/{0}. As such, N0(α−2(V )) = 0. This shows, [N0, α−2] = 0 and hence [N−2, α0] = 0
as well by the previous equation.

Corollary 5.8.4 cf. Theorem 4.7, [Pea06]. Let H → ∆∗ be an admissible variation of type (I)
or (II) with unipotent monodromy T = eN . Let α ∈ g(V ) be a flat, global section, which acts by
infinitesimal isometries of the graded-polarizations. Then, α has bounded mixed Hodge norm.

Proof. In the notation of Corollary (5.8.2), the statement boils down to computing the asymp-
totic behavior of

∥α∥F (z) = ∥α∥exNg(y)eiyN−2y−H/2eγ(z).Fo

for α ∈ Ker(ad N) in some vertical strip of width 1 in the upper half-plane. By part (b) of
Theorem (5.8.1), it follows that g(y) and eiyN−2 commute. Accordingly, by (57) and (29) and the
fact that g(y) takes values in GR, it follows that

∥α∥F (z) = ∥e−xN .α∥g(y)eiyN−2y−H/2eγ(z).Fo

= ∥α∥g(y)eiyN−2y−H/2eγ(z).Fo

= ∥e−iyN−2g−1(y).α∥y−H/2eγ(z).Fo

= ∥g−1(y)e−iyN−2 .α∥y−H/2eγ(z).Fo
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Again for emphasis here GC acts linearly on filtrations while it acts by the adjoint action on
GC and gC. By the previous Lemma, α ∈ Ker(ad(N0)) ∩ Ker(ad(N−2)), and so the preceding
equation simplifies to

∥α∥F (z) = ∥g−1(y).α∥y−H/2eγ(z).Fo

Returning to part (b) of Theorem (5.8.1), it follows that upon decomposing fk into isotypical
components with respect to (N0, H,N

+
0 ) that fk occurs in components of highest weight ⩽ k

since fk ∈ Ker((adN0)
k+1). Therefore, since ζ ∈ Ker(ad (N)) and fk is the coefficient of y−k in

the expansion of f(y) = g−1(y) it follows that

g̃−1(∞) = lim
y→∞

Ad(yH/2)g−1(y) (58)

exists as an element of the Lie group H5. Thus,

∥α∥F (z) = ∥g̃−1(y)yH/2.α∥eγ(z).Fo

where g̃−1(y) = Ad ( yH/2)g−1(y). Finally, since α ∈ Ker(adN0) it follows that y
H/2α converges

as y → ∞. As γ(z) → 0 as y → ∞ and x constrained to a finite interval, the proof is now
complete.

5.9 Ext1(R(0),weight -2)

Let A and B be variations of pure Hodge structure of respective weights a and b. Assume that
a = b+ 2. Then,

Ext1AVMHS(A,B) ∼= Ext1AVMHS(R,A∗ ⊗B)

where R = Z, Q or R and AVMHS is the category of admissible variations of graded-polarizable
mixed Hodge structure. Accordingly, for the remainder of this section, we will consider a variation
of Hodge structure H → ∆∗ of weight −2 and an admissible variation H ∈ Ext1AVMHS(R(0),H),
with unipotent monodromy T = eN .

Theorem 5.9.1. If v is a flat section of H then ∥v∥ is bounded.

Proof. Let (F,M) denote the δ-splitting of the limit mixed Hodge structure of H. Let Y =
Y (N,Y(F,M)) be the grading of W constructed in Theorem (5.7.1). Then, by virtue of the short
length of the weight filtration W of H,

N = N0 +N−2

with respect to ad(Y ).

If N = N−2 the variation is unipotent in the sense of R. Hain and S. Zucker, and the result
follows from section (5.5). If N = N0 the result follows from section (5.12) below. It remains
to consider the case where N = N0 + N−2 with both N0 and N−2 non-zero. In this case, we
will show that v is a section of W−2(H) = H, and hence the result follows from W. Schmid’s
SL2-orbit theorem.

To complete the proof, we recall that [N0, N−2] = 0, Ȳ = Y and Y preserves F by Lemma
(5.7.2). For the remainder of this section we assume that both N0 and N−2 are non-zero. From
this, we will derive a contradiction unless v ∈W−2.

5There is a typo at the end of the proof of Theorem 4.7 in[Pea06], Ad (Y H/2)fky
−k is a polynomial without

constant term in y−1/2.
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By the monodromy theorem, N acts trivially on GrW0 and hence N0 acts trivially on E0(Y ) ∼=
GrW0 . By Corollary (5.7.3), Y = Y(eiN0 .F,W ), and hence if e0 is a generator of I0,0

(eiN0 .F,W )
then

N0(e0) = 0 and

e0 = e−iN0(e0) ∈ F 0

Since [Y, Y(F̂ ,M)] = 0 it follows that (N0, Y(F,M) − Y ) restricts to a trivial sl2-pair on E0(Y ).
Therefore, e0 ∈M0. As such,

e0 ∈ F 0 ∩ F 0 ∩M0 = I0,0(F,M)

Accordingly N−2(e0) ∈ I−1,−1
(F,M) . Moreover, since [N0, N−2] = 0 and N0(e0) = 0 it follows that

N0N−2(e0) = N0N−2(e0)−N−2N0(e0) = [N0, N−2](e0) = 0

Thus, N−2(e0) ∈ Ker(N0) ∩ I−1,−1
(F,M) ∩W−2. Moreover, if N−2(e0) = 0 then N = N0 due to the

short length. By assumption, N−2 ̸= 0, and hence N−2(e0) ̸= 0.

Suppose now that v ∈ Ker(N) and v = v0 + v−2 with vj ∈ Ej(Y ). If v0 = 0 we are done.
Otherwise, after rescaling, we can assume that v0 = e0. To continue, observe that N−2(v−2) = 0
by the short length of W . Therefore, since N0(e0) = 0,

N(v) = N−2(e0) +N0(v−2) = 0

and hence

N−2(e0) ∈ Ker(N0) ∩ Im(N0) ∩ I−1,−1
(F,M) ∩W−2 (59)

As we must also have N−2(e0) ̸= 0, the following Lemma completes the proof:

Lemma 5.9.2. For (F,M) as above, Ker(N0) ∩ Im(N0) ∩ I−1,−1
(F,M) ∩W−2 = 0.

Proof. This is a statement about the SL2-orbits of pure Hodge structure induced by (ezN .F,W )
on W−2. By [Sch73], these are classified as follows: Let,

(a) C2 = span(e, f) with e = ē type (1, 1) and f = f̄ type (0, 0) with respect to the limit mixed
Hodge structure, and

N =

(
0 0
1 0

)
with respect to the basis {e, f}. The resulting nilpotent orbit is pure of weight 1.

(b) E(p, q) = span(e, f) with p > q, N acting trivially, e = ē, f = f̄ and e + if of type (p, q)
with respect to the limit mixed Hodge structure;

(c) R(p) is rank 1 of pure of type (−p,−p) and N acting trivially.

Then, every SL2-orbit of pure Hodge structures is a direct sum of factors which are tensor
products of the form Symm(C2) ⊗ R(p) and Symn(C2) ⊗ E(p, q) where m and n ⩾ 0 and
Sym0(C2) = R(0).

To continue, we observe that in the language of the orbit types (a)–(c) the Lemma asserts
that

Ker(N) ∩ Im(N) ∩ I−1,−1 = 0 (60)

(relative to the limit mixed Hodge structure) as N0 becomes just N for the induced orbit on
W−2.

Next, we note that the factor Symn(C2) ⊗ E(p, q) never contributes any Tate classes to the
limit mixed Hodge structure, so we need only consider factors of the form Symm(C2) ⊗ R(p).
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Moreover, since Symm(C2) underlies a nilpotent orbit of weight m, we must have p = m + 1 in
order to obtain an nilpotent orbit of pure Hodge structure of weight −2.

To finish the proof of the lemma, observe that on the factor Symm(C2),

Ker(N) ∩ Im(N) = Cfm

where m must be > 0 (in order to have a non-trivial N action). Moreover, fm belongs to I0,0

of the limit mixed Hodge structure of Symm(C2). Accordingly, Ker(N) ∩ Im(N) is contained in
I−m−1,−m−1 of the limit mixed Hodge structure of Symm(C2) ⊗ R(m + 1). As m > 0, equation
(60) holds.

We now consider the variation g(H) where H ∈ Ext1AVMHS(R(0),H) with H pure of weight
−2. Since H only has weights 0 and −2 whereas H∗ has weights 0 and 2 it follows that H⊗H∗ has
weights −2, 0 and 2. Therefore, g(H) only has weights 0 and −2 since g(H) is the subvariation
consisting of elements which preserve the weight filtration and induce infinitesimal isometries
of the graded-polarizations. Therefore, Theorem (5.9.1) applies to g(H) upon viewing it as an
extension of R(0) by a variation of pure Hodge structure of weight −2.

5.10 Biextensions arising from higher height pairings

LetX be a smooth, complex projective variety of dimension d. Following the notation of [BGGP22],
let Z ∈ Zp(X, 1)00 and W ∈ Zq(X, 1)00 be higher cycles representing elements of CHp(X, 1) and
CHq(X, 1) respectively. Then:

Theorem 5.10.1. ([BGGP22, Theorem A]) Assume that

(i) p+ q = d+ 2;

(ii) δZ = δW = 0

(iii) the intersection of Z and W satisfies some extra technical conditions.

Then, there is a canonical mixed Hodge structure BZ,W attached to Z and W from which one
can extract a Hodge theoretical height pairing ⟨Z,W ⟩Hodge. Moreover, if Z and W both have real
regulator zero then

⟨Z,W ⟩Hodge = ⟨Z,W ⟩Arch

where ⟨Z,W ⟩Arch is the Archimedean part of an intersection pairing on arithmetic Chow groups.

The mixed Hodge structure BZ,W has weight graded-quotients GrW0
∼= Z(0), GrW−2 and GrW−4

∼=
Z(2). Let X → S be a family of smooth complex projective varieties and Z, W be a flat family
of higher cycles over S such that ⟨Zs,Ws⟩ is defined over a Zariski dense open subset of S. In
this way, the construction of Theorem 5.10.1 produces an admissible variation of mixed Hodge
structure H over a Zariski dense open set of S with weight graded quotients GrW0 (H) ∼= Z(0),
GrW−2(H) and GrW−4(H) ∼= Z(2).

Lemma 5.10.2. Let (F,W ) be a mixed Hodge structure with underlying vector space V and
weight graded quotients GrW0

∼= Z(0), GrW−2 and GrW−4
∼= Z(2). Let gC(U) denote the Lie algebra

of elements of gl(U) which preserve W (U) and induce infinitesimal isometries of GrW (U) where
U =W−2(V ), V or V/W−4. Then, since elements of gC(V ) preserve W , we have an induced map

q : gC(V ) → gC(V/W−4)

and a restriction map

r : gC(V ) → gC(W−2)
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By abuse of notation, let q(F ) and r(F ) denote the mixed Hodge structure induced by (F,W )
on gC(V/W−4) and gC(W−2). Let β ∈ gC be horizontal with respect to F . Then,

∥β∥F ⩽ ∥q(β)∥q(F ) + ∥r(β)∥r(F ) (61)

Proof. The key point is that W−4g(V ) is pure of type (−2,−2) and W−3g(V ) = W−4g(V ).
Therefore, if β =

∑
p,q β

p,q denote the decomposition of β into Hodge components with respect
to (F,W ) then βp,q = 0 unless p ⩾ −1. As such βp,q = 0 unless p+ q = 0 or p+ q = −2. Thus,
(61) captures the mixed Hodge norm of

∑
p+q=−2 β

p,q accurately and double counts the mixed
Hodge norm of

∑
p+q=0 β

p,q.

Suppose now that α is a horizontal section of g(H) then pointwise application of the previous
Lemma shows that

∥α∥H ⩽ ∥q(α)∥g(H/W−4H) + ∥r(α)∥g(W−2H) (62)

Corollary 5.10.3. Let H → ∆∗ be an admissible variation of graded-polarized mixed Hodge
structure over the punctured disk with unipotent monodromy. Assume that H has weight graded
quotients GrW0

∼= Z(0), GrW−2 and GrW−4
∼= Z(0). Let α be a flat, horizontal section of g(H). Then,

α has bounded mixed Hodge norm.

Proof. By (62), ∥α∥H is bounded by ∥q(α)∥ and ∥r(α)∥. Moreover, q(α) and r(α) are flat since
α is flat and W is flat. Therefore, the result follows from Theorem (5.9.1) and the last paragraph
of section (5.9).

5.11 A case where norm estimates fail

In this section, we show via admissible nilpotent orbits that in the case of a higher normal
function with weight graded quotients GrW0 = Z and GrW−k for k > 2, the norm estimates
required to obtain rigidity need not hold.

Lemma 5.11.1. Let (ezN .F,W ) be an admissible nilpotent orbit with limit mixed Hodge structure
(F,M) split over R. Let Y = Y (N,Y(F,M)) and N = N0 + · · · + N−k relative to ad (Y ) with
N−k ̸= 0. Then, ∥N∥(ezN .F,W ) = ∥N∥(eiyN .F,W ) and there a non-zero constant K such that

lim
y→∞

y(2−k)/2∥N∥(eiyN .F,W ) = K

In particular, ∥N∥(ezN .F,W ) is bounded for k = 2 and unbounded for k > 2.

Proof. Note that N andH = Y(F,M)−Y are elements of gR. Since Y = Y it follows that N0 = N0.

As GrW (N0) = GrW (N) it follows that N0 ∈ gR. Thus, omitting W from the mixed Hodge norm
as in (51), we have

∥N∥ezN .F = ∥N∥exNeiyN .F = ∥e−xN .N∥eiyN .F

= ∥N∥eiyN .F = ∥N∥eiyNe−iyN0eiyN0 .F

= ∥eiyN0e−iyN .N∥eiyN0 .F

where the last step is justified by equation (56). To continue, we note that since [H,N0] = −2N0

we have

eiyN0 = y−H/2eiN0yH/2 = y−H/2.eiN0 (63)

wherefrom

eiyN0 .F = y−H/2eiN0yH/2.F = y−H/2eiN0 .F
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since H preserve F . Moreover, as a consequence of the SL2-orbit theorem in the pure case,
Fo = eiN0 .F ∈ D. Therefore,

∥N∥ezN .F = ∥eiyN0e−iyN .N∥eiyN0 .F

= ∥eiyN0 .N∥eiyN0 .F

= ∥eiyN0 .N∥y−H/2.Fo

= ∥yH/2eiyN0 .N∥Fo

= ∥eiN0yH/2.(N0 + · · ·+N−k)∥Fo

where the last step is justified by (63). Accordingly, as [H,N−j ] = (j − 2)N−j for j = 0, . . . , k it
follows that ∥N∥ezN .F is asymptotic to a constant multiple of y(k−2)/2 for large y.

5.12 The case N = N0

Let H → ∆∗ be an admissible nilpotent orbit with unipotent monodromy T = eN . Let (F∞,M)
be the limit mixed Hodge structure of H with δ-splitting

(F̂∞,M) = (e−iδ.F∞,M) (64)

Let YM = Y(F̂∞,M) and Y = Y (N,YM ). Let

N = N0 +N−2 + · · · (65)

denote the decomposition of N into eigencomponents for adY . Let

(N0, H,N
+
0 ), H = YM − Y (66)

be the associated representation of sl2(R) of Theorem (5.7.1).

In this section we prove the following result, by essentially modifying the unipotent case
accordingly:

Theorem 5.12.1. If N = N0 and v is a flat, global section of H then v has bounded mixed
Hodge norm.

As the first step towards the proof of Theorem (5.12.1), we note that since N = N0, (N0, H)
is an sl2-pair and [N, δ] = 0, it follows that δ is a sum of lowest weight vectors for (N0, H,N

+
0 ).

Therefore,

δ = δ0 + δ−1 + · · · , [H, δ−j ] = −jδ−j (67)

relative to the eigenvalues of adH. Let

δ(y) = Ad(yH/2)δ = yH/2.δ =
∑
k⩾0

δ−ky
−k/2 (68)

Lemma 5.12.2. In the notation of (64)–(68), if N = N0 then

δ(∞) := lim
y→∞

δ(y) = δ0 (69)

and eiδ(∞)eiN .F̂∞ ∈ D.

Proof. Equation (69) follows directly from equation (68). To prove that the point eiδ(∞)eiN .F̂∞
belongs to D, observe that it is sufficient to consider only the pure case, since the property of
being a MHS is only about the induced filtrations on GrW . Accordingly, for the remainder of

38



Deformations and Rigidity for mixed period maps

this proof only, we assume ezN .F∞ is a nilpotent orbit of pure Hodge structure. By W. Schmid’s
SL2-orbit theorem, we have

yH/2eiδeiyN .F̂∞ = yH/2g(y)eiyN .F̂∞

which we can rewrite as

eiδ(y)eiN .F̂∞ = yH/2g(y)y−H/2eiN .F̂∞ (70)

using eiyN .F̂∞ = y−H/2eiN .F̂∞. Mutatis mutandis, the argument of equation (58) shows that

g̃(∞) = lim
y→∞

yH/2g(y)y−H/2

exists, and is an element of GR (since we are in the pure case). By W. Schmid’s SL2-orbit theorem,
eiN .F̂∞ ∈ D. Taking the limit of (70) as y → ∞, it follows that

eiδ(∞)eiN .F̂∞ = g̃(∞)eiN .F̂∞ ∈ D

as required.

To continue, let F (z) = ezNeΓ(s).F∞ be the local normal form of the period map of H. Then,
in analogy with equation (44) we have

F (z) = exNeiyNeΓ(s).F∞

= exNeiyNeΓ(s)eiδ.F̂∞

= exNy−H/2eiNyH/2eΓ(s)eiδ.F̂∞

(71)

In analogy with the derivation of (45), since [H,N ] = −2N and H preserves F̂∞, we have

eiδ.F̂∞ = y−H/2yH/2e−iyNeiyNeiδ.F̂∞

= y−H/2e−iNyH/2eiyNeiδ.F̂∞

= y−H/2e−iNyH/2eiδeiyN .F̂∞

= y−H/2e−iNeiδ(y)yH/2eiyN .F̂∞

= y−H/2e−iNeiδ(y)eiNyH/2.F̂∞

= y−H/2e−iNeiδ(y)eiN .F̂∞

(72)

Inserting (72) into (71) yields

F (z) = exNy−H/2eiNyH/2eΓ(s)y−H/2e−iNeiδ(y)eiN .F̂∞

= exNy−H/2eΓ(s,y)eiδ(y)eiN .F̂∞
(73)

where

eΓ(s,y) = eiNyH/2eΓ(s)y−H/2e−iN = exp(eiNyH/2.Γ(s)) (74)

In particular, since Γ(0) = 0 and |s| = e−2πy, there exist positive constants C, k and a such that

|s| < a =⇒ |Γ(s, y)| < C|s|(− log |s|)k (75)

with respect to a choice of fixed norm | ∗ | on gC.

Proof of Theorem (5.12.1). Since v ∈ Ker(N) it follows from (73) that

∥v∥F (z) = ∥v∥exNy−H/2eΓ(s,y)eiδ(y)eiN .F̂∞

= ∥e−xN .v∥y−H/2eΓ(s,y)eiδ(y)eiN .F̂∞

= ∥v∥y−H/2eΓ(s,y)eiδ(y)eiN .F̂∞

(76)
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since N ∈ gR. To continue, observe that v ∈ Ker(N) implies that

v =
∑
k⩾0

v−k, H.v−k = −kv−k

where the number of non-zero terms is finite since H has finite rank. Therefore,

v(y) := yH/2.v =
∑
k⩾0

v−ky
−k/2 (77)

is a vector-valued polynomial in y−1/2, and hence

∥v∥F (z) = ∥yH/2.v∥eΓ(s,y)eiδ(y)eiN .F̂∞
= ∥v(y)∥eΓ(s,y)eiδ(y)eiN .F̂∞

(78)

To finish the proof, recall that D is an open subset of Ď in the complex analytic topology, and
GC acts transitively on Ď by biholomorphisms. In particular, since eiδ(∞)eiN0 .F̂ ∈ D by Lemma
(5.12.2), it follows from equation (68) and the estimate (75) that there exists a constant b > 0
such that

K = { eΓ(s,y)eiδ(y)eiN .F̂ | y ⩾ b, |s| ⩽ e−2πy }
is a compact subset of D. Therefore, since limy→∞ v(y) = v(0) it follows from equation (76) that
∥v∥F (z) is bounded as y → ∞ and x is constrained to a finite interval.

Remark. (1) If N = N0 for H then N = N0 for H⊗H∗.
(2) The results in this section cover the case of variations of pure Hodge structure and variations
of type (I).

6. Deformations of admissible mixed period maps

6.1 General set-up

The set-up is similar to the one in the pure case. More precisely, we only consider deformations
of a period map F : S → Γ\D such that

– S,D and Γ remain fixed.

– the deformation remains locally liftable and horizontal.

However, there is an additional requirement ”at infinity”: we want the variation to be admis-
sible. This concept is recalled in Appendix A. Note that our convention of admissibility includes
as a requirement that the monodromy operators around the boundary are quasi-unipotent. This
is for instance the case if the variation has an underlying Z-structure such as the ones coming
from geometry. Pure variations are automatically admissible, and this is also the case for mixed
variations of geometric origin (cf. [SP08, Def. 14.49]).

Mixed period maps of admissible variations will be called admissible period maps. Ad-
missibility is preserved under small deformations:

Lemma 6.1.1. If F is an admissible period map, sufficiently small deformations of F that stay
horizontal, also stay admissible.

Proof. We can test admissibility on curves and so we may replace S with a curve. We employ
the test given in [Pea00].

For a neighborhood of p ∈ S̄ − ∂S we take a small disc ∆ centered at p with coordinate s
and monodromy T around the origin. We may assume that T is unipotent. Set N = − log T .
If s ∈ ∆ − {0}, we may put s = e2πiz. Then the untwisted period map e−zN .F (z) extends
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over the origin as a holomorphic map ∆ → Ď where its value at s = 0 is traditionally denoted
F (∞) ∈ Ď (since it corresponds to a limit for s → ∞). The canonical extension to ∆ of the
local system (with weight filtration and rational structure) over ∆∗ puts a weight filtration and
rational structure on the “central” fiber H over 0. Admissibility implies that there is a relative
weight filtration M on the central fiber H and (H,M,F (∞)) is a mixed Hodge structure, the
“limit mixed Hodge structure”. Hence we have a Deligne decomposition and we can speak of
horizontal endomorphisms with respect to the limit mixed Hodge structure. We shall call these
“limit-horizontal” and denote these as qhorF (∞). In this case the local normal form (35) reads

F (s) = exp

(
log(s)

2πi
N

)
exp(Γ(s)).F (∞), Γ(0) = 0,

and where

Γ(s) = 1 + Γ−1(s) + Γ−2(s) + . . . , Γ−k(s) ∈ U−k
F (∞)

is uniquely determinable from Γ−1 ∈ qhorF (∞). Let

F (s, t) = exp

(
log(s)

2πi
N

)
exp(Γ(s, t)).F (∞), Γ(s, t) ∈ qF (∞).

be a deformation of F (s) as a period map. This is nothing but a 2-parameter period map
∆∗ ×∆ → Γ\D with trivial monodromy in the second factor. If now

exp(Γ(s, t)) = 1 + Γ̃−1(s, t) + Γ̃−2(s, t) + . . . , Γ̃−k(s, t) ∈ U−k
F (∞),

the initial value constraint reads Γ̃−1(0, 0) = Γ1(0) = 0 and the “Higgs bundle constraint” holds
since F (s, t) is assumed to be horizontal. Indeed, the Higgs bundle constraint is equivalent to the
image at any point of the tangent space under the period map being an abelian subspace of gC
which is the case, cf. Lemma 3.2.1. But then, by loc. cit., F (s, t) is an admissible nilpotent orbit
with the same relative weight filtration M and limit mixed Hodge structure F (∞) as before.

In view of the above, we call deformations of admissible period maps that stay locally liftable
and horizontal (and hence admissible) simply admissible deformations.

Remark 6.1.2. Recall the commutative diagram (13) which provides a surjection

F−1g(H)
πhor

−−−→ F ∗T hor(Γ\D).

Choosing a lift for this map at some point s ∈ S determines a unique global lift. This is a
consequence of the rigidity theorem for variations of admissible mixed Hodge structures (cf.
[SZ85, Theorem 4.20] for S a curve and the remarks in [BZ90, § 9] for the general case). But at
a given point s, there is a natural identification of T hor

F (s)D with the subspace U−1gF (s) of gF (s)

and so we have a unique global lift. This lift can be used to identify infinitesimal deformations
of an admissible variation with a subspace of the space of sections of U−1g(H) ⊂ F−1g(H).

6.2 Main results

Theorem 6.2.1 Main Theorem I. Let S be quasi-projective and F : S → Γ\D a horizontal
holomorphic map to a mixed domain D parametrizing mixed Hodge structures on (H,W,Q)R
and assume that the variation of mixed Hodge structure H corresponding to F is admissible.

(i) Let η be a global holomorphic section of g(H) corresponding to an admissible infinitesimal
deformation of F with bounded Hodge norm. If the section η is plurisubharmonic along S,
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then η is a flat section of g(H) which is moreover horizontal, i.e., a section of U−1g(H) =⊕
k⩽1 g

−1,k(H).
Equivalently, at any point s ∈ S, η(s) is a horizontal endomorphism of g(Hs) which com-
mutes with the action of the fundamental group π1(S, s).

(ii) Conversely, let η(s) be a flat horizontal section of U−1g(H) such that η(s) commutes with
every element in F∗TS,s ⊂ U−1gF (s). If the (constant) Hodge norm ∥η(s)∥ is small enough,
then η defines a deformation of F keeping source and target fixed and which remains a
period map.

Proof. (1) This is a direct application of Proposition 4.2.2. The condition [u, v] = 0 follows as in
the pure case, since we are considering deformations which stay horizontal (see e.g. [CMSP17,
Prop. 5.5.1]).
(2) We use an argument due to Faltings (for weight 1) [Fal83]. Let η a parallel horizontal section
of g(H) and define the filtration Fη(s) by setting

Fη(s) = eη(s) F (s), s ∈ S.

On the weight graded parts Q(f(s), f(s)) = 0, f(s) ∈ Fη(s). The map s 7→ Fη(s) is holomorphic
but might land in the compact dual Ď (cf. formula (8)).

We claim

– the second Riemann condition holds if ∥η(s)∥ is small enough so that this filtration gives a
point inside the period domain D.

– The commuting property guarantees horizontality.

To prove these claims, first note that since η is parallel, its Hodge norm is constant and hence
also the auxiliary operators

wk,ℓ = (η∗)ℓ◦ηk + (η∗)k◦ηℓ, k ̸= ℓ

wk,k = (η∗)k◦ηk,

have constant Hodge norm. These operators, being self-adjoint, have real eigenvalues (which
might be negative). Let the smallest of these be mk,ℓ. Suppose that the nilpotent operator η has
index of nilpotency M and set

µ =
∑

1⩽k⩽ℓ⩽M

mk,ℓ

k!ℓ!
.

Then for all f(s) ∈ Fs we have

∥ eη(s) f(s)∥2F (s) = hF (s)

[id +
∑

1⩽k⩽ℓ⩽M

1

k!ℓ!
wk,ℓ]f(s), f(s)

 ⩾ (1− |µ|)∥f(s)∥2

and so if |µ| < 1 (which is the case if η is close to zero) we have

∥ eη(s) f(s)∥2F (s) ⩾ (1− |µ|)∥f(s)∥2F (s) > 0.

Hence, as we claimed, Q polarizes the induced Hodge structures on weight graded parts so that
the deformed period map Fη = eη F gives a holomorphic map S → Γ\D. If, moreover, for all
s ∈ S and all tangents ξ ∈ TsS one has [η(s), F∗ξ] = 0, the deformation Fη satisfies Griffiths’
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transversality condition since this commutativity implies

∇ξF
p
η (s) =

(
F∗ξ. e

η(s)
)
.F p(s)

=
(
eη(s) .F∗ξ

)
.F p(s)

= eη(s)∇ξF
p(s) ⊂ eη(s) F (s)p−1 = F p−1

η (s).

Here we use (cf. (20)) that ∇ξ acts as ∂ξ + ad (F∗ξ) on gF (s), and that ∂ξη = 0, because η is
locally constant.

Remark 6.2.2 Smoothness. The second part of the theorem is equivalent to the relevant defor-
mation space being smooth at F since it shows that the latter space is isomorphic to a small ball
in the vector space of flat horizontal sections of the bundle g(H). In particular, F is rigid if and
only if this component is a non-reduced point.

Examples 6.2.3 Non-rigid examples. (1) Hodge–Tate variations. As we have remarked in
Section 4.3 (2), one can easily construct variations that can be deformed in suitable (−1,−1)-
directions.
(2) Nilpotent orbit associated to Kähler classes. We come back to Example (4) in Sec-
tion 4.3. The variation we started with is the R-split variation defined by the total cohomology
of a family of Kähler manifolds. The nilpotent orbit construction gives a deformation of the
associated period map as in the second part of Theorem 6.2.1. The role of η(s) is played by∑k

j=1 ujNj(s) where the Nj are coming from independent ample classes which gives a multi-

parameter deformation. Suppose that the dimension of the Kähler cone in H1,1(X) ∩H2(X,R)
equals κ. Then k ⩽ κ. If this inequality is strict, the variation is not rigid in at least one (−1,−1)-
direction.
(3) Biextensions coming from higher Chow cycles on surfaces. We studied these in
Section 4.3 (6). Observe that as in the previous example, a flat infinitesimal deformation v in a
(−1,−1)-direction gives rise to a nilpotent orbit of deformations and so these deformations are
never rigid in such directions. An example of such a flat v can be constructed as follows. Let Xs,
s ∈ S be family of surfaces embedded in a product Pa×Pb of projective spaces, A,A′ hyperplane
sections coming from Pa giving rise to biextension variation Hs over S and C,D hyperplane
sections coming from Pb. Then (C,D) defines an independent flat infinitesimal variation v of
biextension type and hence exp(tv)Hs is a deformation of Hs.

In order to formulate the second main result, we recall that Proposition 4.2.2 states that for
a plurisubharmonic horizontal endomorphism η and for all all tangents u to the period map, one
has πq[π+ū, v] = 0, v = η(s). Moreover, this property is equivalent to v being parallel.

In analogy with the pure case (cf. Definition 2.3.3) we introduce the following concept:

Definition 6.2.4. Fix a subspace a ⊂ ghorC . The period map F is called regularly tangent
at s ∈ S, respectively regularly tangent in the a-directions, if the only vector v ∈ ghorF (s),

respectively v ∈ a, with πq[π+ū, v] = 0 for all u ∈ F∗TsS is the zero vector.

Remark 6.2.5. Because of type reasons, a period map can only be regularly tangent if there are
non-zero (−1, 1)+(−1, 0)-directions. Moreover, if F is regularly tangent in the (−1, 1)-directions
as well as in (−1, 0-directions, then F is regularly tangent in all directions.

Theorem 6.2.6 Main Theorem II. Fix a subspace a ⊂ ghorC . Suppose we are in one of the following
situations:

43



Gregory Pearlstein and Chris Peters

(i) the pure case with a = g−1,1;

(ii) we have two adjacent weights and a = g−1,0;

(iii) in the setting of unipotent variations , i.e. u−1,1 = 0 provided either Λ−1,−1 = 0 and
a = g−1,0, or u ∈ Λ−1,−1 and a = ⊕k⩽0g

−1,k.

(iv) u = u−1,1 + u−1,−1, and a = g−1,−1.

(v) two non-adjacent weights, say 0, k, |k| ⩾ 2 with h0,0 = 1, hp,−p = 0 for p ̸= 0, and
a = g−1,−k+1. Moreover, we assume that ∥v∥ is bounded near infinity. 6

(vi) A variation of type

I0,0

u−1,−1

��
u0,−2

$$
I−2,0

u0,−2 $$

I−1,−1oo u
−1,1
oo u

−1,1
oo

u−1,−1

��

I0,−2u−1,1
oo

I−2,−2

and a = g−1,−1.

Then deformations of F in the a-directions are in one-to-one correspondence with those endo-
morphisms of (H,Q) that belong to a and which intertwine the action of the monodromy.

In particular, the following properties are equivalent:

– F has no horizontal deformations in a-directions;

– (H,Q) has no endomorphisms in a-directions intertwining the action of the monodromy.

These properties hold in particular, if F is regularly tangent in the a-directions at o ∈ S (and
hence along S).

Proof. In each of the above cases, by Proposition 4.2.4, a holomorphic horizontal endomorphism
is plurisubharmonic and so its Hodge norm is plurisubharmonic. By the results of Section 5, this
function is bounded. Now apply Theorem 6.2.1.

6.3 Conditions implying rigidity

Suppose we have a variation with two weights 0 and 1 and of Hodge width are a, respectively
b. Suppose that a > b and the weight 0 variation is a direct sum of two variations, one having
maximal Higgs field and a piece Z ′ of pure type (0, 0) with trivial Higgs field. We claim that
this implies that the mixed variation is then is regularly tangent in the (−1, 0)-directions. To
illustrate the set-up, we take a = 2 and b = 1:

H1,−1 H0,0

(u−1,1)∗
oo H−1,1

(u−1,1)∗
oo

H1,0

v

OO

H0,1.
(u−1,1)∗
oo

v

OO

Indeed, by assumption, the upper row splits into two strands at most, that is H0,0 = Z⊕Z ′ such
that the upper right component of (u−1,1)∗ maps isomorphically to Z which in turn is mapped
isomorphically to H−1,1 by the relevant component of (u−1,1)∗.

6This is always the case for |k| = 2 by Section 5.
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To test regularity, suppose that [(u−1,1)∗, v] = 0. The commutative diagram implies that the
image of v : H1,0 → H0,0 lands in Z and so, if (u−1,1)∗◦v = 0 on H1,0, we must have v|H1,0 = 0.
Since then (u−1,1)∗◦v = 0 on H0,1, a similar argument shows that v = 0 on H0,1 as well.

Now remark that if h1,−1 = 1, the Higgs field in the u−1,1-direction is maximal precisely if it
is non-zero. By Lemma 3.4.1 this is the case if and only if the tangent map to the weight zero
period map in that direction is non-zero. We have shown:

Proposition 6.3.1. Suppose we have a mixed period map F for a variation of adjacent weights
0 and 1. For the pure weight 0 variation we assume

– the only non-zero Hodge numbers are h−1,1 = h1,−1 = 1 and h0,0 ⩾ 1.

– its period map is non-constant.

Then F is regularly tangent in the (−1, 0)-directions and hence admits no deformation in
these directions.

We finish this section by giving a criterion for rigidity using the monodromy action. It uses
the following general result.

Lemma 6.3.2. Let π be a group, k a field and V, V1, V2 finite dimensional k-vector spaces,

0 → V1
i−→ V

p
−→ V2 → 0

an exact sequence of π-modules and φ ∈ Endπ V , i.e., an endomorphism of V intertwining the
π-action. Suppose

– φ induces the zero map on V1 and V2.

– V1 is an irreducible π-module.

– dimV1 > dimV2.

Then φ = 0.

Proof. We claim that the assumptions imply that the map φ induces a π-equivariant morphism
φ̄ : V2 → V1 and if it is the zero-map then φ = 0. Let us prove this claim. First we define φ̄. Lift
x̄ ∈ V2 to an element x ∈ V . Then φ(x) ∈ i(V1) since φ is π-equivariant and induces the zero
map on V2. So φ(x) = i(y). Then set φ̄(x̄) = y. This is independent of the lift since φ induces
the zero map on V1. By construction φ̄ = 0 if and only φ = 0.

Since V1 is irreducible as a π-module, by Schur’s lemma, either φ̄ = 0 or φ̄(V2) = V1. In
the latter case we would have dimV2 ⩾ dimV1, contrary to the third assumption and hence
φ = 0.

Corollary 6.3.3. Consider a period map F : S → Γ\D associated to a two-step weight filtration
0 ⊂W1 ⊂W2 = H. If the weight graded quotients have distinct dimensions and the one of largest
dimension is an irreducible Γ-module, then F is rigid in the (−1, 0)-directions. So, if in addition
the induced period maps for the weight-graded pure variations of Hodge structure on S are rigid,
then F is rigid as a period map.

Proof. By duality we may assume that dimW1 > dimGrW2 . We apply Lemma 6.3.2 with v ∈ g−1,0

playing the role of φ. So v = 0 and hence, by Theorem 6.2.6, F is rigid.
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7. Examples of rigid mixed period maps

7.1 Complements of smooth divisors

Let X be a smooth compact variety of dimension d + 1 and Y ⊂ X a smooth divisor. We let
i : Y ↪→ X be the inclusion and j : U = X − Y ↪→ X the inclusion of the complement. Then we
have an exact sequence (in rational cohomology)

0 → Coker(Hk−2(Y (−1))
i∗−→ Hk(X))

j∗

−−→ Hk(U)
r−−−→

Ker(Hk−1(Y )(−1)
i∗−→ Hk+1(X)) → 0,

an extension of a weight k+1 Hodge structure by a weight k Hodge structure. Since the category
of pure polarized Hodge structures is abelian, there are splittings Hr(X) = Im(i∗)⊕P r(X), and
Hr(Y )(−1) = Ker(i∗)⊕ V r+2(Y ) so the sequence reduces to

0 → P k(X)
j∗

−−→ Hk(U)
r−→ V k+1(Y ) → 0.

If Y is an ample divisor, this sequence is only interesting in the middle dimensions d, d+ 1 and
simplifies to

0 → Hd+1
prim(X)

j∗

−−→ Hd+1(U)
r−→ Hd

var(Y )(−1) → 0. (79)

Suppose that we have a family of such pairs (Xs, Ys), s ∈ S, with S quasi-projective and smooth.
We give some applications of Eqn. (79).

First we invoke Corollary 6.3.3 and deduce:

Proposition 7.1.1. The period map forHd+1(U) is rigid in the (−1, 0)-directions if the following
two conditions hold simultaneously:

– the monodromy representation on Hd+1
prim(X) is irreducible;

– dimHd+1
prim(X) > dimHd

var(Y ).

If, in addition, the period maps associated to Hd+1
prim(X) and Hd

var(Y ) are rigid, then the period
map is rigid in all horizontal directions.

Example 7.1.2. The obvious example is a family {Cs − Σs} of quasi-projective smooth
curves. If the monodromy acts irreducibly on H1(Cs)C and if also #Σ < 2g, the mixed pe-
riod map is rigid in the (−1, 0)-directions.

More generally, we can consider the Hodge structure on H1(X) for X of any dimension (and
for H0(Y )). For instance take any rigid family of abelian varieties (see Section 2.4 Example (6))
and leave out a smooth, possibly reducible divisor. If the monodromy action is irreducible and
Y does not have too many components, the mixed period map will again be rigid.

We next we use Eqn. (79) in conjunction with Proposition 6.3.1. So we start from a K3-type
Hodge structure that is, we recall, a weight two Hodge structure with h2,0 = h0,2 = 1 and hp,q = 0
for p < 0 or q < 0. As a consequence of Proposition 6.3.1 we have:

Proposition 7.1.3. Suppose that H2
prim(Xs) is a non-constant variation of K3-type Hodge struc-

ture. Then the mixed period map for H2(Xs − Ys) is rigid in the directions of type (−1, 0). The
above holds in particular for Xs a K3 surface.

Remark 7.1.4. To obtain examples with rigidity in all horizontal directions, one can consult the
examples in Section 2.4, in particular Proposition 2.4.3.
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One can handle many more geometric examples based on the remark that surfaces with
h2,0 = 1 have K3 type Hodge structure on H2 and H2

prim. Let us especially consider the case of
regular surfaces, that is surfaces with b1 = 0, that are moreover minimal and of general type. By
[BHPdV04, Thm. VII.2.1] one then has K2 = 1, . . . , 8 and one finds h1,1 = 20−K2 so that the
period domain for the primitive cohomology has dimension

d(H2
prim) = 19−K2.

Since pg = 1, there is a unique canonical curve K of arithmetic genus K2 + 1.

For the purpose of this article we say that X is a Catanese–Kynev–Todorov surface or
CKT-surface if X is a simply connected Galois Z/2Z × Z/2Z cover of the plane with Hodge
numbers h2,0(X) = 1, h1,1(X) = 19 (and so K2

X = 1). These were first constructed by V. Kynev
[Kyn77] and investigated in detail by F. Catanese [Cat80] and A. Todorov [Tod80]. Let us recall
(loc. cit.) some of their properties. The quotient by one of the involutions is a double cover of P2

which is branched in the union of two cubics meeting transversely. This is a K3 surface Z with 9
ordinary double points. The family of such Z depends on 10 effective parameters and the period
domain is a linear section D2∩L of codimension 9 of the period domain D2 for K3 surfaces with
a degree 2 polarization. In other words, the K3 family has a period map which is generically
one-to-one onto a suitable quotient of D2 ∩L . Over a general line lies a smooth genus 2 curve C
in Y . Branching in C and the 9 ordinary double points produces the desired surface of general
type. Since there is an ample divisor and 9 smooth rational curves of self-intersection −2 on the
K3 surface, this shows that the Picard number of the general member is at least 1 + 9 = 10.
Equality follows from the surjectivity of the period map for Z. In constructing the second double
cover, the choice of the line gives 2 extra parameters which do not vary with the Hodge structure
and so for those surfaces the period map has fibers of dimension 2. The resulting surfaces of
general type depend on 10 + 2 = 12 moduli.

A. Todorov [Tod81] has generalized the above construction to give surfaces of general type
with b1 = 0, h2,0 = 1 and K2 = 2, . . . , 8. We call these Todorov surfaces. These are birational
to double covers of a classical Kummer surface, branched in a quadratic section passing through
8−K2 double points plus the remaining 8 +K2 double points. These last double points resolve
to −2 curves on the K3 surface and the resulting family has 19−(8+K2) = 11−K2 moduli. The
choice of the quadric section adds K2+1 parameters which do not vary with the Hodge structure
and so, as before, we get in total 12 parameters and the period map has fibers of dimensionK2+1.
To calculate the generic Picard number, note that the 8−K2 double points through which the
curve passes give just as many (−2) curves and there are 3 more independent divisors on the
Kummer surface we started with. The results have been summarized in Table 1. In the table
d(H2

prim) stands for the dimension of the period domain for the weight two K3-variation with

period map F2, ”moduli” stands for the number of moduli of the CKT- and Todorov-surfaces7,
ρ is the generic Picard number of the K3 surface, dimW2 is the dimension of the essential part
of the variation and dim(W3/W2) = 2g(Ks) = dimH1(Ks).

The main result about these surfaces is as follows:

Proposition 7.1.5. Let {Xs}s∈S be a family of CKT-surfaces or of Todorov surfaces and let
Ks ⊂ Xs be the canonical curve. The family {Xs −Ks} is rigid if all of the following conditions
hold:

7The full moduli space for surfaces with these invariants is expected to be (much) larger. See for example [Cat80,
CD89] for K2 = 1, 2.
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Table 1. Invariants for open CKT and Todorov modular families

K2 d(H2
prim) moduli ρ fiber dim. of F2 (dimW2, dimW3/W2)

1 18 12 10 2 (11, 4)

2 17 12 9 3 (11, 6)

3 16 12 8 4 (11, 8)

4 15 12 7 5 (11, 10)

5 14 12 6 6 (11, 12)

6 13 12 5 7 (11, 14)

7 12 12 4 8 ( 11, 16)

8 11 12 3 9 (11, 18)

(i) the family {Ks}s∈S of curves is rigid.

(ii) The essential part of the K3 variation is non-constant and rigid.

(iii) The mixed period map is an immersion.

These conditions are all satisfied for a family for which rank of the essential variation is not
divisible by 4 or whose period map has rank ⩾ 2. This holds in particular for a modular family,
that is, a family with 12 effective parameters as well as subfamilies of a modular family having
⩾ 2 effective parameters.

Proof. First of all, since by (2) the K3 variation is non-constant, Proposition 7.1.3 implies that
the variation is rigid in (−1, 0)-directions. It is rigid in (−1, 1) directions if this is the case for the
pure variations coming from the curves as well as for the K3 variation. Assumption (1) covers
the curve case (since we are interested in the variations coming from the geometry of the open
surfaces) and (2) covers the K3 variation. Condition (3) then implies that the family of open
surfaces is itself rigid whenever the mixed variation is rigid.

Condition (1) holds as soon as the period map for the curves is an immersion. This is a
consequence of Arakelov’s theorem, recalled in Section 1.1. For a modular family this is the case.
Indeed, for a modular family the period for the fibers of F2 is injective. By Proposition 2.4.3,
the second condition is satisfied if the rank of the essential variation is not divisible by 4 and
Proposition 2.4.4 shows rigidiy for period has of rank ⩾ 2. From the table we see that this is the
case for a modular family.

The third condition is a bit more involved since the pure K3 variation does not determine the
family because of the failure of infinitesimal Torelli. Indeed, this is exactly the reason they were
constructed! The failure of infinitesimal Torelli is caused by the non-trivial kernel of the tangent
map to the K3 period map. Since TX ≃ Ω1

X ⊗K−1
X , the tangent to the period map is the map

u
(2)
S : TS → H1(TX) → Hom

(
H0(KX) → H1(Ω1

X) ≃ H1(Ω1
X)

)
,

where the resulting morphism on the right,

µX : H1(TX) = H1(Ω1
X(−K)) → H1(Ω1

X),

is induced by multiplication by a non-zero section of KX vanishing along the canonical curve K.
From the exact sequence

0 = H0(Ω1
X) → H0(Ω1

X |K) → H1(Ω1
X(−K)) → H1(Ω1

X),
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one sees that the kernel of µX is isomorphic to H0(Ω1
X |K). To interpret this space, recall that, as

observed by A. Todorov [Tod80, proof of Prop. 4.1] and F. Catanese [Cat84, p. 150] the involution
τ on X that produces the K3-quotient induces a splitting of the exact sequence

0 → OK(−K) → Ω1
X |K → Ω1

K → 0.

Indeed, local coordinates (x, y) centered at a point P of K can be chosen in such a way that
x = 0 gives the canonical curve K and τ∗x = −x, τ∗y = y. Then the eigenspace decomposition of
Ω1
X,P is just C(dx)P ⊕C(dy)P and this gives a global splitting along K with the first factor giving

OK(K) and the second Ω1
K . For a modular family TsS ≃ H1(TX) and then the split sequence

shows that the kernel of the Higgs field u
(2)
S is isomorphic to H0(Ω1

K). Its dimension, K2 + 1, is
the genus of the canonical curve K, as indicated in Table 1. This kernel is captured by the cup
product

µK : H1(TK) → Hom(H1,0(K), H0,1(K)),

which is injective (infinitesimal Torelli) since by [Tod81, Lemma 5.2], the canonical curve is non-

hyperelliptic for the Todorov surfaces. The Higgs field u
(1)
S for the pure weight 1 variation is

the composition of the map TsS → H1(TK) and µK and it is generically injective for a modular
family. Combining the two calculations, we have shown that the kernel of the partial mixed Higgs

field u
(2)
S + u

(1)
S is trivial and so the mixed period map is an immersion. Hence Xs −Ks can be

locally reconstructed from the period map. For a subfamily this is also the case.

7.2 Projective varieties singular along a smooth divisor

Let X be a compact variety of dimension d+ 1 whose singular locus Y is a smooth divisor. We
let σ : X̃ → X be the desingularization of X and set Ỹ = σ−1Y , i : Y ↪→ X, ı̃ : Ỹ ↪→ X̃ be the
inclusions. Then by [SP08, § 5.3.2] we have an exact sequence of rational cohomology groups

0 → Coker
(
Hk−1(X̃)⊕Hk−1(Y )

ı̃∗−σ∗
−−−−→ Hk−1(Ỹ )

)
−−→ Hk(X)−−→

Ker
(
Hk(X̃)⊕Hk(Y )

ı̃∗−σ∗
−−−−→ Hk(Ỹ )

)
→ 0.

In this case σ : Ỹ → Y is an unramified double cover, Cokerσ∗ is the anti-invariant part of the
cohomology and σ∗ is an embedding. Assuming that Ỹ is a hyperplane section (or, more generally,
very ample), in the middle dimension, the kernel of of ı̃∗ is then the variable cohomology. Hence
the sequence reduces to

0 → Hd
prim(Ỹ )− → Hd+1(X) → Hd+1

var (X̃) → 0.

As a consequence of Corollary 6.3.3, we have

Proposition 7.2.1. Suppose that the monodromy representation on Hd
prim(Ỹs)

− is irreducible
and that

rank(Hd
prim(Ỹs)

−) > rank(Hd+1
var (X̃s)).

Then the mixed period map for Hd(Xs) is rigid in the (−1, 0)-directions.

Remark. For Kynev–Todorov surfaces one can also use M. Letizia’s argument [Let84] showing
that the mixed Hodge structure generically determines the pair consisting of the surface and its
canonical curve.

Example 7.2.2. Projective curves with δ ordinary double points. Here d = 0 and we get

0 → ⊕δZ → H1(X) → H1(X̃) → 0.
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The mixed period map is rigid in (−1, 0)-directions, if the monodromy of the family of curves
acts irreducibly on the set of double points of which there are many (δ > 2g). This result is dual
to the case of an open curve treated in Example 7.1.2 (a).

By Proposition 2.4.2, rigidity for the pure variation follows if the Higgs field is maximal and
for weight one this is the case for “most” period maps.

7.3 Normal functions and higher normal functions

Recall that these are associated to a variation of the form H2p+1(Xs)(−p) where {Xs}s∈S is
a family of smooth complex projective varieties equipped with a family Zs of p-dimensional
algebraic cycles homologous to zero proving a variation of mixed Hodge structure

0 → H2p+1(Xs)(−p) → Hp(Z/S) → Z(0) → 0.

As a consequence of Corollary 6.3.3 we have:

Proposition 7.3.1. If the monodromy acts irreducibly on H2p+1(Xs), the normal function
Hp(Z/S) is rigid in (−1, 0)-directions. If, moreover, the period map associated to H2p+1(Xs)
is rigid, the normal function is rigid in all directions.

As an example, for p even we have a normal function associated to cycles in a Lefschetz pencil
of complete intersections. Also normal functions for certain K3-variations, abelian varieties and
Calabi–Yau’s give examples of normal functions, rigid in all directions. See the examples in
Section 2.4.3.

A similar result holds for higher normal functions

0 → Hp−1(Xs)(q) → Hp,q → Q(0) → 0

with p − 2q − 1 < 0. Here we have rigidity for Hp,q in (−1, k)-directions with k = p − 2q − 1
provided for these directions boundedness for the Hodge norm at infinity holds.

7.4 Unipotent variations

We consider adjacent weights and rigidity in (−1, 0)-directions only:

Hp,q
v−1,0
//
Hp+1,q.

(u−1,0)∗
oo

Such a v is regularly tangent if for some u the relation u∗◦v = 0 implies v = 0 which is the case
if u is surjective (then v∗◦u = 0 is equivalent to v∗ = 0.) More generally this is the case if for
given x ∈ Hp+1,q we can find u = ux with x in its image since then v∗(x) = v∗◦ux(x

′) = 0 by
assumption.

In [PP19, Thm. 3.6] we considered the differential geometric aspects of unipotent variations
of mixed Hodge structures associated the based fundamental group of X when the base point
x ∈ X varies. The set-up is detailed in Section 4.3, example (6). If we vary the base point in a
submanifold S ⊂ X, by [PP19, Lemma 6.8], the Higgs field comes from a map

u : Ker[H1(X)⊗H1(X) → H2(X)]⊗ T 1,0
s S → H1(X)

given by

α⊗ β ⊗ θ 7→ (θ ⌟ α)β − (θ ⌟ β)α.

This map is of Hodge type (−1, 0) since it sends I2,0 ⊂ H1,0⊗H1,0 to H1,0 and I1,1 ⊂ H1,0⊗H0,1

to H0,1. Moreover, the restriction to I2,0 determines the entire morphism. Note also that u factors
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through Ker[Λ2H1(X) → H2(X)]. Let V = H1,0(X), K = Ker[Λ2V → H2,0(X)], T = TsS and
consider the maps e : T → V ∗ given by eθ(ω) = θ ⌟ ω and

u : K ⊗ T → V,
∑
i,j,k

(ωi ∧ ωj)⊗ θk =
∑
i,j,k

[eθk(ωi)ωj − eθk(ωj)ωi]. (80)

If this map is surjective, for every ω ∈ V we can find θj ∈ T and Aj ∈ K such that
∑

j u(A
j⊗θj) =

ω which suffices to show regular tangency. We formulate the conclusion explicitly:

Proposition 7.4.1. Let X be a smooth projective variety and consider the variation of mixed
Hodge structure on HomZ(Jx/J

3
x ,C) where x varies over a smooth subvariety S ⊂ X. If the map

u from (80) is surjective, the variation is rigid,

To see what this means geometrically, suppose for instance that there is a generic direction
θ such that uθ(A) = u(A ⊗ θ) = 0 imposes dimK − dimV independent conditions on K. Then
the map uθ is surjective which implies regular tangency. Since the condition uθ(A) = 0 amounts
to dimV equations on A, the latter condition can only hold if dimK ⩾ 2 dimV and if so, for
generic θ these equations are expected to be independent. Depending on the geometry of the
cotangent bundle this then is the case or not.

Appendix A. Admissibility

In [SZ85], J. Steenbrink and S. Zucker defined a category of admissible variations of graded-
polarizable mixed Hodge structure over a punctured disk ∆∗ with unipotent monodromy. This
definition can be modified to handle the case of quasi-unipotent monodromy via a covering trick
(see § 1.8 of [Kas86]). Given this local model, the category of admissible variations of graded-
polarized mixed Hodge structure over a smooth complex algebraic curve C is defined as follows:
The curve C has a smooth completion C̄ which is unique up to isomorphism. A graded-polarizable
variation H → C is admissible if and only if for each p ∈ C̄ −C the restriction of H to a deleted
neighborhood of p is admissible.

In higher dimensions, let S be a smooth quasi-projective variety over C and j : S → S̄ be a
smooth partial compactification of S̄ such that S̄−S is a normal crossing divisor. In [Kas86], M.
Kashiwara showed that one obtains a good category of admissible variations of graded-polarizable
mixed Hodge structure on S via a curve test. In particular, the admissibility ofH does not depend
on the choice of j : S → S̄.

Implicit in the previous paragraph is the assumption that the local monodromy of H is
quasi-unipotent, which we shall assume throughout this appendix. This is automatic whenever
H carries an integral structure HZ (e.g. variations of geometric origin). To continue, we recall
that if f : A → B is a holomorphic map between complex manifolds and H is a variation of
graded-polarizable mixed Hodge structure on B then, f∗(H) is a variation of graded-polarizable
mixed Hodge structure on A (see § 1.7, [Kas86]).

We now recall the definition of an admissible variation of mixed Hodge structure over the
punctured disk with unipotent monodromy following Steenbrink and Zucker: Let ∆ = { s ∈ C |
|s| < 1 } and ∆∗ = ∆ − {0}. Let H → ∆∗ be a variation of graded-polarizable mixed Hodge
structure. Let U denote the upper half-plane { z = x + iy ∈ C | y > 0 }, and U → ∆∗ be the
covering map s = e2πiz.

After selecting a choice of graded-polarization (in order to define the classifying space D),
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the period map of H fits into a commutative diagram

U
F−−−−→ D

s

y y =⇒ F (z + 1) = T.F (z)

∆∗ φ−−−−→ ⟨T ⟩\D

(81)

where T = eN . Accordingly, the map

ψ̃ : U → Ď, ψ̃(z) = e−zN .F (z)

satisfies ψ̃(z + 1) = ψ̃(z) and hence descends to a map ψ : ∆∗ → Ď.

By Schmid’s nilpotent orbit theorem (Thm (4.12), [Sch73]), if H is pure then

lim
s→0

ψ(s) = F∞ ∈ Ď (82)

exists. Moreover, N(F p
∞) ⊆ F p−1

∞ and there exists a constant a such that ℑ(z) > a =⇒
ezN .F∞ ∈ D. Finally, given a GR-invariant metric on D, there exist constants K and b such
that

ℑ(z) > a =⇒ dD(F (z), e
zN .F∞) < Kℑ(z)be−2πℑ(z)

Remark. Schmid’s result also covers the case of pure variations of Hodge structure with quasi-
unipotent monodromy by passage to a finite cover. If t is another choice of holomorphic coordinate
on ∆ which vanishes at 0 ∈ ∆ then tracing through the above construction shows that the
resulting limit filtration is related to (82) by the action of eλN where λ depends on (ds/dt)0.

In contrast, the mixed period domain D′ with Hodge numbers h1,1 = h0,0 = 1 is isomorphic
to C and has trivial infinitesimal period relation. Accordingly, the period map φ : C∗ → D′ given
by φ(s) = e1/s arises from a Hodge–Tate variation with trivial monodromy which does not have
limit Hodge filtration.

Let V be a finite dimensional vector space and W be an increasing filtration of V . Then,
W [j] is the filtration W [j]k =Wj+k. Given a nilpotent endomorphism N of a finite dimensional
vector space V , it follows from upon writing N in Jordan canonical form that exists a unique,
increasing monodromy weight filtration W (N) of V such that

— N(Wk) ⊆Wk−2;

— Nk : GrWk → GrW−k is an isomorphism

for each k.

Suppose instead that V is equipped with an increasing filtration W such that N(Wk) ⊆ Wk

for each index k. Then, there exists at most one increasing filtration M = M(N,W ) of V such
that

— N(Mk) ⊂Mk−2;

— M induces on GrWk the filtration W (N : GrWk → GrWk )[−k].
IfM exists it is called the relative weight filtration ofW with respect to N . In general,M(N,W )
does not exist. For example, if W has only two non-trivial weight graded quotients which are
adjacent (e.g. GrW0 and GrW−1) thenM(N,W ) exists if and only ifW has an N -invariant splitting.

Definition A.1. Let H → ∆∗ be a variation of graded-polarized mixed Hodge structure with
unipotent monodromy T = eN and weight filtration W . Let φ : ∆∗ → ⟨T ⟩\D be the period map
of H. Then, H is admissible if
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(a) The limit Hodge filtration (82) exists;

(b) The relative weight filtration M =W (N,W ) exists.

A variation of graded-polarized mixed Hodge structure H → ∆∗ with quasi-unipotent mon-
odromy is admissible if the pullback f∗(H) to a finite covering of ∆∗ with unipotent monodromy
is admissible.

Remark. See § 3 of [SZ85] and § 1.8–1.9 of [Kas86] for the definition of admissibility in terms of
the canonical extension of H to a system of holomorphic vector bundles over ∆.

An increasing filtration W of a vector space V is pure of weight k if Grwℓ = 0 for ℓ ̸= k and
GrWk

∼= V . Reviewing the definition of M = M(N,W ) it follows that if W is pure of weight k
then M =W (N)[−k] (Prop. (2.11), [SZ85]).

Corollary A.2. If H → ∆∗ is a variation of pure, polarized Hodge structure then H is admis-
sible.

Proof. The limit Hodge filtration exists by Schmid’s nilpotent orbit theorem, and the relative
weight filtration exists by the previous paragraph.

In the pure case, it follows from Schmid’s SL2-orbit theorem (Thm. (5.13), [Sch73]) that if
φ is a the period map of a variation of polarizable Hodge structure H → ∆∗ of weight k with
unipotent monodromy T = eN then

(F∞,W (N)[−k]) (83)

is a mixed Hodge structure relative to which N is a (−1,−1)-morphism, where F∞ is the limit
Hodge filtration (82). Moreover, it follows from the SL2-orbit theorem (Thm. (6.6) and Cor.
(6.7), [Sch73]) that the Hodge norm of a flat section of H is bounded.

One of the main results of [SZ85] is that if H → ∆∗ is an admissible variation of graded-
polarized mixed Hodge structure then (F∞,M) is a mixed Hodge structure relative to which N
is a (−1,−1)-morphism. In particular N(F p

∞) ⊆ F p−1
∞ . Moreover if

θ(z) = ezN .F∞, (84)

then there exists a constant a > 0 such that ℑ(z) > a =⇒ θ(z) ∈ D. Finally, by [Pea01] it
follows that there exists constants K and b such that

ℑ(z) > a =⇒ dD(F (z), θ(z)) ⩽ Kℑ(z)be−2πℑ(z).

Definition A.3. Let D be a classifying space of graded-polarized mixed Hodge structure with
underlying filtration W and associated real Lie algebra gR. Then, the pair (N,F ) consisting of
an element N ∈ gR and F ∈ Ď defines an admissible nilpotent orbit θ(z) = ezN .F if

(a) N(F p) ⊆ F p−1;

(b) The relative weight filtration M =M(N,W ) exists;

(c) There exists a such that ℑ(z) > a =⇒ θ(z) ∈ D.

The foundations of the theory of admissible nilpotent orbits of graded-polarized mixed Hodge
structure is given by Kashiwara in [Kas86], where they are called infinitesimal mixed Hodge
modules. In the pure case, a strengthened form of Schmid’s several variable nilpotent orbit
theorem as well as the several variable SL2-orbit theorem appear in [CKS86].
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Appendix B. Properly Discontinuous Actions on Mixed Period Domains

Let H → S be a variation of graded-polarized mixed Hodge structure on a complex manifold S.
Let ρ : π1(S, b) → GR be the monodromy representation of H on the reference fiber V = Hb and
D = G/GF be the classifying space of graded-polarized mixed Hodge structure defined by Hb.
Let W denote the weight filtration of V .

Proposition B.1. If Γ is discrete and closed in GR then Γ acts properly discontinuously on D,
and hence the quotient Γ\D is a complex analytic space.

Proof. In the case where H is a variation of pure Hodge structure, this result is well known from
the work of P. Griffiths, and boils down to the fact that, in the pure case, the stabilizer GF

R a
point F ∈ D is compact.

Turning to the mixed case, let K and K ′ be compact subsets of D. The map from D to
the graded classifying spaces Dj is continuous, and hence the respective images Kj and K ′

j of
K and K ′ in Dj are compact for all j. If Γ does not act properly discontinuously, there exist
an infinite set of distinct elements gn ∈ Γ such that gn(K) ∩ K ′ is non-empty for all n. Then
((GrWgn)Kj)∩K ′

j is non-empty for all j and n. Since, by P. Griffiths’ results, the action of GrWΓ

on each Dj is properly discontinuous, it follows that the set {GrWgn} contains only finitely many
elements. Thus, after partitioning {gn} into a finite collection of subsets, we may assume that
there exists h ∈ Γ such that for all n we have GrWgn = GrWh for an infinite collection {gn}.
From this we shall derive a contradiction.

To this end, we introduce the complex, unipotent Lie group

UC = {g ∈ GL(VC)) | (g − id)Wk ⊂Wk−1}

and let UR = UC ∩ GL(VR). Observe that un := gnh
−1 ∈ UR for each index n, since gn and h

induce the same action on GrW .

To continue let Y denote the set of all (complex) gradings of W (see section 5.4). Then,
the group GC acts continuously on Y via the adjoint action. Moreover, by (2.2, [CKS86]), the
subgroup UC acts simply transitively on Y. Furthermore, the map

Y : D → Y, F 7→ Y (F ), the Deligne grading of (F,W )

is continuous, and hence both Y (K) and Y (K ′) are compact subset of Y. By construction,

Y (g.F̃ ) = g.Y (F̃ )

for any F̃ ∈ D and g ∈ GR. Applying this to gn, h ∈ GR, we find

Y (gn(K)) = gn · Y (K) = (unh) · Y (K) = un(h · Y (K)),

with h · Y (K) compact. So our question is: for how many un ∈ UR can un · h · Y (K) intersect
Y (K ′)?

Fix Yo ∈ Y. Since UC acts simply transitively upon Y, it follows that there are compact
subsets C ′ and C ′′ of UC such that

Y (K ′) = C ′ · Yo, h · Y (K) = C ′′ · Yo
So, if un · h · Y (K) intersects Y (K ′) then there exist elements c′ ∈ C ′ and c′′ ∈ C ′′ such that

unc
′′ · Yo = c′ · Yo

By simple transitivity, unc
′′ = c′ and hence un belongs to the compact set C = C ′(C ′′)−1.

Equivalently, gn = unh belongs to the compact subset C · h ⊂ GC.
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By hypothesis, the image of Γ in GR (and hence GC) is discrete and closed. As C · h is
compact, it can contain only finitely many elements gn from Γ, which contradicts the supposition
that there infinitely many elements gn ∈ Γ such that GrW (gn) = GrW (h). Hence Γ acts properly
discontinuously on D.
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