Generalized Weil Intermediate Jacobians Talk in Torino, March 232012

Odd

cohomology
C. Peters; report of joint work with Müller-Stach and V. Srinivas ${ }^{1}$

[^0]
Situation

Generalized

 WeilIntermediate
Jacobians Talk in
Torino, March
232012
S. Müller-

Stach,
C. Peters,
V. Srinivas

Odd
cohomology
Odd
cohomology
Odd
cohomology
Even
cohomology
Generalization
Generalization
Spin manifolds
(X, g) compact, oriented Riemannian manifold, $\operatorname{dim} X=2 n$. Notation

- $H^{k}(X):=H^{k}(X ; \mathbb{R})$;
- $H^{k}(X)_{\mathbb{Z}}:=H^{k}(X ; \mathbb{Z}) /$ torsion.

Situation

Generalized Weil
Intermediate Jacobians Talk in
Torino, March
232012
S. Müller-

Stach,
C. Peters,
V. Srinivas

Odd
cohomology
Odd
cohomology
Odd
cohomology
Even
cohomology
Generalization
Generalization
Spin manifolds
Spin manifold's
(X, g) compact, oriented Riemannian manifold, $\operatorname{dim} X=2 n$. Notation

- $H^{k}(X):=H^{k}(X ; \mathbb{R})$;

■ $H^{k}(X)_{\mathbb{Z}}:=H^{k}(X ; \mathbb{Z}) /$ torsion.

Topological data

$$
H^{k}(X)_{\mathbb{Z}} \times H^{2 n-k}(X)_{\mathbb{Z}} \xrightarrow{\langle,\rangle} \mathbb{Z} \quad \text { (intersection pairing). }
$$

Situation

Generalized

Weil
Intermediate
Jacobians
Talk in
Torino, March
232012
S. Müller-

Stach,
C. Peters,
V. Srinivas

Odd
cohomology
Odd
cohomology
Odd
cohomology

Even

cohomology
Generalization
Generalization
Spin manifolds
Spin manifolds
(X, g) compact, oriented Riemannian manifold, $\operatorname{dim} X=2 n$.

Notation

- $H^{k}(X):=H^{k}(X ; \mathbb{R})$;

■ $H^{k}(X)_{\mathbb{Z}}:=H^{k}(X ; \mathbb{Z}) /$ torsion.

Topological data

$$
H^{k}(X)_{\mathbb{Z}} \times H^{2 n-k}(X)_{\mathbb{Z}} \xrightarrow{\langle,\rangle} \mathbb{Z} \quad \text { (intersection pairing). }
$$

Metric data

$$
*: H^{k}(X) \rightarrow H^{2 n-k}(X) \quad \text { Hodge star-operator, } *^{2}=(-1)^{k}
$$

Example 1

Generalized Weil
Intermediate
Jacobians
Talk in
Torino, March
232012
S. Müller-

Stach,
C. Peters,
V. Srinivas

Odd
cohomology
Odd
cohomology
Odd
cohomology
Even
cohomology
Generalization
Generalization
Spin manifolds
Spin manifolds
$n=1 \Longrightarrow X$ is a topological oriented compact surface, say of genus g. We have

$$
\begin{aligned}
\operatorname{Conf}(X)=\left\{\begin{array}{c}
\text { conf. eq. classes } \\
\text { of metrics }
\end{array}\right\} & \leftrightarrow\left\{\begin{array}{c}
\text { oriented compl. } \\
\text { structures }
\end{array}\right\} \\
\in & \mapsto
\end{aligned}
$$

Example 1

$n=1 \Longrightarrow X$ is a topological oriented compact surface, say of genus g. We have

$$
\begin{aligned}
\operatorname{Conf}(X)=\left\{\begin{array}{c}
\text { conf. eq. classes } \\
\text { of metrics }
\end{array}\right\} & \leftrightarrow\left\{\begin{array}{c}
\text { oriented compl. } \\
\text { structures }
\end{array}\right\} \\
\epsilon & \mapsto
\end{aligned}
$$

One then has
■ jacobian of $X_{g}:=H^{1}(X) / H^{1}(X)_{\mathbb{Z}}$ as real torus;
■ * (depends on g) gives the complex structure (note $\left.*^{2}=-\mathrm{id}\right)$;

- the intersection pairing \langle,$\rangle gives the (principal)$ polarization.

Example 2

Generalized Weil Intermediate Jacobians Talk in

Torino, March

 232012S. Müller-

Stach,
C. Peters,
V. Srinivas

Odd
cohomology
Odd
cohomology
Odd
cohomology

Even

cohomology
Generalization
Generalization
Spin manifolds

Now assume $\operatorname{dim} X=n=2 m+1$ and set

$$
J^{n}(X, g)=\left\{H^{n}(X) / H^{n}(X)_{\mathbb{Z}}, *,\langle,\rangle\right\}
$$

This is Lazzeri's jacobian, again a principally polarized abelian variety.

Example 2

Generalized Weil Intermediate Jacobians Talk in

Odd

cohomology

Now assume $\operatorname{dim} X=n=2 m+1$ and set

$$
J^{n}(X, g)=\left\{H^{n}(X) / H^{n}(X)_{\mathbb{Z}}, *,\langle,\rangle\right\}
$$

This is Lazzeri's jacobian, again a principally polarized abelian variety.
Extend it to other odd cohomology groups? Needs to take $H^{k}(X) \oplus H^{2 n-k}(X)$ which is preserved by $*$. On this space $*^{2}=-\mathrm{id}$. Also the intersection-pairing is non-degenerate and skew on $H^{k}(X)_{\mathbb{Z}} \oplus H^{2 n-k}(X)_{\mathbb{Z}}$

Example 2

Generalized Weil Intermediate
Jacobians
Talk in
Torino, March
232012
S. Müller-

Stach,
C. Peters,
V. Srinivas

Odd
cohomology
Odd
cohomology
Odd
cohomology
Even
cohomology
Generalization
Generalization Spin manifolds

Now assume $\operatorname{dim} X=n=2 m+1$ and set

$$
J^{n}(X, g)=\left\{H^{n}(X) / H^{n}(X)_{\mathbb{Z}}, *,\langle,\rangle\right\}
$$

This is Lazzeri's jacobian, again a principally polarized abelian variety.
Extend it to other odd cohomology groups? Needs to take $H^{k}(X) \oplus H^{2 n-k}(X)$ which is preserved by $*$. On this space $*^{2}=-\mathrm{id}$. Also the intersection-pairing is non-degenerate and skew on $H^{k}(X)_{\mathbb{Z}} \oplus H^{2 n-k}(X)_{\mathbb{Z}}$ and so we can introduce the principally polarized abelian variety:

$$
\begin{gathered}
J^{k}(X, g):=\left\{H^{k}(X) \oplus H^{2 n-k}(X) /\left(H^{k}(X) \oplus H^{2 n-k}(X)\right)_{\mathbb{Z}},\langle,\rangle\right\} \\
k \text { odd and } k \neq n .
\end{gathered}
$$

Remarks

Generalized Weil
Intermediate
Jacobians Talk in
Torino, March
232012
S. MüllerStach,
C. Peters,
V. Srinivas

Odd

cohomology
Odd
cohomology
Odd
cohomology

Even

cohomology
Generalization
Generalization
Spin manifolds

Let (X, λ) be a a projective polarized manifold. Then $J^{k}(X)$ is NOT Weil jacobian J_{W}^{k}. For example, if $n=3$ and $k=1$ the Weil jacobian is

$$
\begin{array}{ccc}
J_{W}^{1} & := & \left\{H^{1}(X) / H^{1}(X)_{\mathbb{Z}}, C, B\right\} ; \\
C \mid H^{p, 1-p} & = & \mathrm{i}^{2 p-1}, p=0,1 \text { (Weil operator); } \\
B(x, y) & = & \left\langle L^{2} x, y\right\rangle, L=c_{1}(\lambda) \text { (Riemann form) }
\end{array}
$$

Remarks

Generalized Weil
Intermediate
Jacobians Talk in
Torino, March
232012
S. MüllerStach,
C. Peters,
V. Srinivas

Odd
cohomology
Odd
cohomology
Odd
cohomology

Even

cohomology
Generalization
Generalization Spin manifolds

Let (X, λ) be a a projective polarized manifold. Then $J^{k}(X)$ is NOT Weil jacobian J_{W}^{k}. For example, if $n=3$ and $k=1$ the Weil jacobian is

$$
\begin{array}{ccc}
J_{W}^{1} & : & \left\{H^{1}(X) / H^{1}(X)_{\mathbb{Z}}, C, B\right\} ; \\
C \mid H^{p, 1-p} & = & \mathrm{i}^{2 p-1}, p=0,1 \text { (Weil operator); } \\
B(x, y) & = & \left\langle L^{2} x, y\right\rangle, L=c_{1}(\lambda) \text { (Riemann form). }
\end{array}
$$

and C and $*$ can be compared as follows:

Remarks

Generalized Weil
Intermediate
Jacobians Talk in
Torino, March
232012
S. MüllerStach,
C. Peters,
V. Srinivas

Odd
cohomology
Odd
cohomology
Odd
cohomology
Even
cohomology
Generalization
Generalization
Spin manifolds

Let (X, λ) be a a projective polarized manifold. Then $J^{k}(X)$ is NOT Weil jacobian J_{W}^{k}. For example, if $n=3$ and $k=1$ the Weil jacobian is

$$
\begin{array}{ccc}
J_{W}^{1} & : & \left\{H^{1}(X) / H^{1}(X)_{\mathbb{Z}}, C, B\right\} ; \\
C \mid H^{p, 1-p} & = & \mathrm{i}^{2 p-1}, p=0,1 \text { (Weil operator); } \\
B(x, y) & = & \left\langle L^{2} x, y\right\rangle, L=c_{1}(\lambda) \text { (Riemann form). }
\end{array}
$$

and C and $*$ can be compared as follows:

We see that:
$J^{1}(X, g)$ (isogeneous) $\left\{\right.$ Weil Jacobian for $\left.H^{1}\right\} \times\{$ dual jacobian $\}$.

Moduli aspect

Moduli aspect

Generalized Weil
Intermediate
Jacobians
Talk in
Torino, March
232012
S. Müller-

Stach,
C. Peters,
V. Srinivas

Odd
cohomology
Odd
cohomology
Odd
cohomology
Even
cohomology
Generalization
Generalization
Spin manifolds

One has a "period map"

$$
\begin{array}{cccc}
\operatorname{Conf}(X) & & p & \mathbb{H}_{b_{k}} \\
\in & & \in & b_{k}=\operatorname{dim} H^{k}(X) \\
{[g]} & \longmapsto & J^{k}\left(X_{g}\right) . &
\end{array}
$$

Example: X a genus g curve. $\operatorname{Diff}(X)^{0}$ (diffeo's isotopic to $\left.i d_{X}\right)$ acts on $\operatorname{Conf}(X) \Longrightarrow \mathcal{T}_{g}=\operatorname{Conf}(X) / \operatorname{Diff}(X)^{0}$, Teichmüller space. The Teichmüller group Γ_{g} acts on $\mathcal{T}_{g} \Longrightarrow M_{g}=\Gamma_{g} \backslash \mathcal{T}_{g}$, moduli space M_{g} :

Even cohomology

Generalized Weil
Intermediate
Jacobians Talk in
Torino, March
232012
S. MüllerStach,
C. Peters,
V. Srinivas

Odd

cohomology
Odd
cohomology
Odd
cohomology
Even
cohomology
Generalization
Generalization
Spin manifolds

Now $\operatorname{dim} X=2 n$ with $n \equiv 1 \bmod 2$, say $n=2 m+1$.
Modified topological data One has an involution ι on even cohomology $H^{+}(X)_{\mathbb{Z}}$:

$$
\iota H^{4 *}=\mathrm{id}, \quad \iota H^{4 *+2}=-\mathrm{id}
$$

Even cohomology

Generalized

 WeilIntermediate
Jacobians Talk in
Torino, March
232012
S. MüllerStach,
C. Peters,
V. Srinivas

Odd
cohomology
Odd
cohomology
Odd
cohomology
Even
cohomology
Generalization
Generalization
Spin manifolds

Now $\operatorname{dim} X=2 n$ with $n \equiv 1 \bmod 2$, say $n=2 m+1$.
Modified topological data One has an involution ι on even cohomology $\mathrm{H}^{+}(X)_{\mathbb{Z}}$:

$$
\iota H^{4 *}=\mathrm{id}, \quad \iota H^{4 *+2}=-\mathrm{id}
$$

and we have a unimodular skew-symmetric pairing

$$
\begin{array}{clc}
H^{2 k}(X)_{\mathbb{Z}} \times H^{2 n-2 k}(X)_{\mathbb{Z}} & \stackrel{\omega^{+}}{\longrightarrow} & \mathbb{Z} \\
(\alpha, \beta) & \longmapsto & \longmapsto \alpha, \iota(\beta)\rangle=\int_{X} \alpha \cdot \iota(\beta) .
\end{array}
$$

Even cohomology

Generalized Weil
Intermediate
Jacobians Talk in
Torino, March
232012
S. MüllerStach,
C. Peters,
V. Srinivas

Odd
cohomology
Odd
cohomology
Odd
cohomology
Even
cohomology
Generalization
Generalization
Spin manifolds

Now $\operatorname{dim} X=2 n$ with $n \equiv 1 \bmod 2$, say $n=2 m+1$.
Modified topological data One has an involution ι on even cohomology $H^{+}(X)_{\mathbb{Z}}$:

$$
\iota H^{4 *}=\mathrm{id}, \quad \iota H^{4 *+2}=-\mathrm{id}
$$

and we have a unimodular skew-symmetric pairing

$$
\begin{array}{ccc}
H^{2 k}(X)_{\mathbb{Z}} \times H^{2 n-2 k}(X)_{\mathbb{Z}} & \stackrel{\omega^{+}}{\longrightarrow} & \mathbb{Z} \\
(\alpha, \beta) & \longmapsto & \langle\alpha, \iota(\beta)\rangle=\int_{X} \alpha \cdot \iota(\beta) .
\end{array}
$$

Modified complex structure On $H^{2 k}(X) \oplus H^{2 n-2 k}(X)$ one takes $J(\alpha, \beta)=(* \alpha,-* \beta)$. Then $J^{2}=-\mathrm{id}$.

Even cohomology

Generalized Weil
Intermediate
Jacobians Talk in Torino, March

232012
S. Müller-

Stach,
C. Peters,
V. Srinivas

Odd
cohomology
Odd
cohomology
Odd
cohomology
Even
cohomology
Generalization
Generalization
Spin manifolds

Now $\operatorname{dim} X=2 n$ with $n \equiv 1 \bmod 2$, say $n=2 m+1$.
Modified topological data One has an involution ι on even cohomology $H^{+}(X)_{\mathbb{Z}}$:

$$
\iota H^{4 *}=\mathrm{id}, \quad \iota H^{4 *+2}=-\mathrm{id}
$$

and we have a unimodular skew-symmetric pairing

$$
\begin{array}{clc}
H^{2 k}(X)_{\mathbb{Z}} \times H^{2 n-2 k}(X)_{\mathbb{Z}} & \xrightarrow{\omega^{+}} & \mathbb{Z} \\
(\alpha, \beta) & \longmapsto & \longmapsto \alpha, \iota(\beta)\rangle=\int_{X} \alpha \cdot \iota(\beta) .
\end{array}
$$

Modified complex structure On $H^{2 k}(X) \oplus H^{2 n-2 k}(X)$ one takes $J(\alpha, \beta)=(* \alpha,-* \beta)$. Then $J^{2}=-\mathrm{id}$. We get the principally polarized abelian variety (PPAV):

$$
\begin{gathered}
\left.J^{2 k}(X, g):=H^{2 k} X\right) \oplus H^{2 n-2 k}(X) /\left(H^{2 k}(X) \oplus H^{2 n-2 k}(X)\right)_{\mathbb{Z}} \\
\text { polarization: } \omega^{+} .
\end{gathered}
$$

Generalization

Generalized
Weil
Intermediate
Jacobians Talk in
Torino, March
232012
S. Müller-

Stach,
C. Peters,
V. Srinivas

Odd
cohomology
Odd
cohomology
Odd
cohomology
Even
cohomology
Generalization
Generalization
Spin manifolds
Spin manifolds

Proposition

Let V an \mathbb{R}-space with metric b and symplectic form ω. There is a unique complex structure J with
$1 b(J x, J y)=b(x, y)$ for all $x, y \in V$;
$2 \omega(J x, J y)=\omega(x, y)$ for all $x, y \in V$;
3 the form $b_{\omega, J}$ defined by $b_{\omega, J}(x, y):=\omega(x, J y)$ is a definite) metric.

Generalization

Generalized

Weil
Intermediate
Jacobians
Talk in
Torino, March
232012
S. Müller-

Stach,
C. Peters,
V. Srinivas

Odd
cohomology
Odd
cohomology
Odd
cohomology
Even
cohomology
Generalization
Generalization Spin manifolds Spin manifolds

Proposition

Let V an \mathbb{R}-space with metric b and symplectic form ω. There is a unique complex structure J with
$1 b(J x, J y)=b(x, y)$ for all $x, y \in V$;
$2 \omega(J x, J y)=\omega(x, y)$ for all $x, y \in V$;
3 the form $b_{\omega, J}$ defined by $b_{\omega, J}(x, y):=\omega(x, J y)$ is a definite) metric.

Remark

In general $b_{\omega, J} \neq b$.
Terminology $b_{\omega, J}=c \cdot b, c \in \mathbb{R}_{+} \Longrightarrow(b, \omega)$ a coherent pair.

Associated PPAV

Generalized
Weil
Intermediate
Jacobians Talk in
Torino, March
232012
S. Müller-

Stach,
C. Peters,
V. Srinivas

Odd
cohomology
Odd
cohomology
Odd
cohomology
Even
cohomology
Generalization
Generalization
Spin manifolds
Spin manifolds

Remark

$$
\begin{array}{lll}
V=V_{\mathbb{Z}} \otimes \mathbb{R} & \text { and } \omega \mid V_{\mathbb{Z}} \times V_{Z} \rightarrow \mathbb{Z} \text { unimodular } \\
& \Longrightarrow J(V, b, \omega):=\left(V / V_{Z}, \omega \mid V_{Z}\right) \text { is a PPAV. }
\end{array}
$$

Associated PPAV

Generalized Weil
Intermediate
Jacobians Talk in
Torino, March
232012
S. Müller-

Stach,
C. Peters,
V. Srinivas

Odd
cohomology
Odd
cohomology
Odd
cohomology
Even
cohomology
Generalization
Generalization Spin manifolds

Spin manifolds

Remark

$$
\begin{array}{lll}
V=V_{\mathbb{Z}} \otimes \mathbb{R} & & \text { and } \omega \mid V_{\mathbb{Z}} \times V_{Z} \rightarrow \mathbb{Z} \text { unimodular } \\
& \Longrightarrow J(V, b, \omega):=\left(V / V_{Z}, \omega \mid V_{Z}\right) \text { is a PPAV. }
\end{array}
$$

Example (X, g) as before; the pair

$$
b=b^{(g)}(\alpha, \beta)=\langle\alpha, * \beta\rangle \text { (Hodge metric) } ; \omega=\omega^{+} .
$$

is coherent. In fact $J\left(H^{+}, b^{(g)}, \omega^{+}\right)=\prod J^{2 p}(X, g)$.

Twists by isomorphisms

Generalized Weil
Intermediate Jacobians Talk in
Torino, March
232012
S. MüllerStach,
C. Peters,
V. Srinivas

Odd
cohomology
Odd
cohomology
Odd
cohomology
Even
cohomology
Generalization
Generalization
Spin manifolds

$$
\begin{aligned}
& H^{+}(X) \xrightarrow[\sim]{\sim} H^{+}(X) \quad ; \quad H^{+}(X)_{\mathbb{Q}} \xrightarrow[\sim]{\sim} H^{+}(X)_{\mathbb{Q}} \\
& b_{\tau}^{(g)}(\alpha, \beta) \stackrel{\tau}{\tau}^{\tau}{ }^{(g)}(\tau \alpha, \tau \beta) ; \quad \omega_{\gamma}^{+}(\alpha, \beta)={ }_{\omega}^{\gamma}{ }^{+}(\gamma \alpha, \gamma \beta) \text {. }
\end{aligned}
$$

1) The pair $\left(b_{\tau}^{(g)}, \omega_{\gamma}^{+}\right)$need not be coherent.
2) The resulting jacobian need not be principally polarized.

Twists by isomorphisms

Generalized Weil
Intermediate
Jacobians
Talk in
Torino, March
232012
S. Müller-

Stach,
C. Peters,
V. Srinivas

Odd
cohomology
Odd
cohomology
Odd
cohomology
Even
cohomology
Generalization
Generalization

$$
H^{+}(X) \xrightarrow[\tau]{\sim} H^{+}(X) \quad ; \quad H^{+}(X)_{\mathbb{Q}} \xrightarrow[\gamma]{\sim} H^{+}(X)_{\mathbb{Q}}
$$

$$
b_{\tau}^{(g)}(\alpha, \beta)={ }^{\tau} b^{(g)}(\tau \alpha, \tau \beta) \quad ; \quad \omega_{\gamma}^{+}(\alpha, \beta)={ }^{\gamma} \omega^{+}(\gamma \alpha, \gamma \beta) .
$$

1) The pair $\left(b_{\tau}^{(g)}, \omega_{\gamma}^{+}\right)$need not be coherent.
2) The resulting jacobian need not be principally polarized. Example (Coherent pair, PAV): Take a unit $\mathbf{a}=\mathbf{b}^{2} \in H^{4 *}(X)_{\mathbb{Q}}$ and set

$$
\begin{aligned}
\omega_{\mathbf{a}}^{+}(\alpha, \beta) & :=\langle\mathbf{a}, \alpha \cdot \iota(\beta)\rangle=\omega^{+}(\mathbf{b} \alpha, \mathbf{b} \beta) \\
b_{\mathbf{b}}^{(g)}(\alpha, \beta) & :=b^{(g)}(\mathbf{b} \alpha, \mathbf{b} \beta) .
\end{aligned}
$$

Put $\mathbf{b}=\sqrt{\mathbf{a}} \Longrightarrow J\left(H^{+}(X), b_{\sqrt{\mathbf{a}}}^{(\mathrm{g})}, \omega_{\mathbf{a}}^{+}\right)$is a PAV but PPAV?

K-groups: basics

Generalized Weil
Intermediate
Jacobians Talk in

Torino, March

232012
S. Müller-

Stach,
C. Peters,
V. Srinivas

Odd
cohomology
Odd
cohomology
Odd
cohomology
Even
cohomology
Generalization
Generalization
Spin manifolds

For any "good" topological space X the K-group of virtual vector bundles on X is:
$K(X):=\{\mathbb{Z}[$ iso-classes of \mathbb{C}-vect. bundles on $X] / \sim\}$ where $\quad[E \oplus F] \sim[E]+[F]$.

K-groups: basics

For any "good" topological space X the K-group of virtual vector bundles on X is:

$$
\begin{aligned}
K(X):= & \{\mathbb{Z}[\text { iso-classes of } \mathbb{C} \text {-vect. bundles on } X] / \sim\} \\
\text { where } & {[E \oplus F] \sim[E]+[F] . }
\end{aligned}
$$

For a complex vector bundle F define the Chern character $\operatorname{ch}(F) \in H^{2 *}(X ; \mathbb{Q})$ by

$$
\operatorname{ch}(F)=\sum_{\text {where }} e^{\gamma_{i}}=m+c_{1}(F)+\frac{1}{2}\left(c_{1}^{2}(F)-c_{2}(F)\right)+\cdots
$$

$$
1+c_{1}(F) x+\cdots c_{m}(F) x^{m}=\left(1+\gamma_{1} x\right) \cdots\left(1+\gamma_{m} x\right)
$$

Jacobians for K-groups

Generalized Weil
Intermediate Jacobians Talk in
Torino, March
232012
S. Müller-

Stach,
C. Peters,
V. Srinivas

Odd
cohomology
Odd
cohomology
Odd
cohomology

Even

cohomology
Generalization
Generalization
Spin manifolds
Spin manifolds

Theorem (Atiyah-Hirzebruch)
Assume X is torsion free ($H^{*}(X ; \mathbb{Z})$ no torsion).
(1) The Chern character gives an injection

$$
\text { ch }: K(X) \longrightarrow H^{+}(X), \quad \Lambda(X):=\operatorname{Im}(c h) \text { a lattice. }
$$

(2) There exist multipliers $\mathbf{a}=1+\mathbf{a}_{2}+\cdots \in \Lambda(X)$, i.e with $\langle\mathbf{a} \alpha, \beta\rangle \in \mathbb{Z}$ for all $\alpha, \beta \in \Lambda(X)$;
(3) If \mathbf{a}, multiplier with $\mathbf{a} \in H^{4 *}(X) \Longrightarrow \omega_{\mathbf{a}}^{+}$unimodular.

Jacobians for K-groups

Generalized Weil Intermediate Jacobians Talk in
Torino, March
232012
S. Müller-

Stach,
C. Peters,
V. Srinivas

Odd
cohomology
Odd
cohomology
Odd
cohomology
Even
cohomology
Generalization
Generalization
Spin manifolds
Spin manifolds

Theorem (Atiyah-Hirzebruch)

Assume X is torsion free ($H^{*}(X ; \mathbb{Z})$ no torsion $)$.
(1) The Chern character gives an injection

$$
\text { ch }: K(X) \longrightarrow H^{+}(X), \quad \Lambda(X):=\operatorname{Im}(c h) \text { a lattice. }
$$

(2) There exist multipliers $\mathbf{a}=1+\mathbf{a}_{2}+\cdots \in \Lambda(X)$, i.e with $\langle\mathbf{a} \alpha, \beta\rangle \in \mathbb{Z}$ for all $\alpha, \beta \in \Lambda(X)$;
(3) If \mathbf{a}, multiplier with $\mathbf{a} \in H^{4 *}(X) \Longrightarrow \omega_{\mathbf{a}}^{+}$unimodular.

As a consequence, for a multiplier a we have a PPAV

$$
\left(H^{+}(X) / \Lambda(X), b_{\sqrt{\mathbf{a}}}^{(g)}, \omega_{\mathrm{a}}^{+}\right)
$$

Jacobians for K-groups

Generalized Weil Intermediate Jacobians Talk in Torino, March 232012
S. Müller-

Stach,
C. Peters,
V. Srinivas

Odd
cohomology
Odd
cohomology
Odd
cohomology
Even
cohomology
Generalization
Generalization
Spin manifolds
Spin manifolds

Theorem (Atiyah-Hirzebruch)

Assume X is torsion free ($H^{*}(X ; \mathbb{Z})$ no torsion $)$.
(1) The Chern character gives an injection

$$
\text { ch }: K(X) \longrightarrow H^{+}(X), \quad \Lambda(X):=\operatorname{Im}(c h) \text { a lattice. }
$$

(2) There exist multipliers $\mathbf{a}=1+\mathbf{a}_{2}+\cdots \in \Lambda(X)$, i.e with $\langle\mathbf{a} \alpha, \beta\rangle \in \mathbb{Z}$ for all $\alpha, \beta \in \Lambda(X)$;
(3) If \mathbf{a}, multiplier with $\mathbf{a} \in H^{4 *}(X) \Longrightarrow \omega_{\mathbf{a}}^{+}$unimodular.

As a consequence, for a multiplier a we have a PPAV

$$
\left(H^{+}(X) / \Lambda(X), b_{\sqrt{\mathbf{a}}}^{(g)}, \omega_{\mathrm{a}}^{+}\right)
$$

Note also that there is a complex conjugation on $K(X)$ and

$$
\omega_{\mathrm{a}}^{+}(\operatorname{ch}(\alpha), \operatorname{ch}(\beta))=\int_{X} \mathbf{a} \cup \operatorname{ch}(\alpha \otimes \bar{\beta})
$$

Enter: Dirac-operators

Generalized Weil
Intermediate Jacobians Talk in
Torino, March
232012
S. MüllerStach,
C. Peters,
V. Srinivas

Odd
cohomology
Odd
cohomology
Odd
cohomology
Even
cohomology
Generalization
Generalization
Spin manifolds
Spin manifolds

Again: (X, g) a compact oriented Riemannian manifold $\operatorname{dim}=2 n, n$ odd. Assume: X has no torsion and is spin. Example X a compact Riemann surface, an abelian variety, K3-surface, a Calabi-Yau.

Enter: Dirac-operators

Generalized Weil
Intermediate Jacobians Talk in Torino, March 232012
S. MüllerStach,
C. Peters,
V. Srinivas

Odd
cohomology
Odd
cohomology
Odd
cohomology
Even
cohomology
Generalization
Generalization
Spin manifolds
Spin manifolds

Again: (X, g) a compact oriented Riemannian manifold $\operatorname{dim}=2 n, n$ odd. Assume: X has no torsion and is spin. Example X a compact Riemann surface, an abelian variety, K3-surface, a Calabi-Yau.
Spin $\Longrightarrow \exists$ a Dirac-operator $\not \varnothing_{e}, e \in K(X)$. Also, one has a certain characteristic class, Hirzebruch's A-roof genus

$$
\hat{A}(X)=1+\frac{1}{24} c_{1}^{2}(X)+\cdots \in H^{4 *}(X)
$$

Enter: Dirac-operators

Generalized Weil
Intermediate
Jacobians Talk in
Torino, March
232012
S. Müller-

Stach,
C. Peters,
V. Srinivas

Odd
cohomology
Odd
cohomology
Odd
cohomology
Even
cohomology
Generalization
Generalization
Spin manifolds
Spin manifolds

Again: (X, g) a compact oriented Riemannian manifold $\operatorname{dim}=2 n, n$ odd. Assume: X has no torsion and is spin. Example X a compact Riemann surface, an abelian variety, K3-surface, a Calabi-Yau.
Spin $\Longrightarrow \exists$ a Dirac-operator $\not \varnothing_{e}, e \in K(X)$. Also, one has a certain characteristic class, Hirzebruch's A-roof genus

$$
\hat{A}(X)=1+\frac{1}{24} c_{1}^{2}(X)+\cdots \in H^{4 *}(X)
$$

which enters in the famous

Theorem (Atiyah-Singer index theorem)

Let (X, g) be a compact Riemannian manifold with a spin structure, and let $e \in K(X)$. Then

$$
\operatorname{ind}\left(\varnothing_{e}\right)=\int_{X} \hat{A}(X) \operatorname{ch}(e)
$$

Jacobians for spin manifolds

Generalized Weil
Intermediate
Jacobians
Talk in
Torino, March
232012
S. Müller-

Stach,
C. Peters,
V. Srinivas

Odd
cohomology
Odd
cohomology
Odd
cohomology
Even
cohomology
Generalization
Generalization
Spin manifolds
Spin manifolds

Corollary (Witten, Moore-Witten)
The A-roof genus is a multiplier; indeed

$$
\omega_{\hat{A}}^{+}(\operatorname{ch}(\alpha), \operatorname{ch}(\beta))=\operatorname{ind}\left(\emptyset_{e}\right), \quad e=\alpha \otimes \bar{\beta}
$$

In particular this defines a PPAV

$$
\left(H^{+}(X) / \Lambda(X), b_{\sqrt{\hat{A}}}^{(g)}, \omega_{\hat{A}}^{+}\right)
$$

canonically associated to any (torsion free) compact spin manifold X of dimension $2 n$, n odd.

Jacobians of even weight polarized Hodge structures

Generalized Weil
Intermediate Jacobians Talk in Torino, March 232012
S. MüllerStach,
C. Peters,
V. Srinivas

Odd

cohomology
Odd
cohomology
Odd
cohomology

Even

cohomology
Generalization
Generalization
Spin manifolds

Data: 1) (W, Q) : integrally polarized Hodge structure, weight 2 ℓ. 2) Weil-operator C_{W} (i.e. $C_{W} \mid H^{p, q}=\mathrm{i}^{p-q}$). 3) $p=\sum_{j} h^{2 \ell-2 j, 2 j}, q=k-p \Longrightarrow \mathrm{SO}(W, Q) \simeq \operatorname{SO}(p, q)$.

Griffiths domain: $\mathrm{SO}(W, Q) / \mathrm{U}\left(2 h^{2 \ell, 0}\right) \times \cdots \mathrm{U}\left(2 h^{\ell+1, \ell-1}\right) \times \mathrm{SO}\left(h^{1,1}\right)$.

Jacobians of even weight polarized Hodge structures

Generalized Weil
Intermediate
Jacobians Talk in Torino, March 232012
S. Müller-

Stach,
C. Peters,
V. Srinivas

Odd
cohomology
Odd
cohomology
Odd
cohomology

Even

cohomology
Generalization
Generalization Spin manifolds

Data: 1) (W, Q) : integrally polarized Hodge structure, weight 2 ℓ. 2) Weil-operator C_{W} (i.e. $C_{W} \mid H^{p, q}=\mathrm{i}^{p-q}$).
3) $p=\sum_{j} h^{2 \ell-2 j, 2 j}, q=k-p \Longrightarrow \mathrm{SO}(W, Q) \simeq \mathrm{SO}(p, q)$.

Griffiths domain: $\mathrm{SO}(W, Q) / \mathrm{U}\left(2 h^{2 \ell, 0}\right) \times \cdots \mathrm{U}\left(2 h^{\ell+1, \ell-1}\right) \times \mathrm{SO}\left(h^{1,1}\right)$.
Construction Set $V=W \oplus W^{\vee}(-k)$. Then

$$
J(x+\hat{Q} y):=\hat{Q} C_{W}(x)-C_{W}(y) \Longrightarrow J^{2}=-\operatorname{id}_{W}
$$

Then \exists polarized weight 1 Hodge structure (V, q) with $C_{V}=J$ and

$$
q\left(x_{1}+\hat{Q} y_{1}, x_{2}+\hat{Q} y_{2}\right)=-Q\left(x_{1}, y_{2}\right)+Q\left(y_{1}, x_{2}\right)
$$

Jacobians of even weight polarized Hodge

 structuresGeneralized Weil
Intermediate
Jacobians
Talk in
Torino, March
232012
S. Müller-

Stach,
C. Peters,
V. Srinivas

Odd
cohomology
Odd
cohomology
Odd
cohomology
Even
cohomology
Generalization
Generalization
Spin manifolds
Spin manifolds

Data: 1) (W, Q) : integrally polarized Hodge structure, weight 2 ℓ. 2) Weil-operator C_{W} (i.e. $C_{W} \mid H^{p, q}=\mathrm{i}^{p-q}$).
3) $p=\sum_{j} h^{2 \ell-2 j, 2 j}, q=k-p \Longrightarrow \mathrm{SO}(W, Q) \simeq \mathrm{SO}(p, q)$.

Griffiths domain: $\mathrm{SO}(W, Q) / \mathrm{U}\left(2 h^{2 \ell, 0}\right) \times \cdots \mathrm{U}\left(2 h^{\ell+1, \ell-1}\right) \times \mathrm{SO}\left(h^{1,1}\right)$.
Construction Set $V=W \oplus W^{\vee}(-k)$. Then

$$
J(x+\hat{Q} y):=\hat{Q} C_{W}(x)-C_{W}(y) \Longrightarrow J^{2}=-\operatorname{id}_{W}
$$

Then \exists polarized weight 1 Hodge structure (V, q) with $C_{V}=J$ and

$$
q\left(x_{1}+\hat{Q} y_{1}, x_{2}+\hat{Q} y_{2}\right)=-Q\left(x_{1}, y_{2}\right)+Q\left(y_{1}, x_{2}\right)
$$

Note: polarized weight 1 Hodgestructures on V, $\operatorname{dim} V=2 g$ are classified by $\mathrm{Sp}(g) / \mathrm{U}(g)$ parametrizing PPAV \Longrightarrow

Lemma

$$
J(W, Q):=\left(V / V_{\mathbb{Z}}, q\right) \text { is a PAV. }
$$

The connection with cohomology-jacobians

Generalized Weil
Intermediate
Jacobians Talk in
Torino, March
232012
S. Müller-

Stach,
C. Peters,
V. Srinivas

Odd
cohomology
Odd
cohomology
Odd
cohomology
Even
cohomology
Generalization
Generalization
Spin manifolds
Spin manifolds

Situation (X, ω) compact Kähler $\operatorname{dim}_{\mathbb{C}} X=n$ with g_{ω} the corresponding Riemannian metric. Recall that primitive cohomology

$$
W_{\ell}:=H_{\mathrm{prim}}^{2 \ell}(X)_{\mathbb{R}}
$$

is polarized by the Riemann form

$$
Q_{\ell}(x, y):=(-1)^{\ell+1} \int_{X} \omega^{n-\ell} x \cdot y
$$

The connection with cohomology-jacobians

Generalized Weil
Intermediate
Jacobians Talk in
Torino, March
232012
S. Müller-

Stach,
C. Peters,
V. Srinivas

Odd
cohomology
Odd
cohomology
Odd
cohomology
Even
cohomology
Generalization
Generalization
Spin manifolds

Situation (X, ω) compact Kähler $\operatorname{dim}_{\mathbb{C}} X=n$ with g_{ω} the corresponding Riemannian metric. Recall that primitive cohomology

$$
W_{\ell}:=H_{\mathrm{prim}}^{2 \ell}(X)_{\mathbb{R}}
$$

is polarized by the Riemann form

$$
Q_{\ell}(x, y):=(-1)^{\ell+1} \int_{x} \omega^{n-\ell} x \cdot y
$$

Proposition (Lefschetz decomposition)

Suppose ω is integral (e.g. (X, ω) a polarized projective manifold). Suppose n is odd. On $H^{2 *}(X)$ define $\tilde{\omega}^{+}(x, y)=(-1)^{\ell+1} \int_{X} \omega^{n-\ell} X \cdot \iota(y)$. Then, for $k \leq n$ we have:

$$
J^{2 k}\left(X, b^{g_{\omega}}, \tilde{\omega}^{+}\right) \stackrel{(\text { isogeneous })}{\sim} \prod_{\ell=0}^{k} J\left(W_{\ell}, Q_{\ell}\right)
$$

Group-theoretic explanation

Generalized
Weil
Intermediate
Jacobians Talk in
Torino, March
232012
S. MüllerStach,
C. Peters,
V. Srinivas

Odd
cohomology
Odd
cohomology
Odd
cohomology

Even

cohomology
Generalization
Generalization
Spin manifolds

Proposition

Introduce the (well-defined) homomorphism

$$
\begin{aligned}
\psi: \mathrm{SO}(W, Q) & \rightarrow \mathrm{Sp}\left(W \oplus W^{\vee}(-k), q\right) \\
f & \mapsto \psi(f), \quad \psi(f)(x+\hat{Q} y)=f(x)+\hat{Q}(f(y)) .
\end{aligned}
$$

Group-theoretic explanation

Generalized Weil
Intermediate
Jacobians Talk in Torino, March

232012
S. Müller-

Stach,
C. Peters,
V. Srinivas

Odd
cohomology
Odd
cohomology
Odd
cohomology
Even
cohomology
Generalization
Generalization
Spin manifolds

Proposition

Introduce the (well-defined) homomorphism

$$
\begin{aligned}
\psi: \mathrm{SO}(W, Q) & \rightarrow \mathrm{Sp}\left(W \oplus W^{\vee}(-k), q\right) \\
f & \mapsto \psi(f), \quad \psi(f)(x+\hat{Q} y)=f(x)+\hat{Q}(f(y))
\end{aligned}
$$

With $\tilde{\psi}$ the induced map, one has a commutative diagram

$$
D(W):=\mathrm{SO}(W, Q) / H \xrightarrow{\tilde{\psi}} \mathrm{Sp}(g) / \mathrm{U}(g)
$$

where $K \subset S O(W, Q)$ is the unique maximal compact subgroup containing H.

An example: back to moduli

Generalized

 WeilIntermediate
Jacobians
Talk in
Torino, March
232012
S. Müller-

Stach,
C. Peters,
V. Srinivas

Odd

cohomology
Odd
cohomology
Odd
cohomology
Even
cohomology
Generalization
Generalization
Spin manifolds

Let $E=E_{\tau}$ be the elliptic curve $\mathbb{C} / \mathbb{Z}+\mathbb{Z} \tau$ and let α, β be the two cycles coming from the two lattice generators $\{1, \tau\}$. Set $W=H^{1}(E) \otimes H^{1}(E)$ a natural polarizated weight 2 Hodge structure. There is a period map $p: \mathfrak{h} \rightarrow D(W)$.

An example: back to moduli

Generalized Weil
Intermediate
Jacobians Talk in
Torino, March
232012
S. MüllerStach,
C. Peters,
V. Srinivas

Odd
cohomology
Odd
cohomology
Odd
cohomology

Even

cohomology

Let $E=E_{\tau}$ be the elliptic curve $\mathbb{C} / \mathbb{Z}+\mathbb{Z} \tau$ and let α, β be the two cycles coming from the two lattice generators $\{1, \tau\}$. Set $W=H^{1}(E) \otimes H^{1}(E)$ a natural polarizated weight 2 Hodge structure. There is a period map $p: \mathfrak{h} \rightarrow D(W)$.
Define 1)

$$
M:=\left(\begin{array}{cccc}
\tau^{2} & \tau & \tau & 1 \\
\bar{\tau}^{2} & \bar{\tau} & \bar{\tau} & 1
\end{array}\right), N:=\left(\begin{array}{cccc}
|\tau|^{2} & -(\tau+\bar{\tau}) & 0 & 1 \\
0 & 1 & -1 & 0
\end{array}\right) .
$$

2) An involution ι on (4×2)-matrices: exchange column 1 and 4 as well as column 2 and 3 .

An example: back to moduli

Generalized Weil
Intermediate
Jacobians Talk in
Torino, March
232012
S. MüllerStach,
C. Peters,
V. Srinivas

Odd
cohomology
Odd
cohomology
Odd
cohomology
Even
cohomology
Generalization
Generalization

Let $E=E_{\tau}$ be the elliptic curve $\mathbb{C} / \mathbb{Z}+\mathbb{Z} \tau$ and let α, β be the two cycles coming from the two lattice generators $\{1, \tau\}$. Set $W=H^{1}(E) \otimes H^{1}(E)$ a natural polarizated weight 2 Hodge structure. There is a period map $p: \mathfrak{h} \rightarrow D(W)$.
Define 1)

$$
M:=\left(\begin{array}{cccc}
\tau^{2} & \tau & \tau & 1 \\
\bar{\tau}^{2} & \bar{\tau} & \bar{\tau} & 1
\end{array}\right), N:=\left(\begin{array}{cccc}
|\tau|^{2} & -(\tau+\bar{\tau}) & 0 & 1 \\
0 & 1 & -1 & 0
\end{array}\right) .
$$

2) An involution ι on (4×2)-matrices: exchange column 1 and 4 as well as column 2 and 3 .
3) The period map p composed with $\tilde{\psi}$ is described by

$$
B:=\left(\begin{array}{cc}
M & \mathrm{i} \iota(M) \\
N & -\mathrm{i} \iota(N)
\end{array}\right)
$$

An example: continuation

Generalized Weil
Intermediate Jacobians Talk in
Torino, March
232012
S. Müller-

Stach,
C. Peters,
V. Srinivas

Odd

cohomology
Odd
cohomology
Odd
cohomology
Even
cohomology
Generalization
Generalization
Spin manifolds
Spin manifolds

One views this a a map into a Grasmannian and one calculates two Plücker-coordinates:

1) $\operatorname{det}\binom{M}{N}=(\tau-\bar{\tau})\left(\tau^{2}+6|\tau|^{2}+\bar{\tau}^{2}\right)$

An example: continuation

One views this a a map into a Grasmannian and one calculates two Plücker-coordinates:

1) $\operatorname{det}\binom{M}{N}=(\tau-\bar{\tau})\left(\tau^{2}+6|\tau|^{2}+\bar{\tau}^{2}\right)$
2) Replace the first column by the last column of the block matrix gives new determinant $-\mathrm{i}(\tau-\bar{\tau})(\tau+\bar{\tau})^{2}$.

An example: continuation

One views this a a map into a Grasmannian and one calculates two Plücker-coordinates:

1) $\operatorname{det}\binom{M}{N}=(\tau-\bar{\tau})\left(\tau^{2}+6|\tau|^{2}+\bar{\tau}^{2}\right)$
2) Replace the first column by the last column of the block matrix gives new determinant $-\mathrm{i}(\tau-\bar{\tau})(\tau+\bar{\tau})^{2}$.
3) Form the quotient $-\mathrm{i} \frac{\tau^{2}+6|\tau|^{2}+\bar{\tau}^{2}}{(\tau+\bar{\tau})^{2}}$ which is non-constant but neither holomorphic nor anti-holomorphic $\Longrightarrow \tilde{\psi}_{\circ p}$ neither holomorphic nor anti-holomorphic.

[^0]: ${ }^{1}$ See http://arxiv.org/abs/1105.4108

