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1See http://arxiv.org/abs/1105.4108
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Situation

(X , g) compact, oriented Riemannian manifold, dim X = 2n.
Notation

Hk(X ) := Hk(X ; R) ;

Hk(X )Z := Hk(X ; Z)/torsion.

Topological data

Hk(X )Z × H2n−k(X )Z
〈,〉
−−→ Z (intersection pairing).

Metric data

∗ : Hk(X )→ H2n−k(X ) Hodge star-operator, ∗2 = (−1)k .
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Example 1

n = 1 =⇒ X is a topological oriented compact surface, say of
genus g . We have

Conf(X ) =

{
conf. eq. classes

of metrics

}
↔

{
oriented compl.

structures

}
∈ ∈

[g ] 7→ Xg .

One then has

jacobian of Xg := H1(X )/H1(X )Z as real torus;

∗ (depends on g) gives the complex structure (note
∗2 = − id);

the intersection pairing 〈, 〉 gives the (principal)
polarization.
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Example 2

Now assume dim X = n = 2m + 1 and set

Jn(X , g) = {Hn(X )/Hn(X )Z , ∗, 〈, 〉}.

This is Lazzeri’s jacobian, again a principally polarized abelian
variety.

Extend it to other odd cohomology groups? Needs to take
Hk(X )⊕ H2n−k(X ) which is preserved by ∗. On this space
∗2 = − id. Also the intersection-pairing is non-degenerate and
skew on Hk(X )Z ⊕ H2n−k(X )Z and so we can introduce the
principally polarized abelian variety:

Jk(X , g) := {Hk(X )⊕ H2n−k(X )/(Hk(X )⊕ H2n−k(X ))Z, 〈, 〉}
k odd and k 6= n.
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Remarks

Let (X , λ) be a a projective polarized manifold. Then Jk(X ) is
NOT Weil jacobian Jk

W . For example, if n = 3 and k = 1 the
Weil jacobian is

J1
W := {H1(X )/H1(X )Z,C ,B};

C |Hp,1−p = i2p−1, p = 0, 1 (Weil operator);
B(x , y) = 〈L2x , y〉, L = c1(λ) (Riemann form).

and C and ∗ can be compared as follows:

H1(X )
'−−−−−−→
∗

H5(X )y C

∥∥∥∥
H1(X )

'−−−−−−→
− 1

2
L2

H5(X ).

We see that:

J1(X , g)
(isogeneous)∼ {Weil Jacobian for H1} × {dual jacobian}.
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Moduli aspect

One has a “period map”

Conf(X ) −−−−−−→
p

Hbk
bk = dim Hk(X )

∈ ∈
[g ] 7−→ Jk(Xg ).

Example: X a genus g curve. Diff(X )0 (diffeo’s isotopic to
idX ) acts on Conf(X ) =⇒ Tg = Conf(X )/Diff(X )0,
Teichmüller space. The Teichmüller group Γg acts on
Tg =⇒ Mg = Γg\Tg , moduli space Mg :

Conf(X ) −−−−−−→
p

Hgy ∥∥
Tg = Conf(X )/Diff(X )0 −−−−−−→

p
Hgy y

Mg = Γg\Tg ↪→ Sp(g)Z\Hg .
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Even cohomology

Now dim X = 2n with n ≡ 1 mod 2, say n = 2m + 1.
Modified topological data One has an involution ι on even
cohomology H+(X )Z :

ι|H4∗ = id, ι|H4∗+2 = − id

and we have a unimodular skew-symmetric pairing

H2k(X )Z × H2n−2k(X )Z
ω+

−−→ Z
(α, β) 7−→ 〈α, ι(β)〉 =

∫
X α · ι(β).

Modified complex structure On H2k(X )⊕ H2n−2k(X ) one
takes J(α, β) = (∗α,− ∗ β). Then J2 = − id. We get the
principally polarized abelian variety (PPAV):

J2k(X , g) := H2kX )⊕ H2n−2k(X )/(H2k(X )⊕ H2n−2k(X ))Z
polarization: ω+.
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Generalization

Proposition

Let V an R-space with metric b and symplectic form ω. There
is a unique complex structure J with

1 b(Jx , Jy) = b(x , y) for all x , y ∈ V ;

2 ω(Jx , Jy) = ω(x , y) for all x , y ∈ V ;

3 the form bω,J defined by bω,J(x , y) := ω(x , Jy) is a
definite) metric.

Remark

In general bω,J 6= b.

Terminology bω,J = c · b, c ∈ R+ =⇒ (b, ω) a coherent pair.
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Associated PPAV

Remark

V = VZ ⊗ R and ω|VZ × VZ → Z unimodular
=⇒ J(V , b, ω) := (V /VZ , ω|VZ ) is a PPAV.

Example (X , g) as before; the pair

b = b(g)(α, β) = 〈α, ∗β〉 (Hodge metric) ;ω = ω+.

is coherent. In fact J(H+, b(g), ω+) =
∏

J2p(X , g).
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Twists by isomorphisms

H+(X )
∼−−−−−−→
τ

H+(X ) ; H+(X )Q
∼−−−−−−→
γ

H+(X )Q

b
(g)
τ (α, β) = b(g)(τα, τβ) ; ω+

γ (α, β) = ω+(γα, γβ).

1) The pair (b
(g)
τ , ω+

γ ) need not be coherent.
2) The resulting jacobian need not be principally polarized.

Example (Coherent pair, PAV): Take a unit a = b2 ∈ H4∗(X )Q
and set

ω+
a (α, β) := 〈a, α · ι(β)〉 = ω+(bα,bβ)

b
(g)
b (α, β) := b(g)(bα,bβ).

Put b =
√

a =⇒ J(H+(X ), b
(g)√

a
, ω+

a ) is a PAV but PPAV?
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K-groups: basics

For any ”good” topological space X the K -group of virtual
vector bundles on X is:

K (X ) : =
{
Z[iso-classes of C-vect. bundles on X ]/ ∼

}
where [E ⊕ F ] ∼ [E ] + [F ].

For a complex vector bundle F define the Chern character
ch(F ) ∈ H2∗(X ; Q) by

ch(F ) =
∑

eγi = m + c1(F ) + 1
2(c2

1 (F )− c2(F )) + · · ·
where

1 + c1(F )x + · · · cm(F )xm = (1 + γ1x) · · · (1 + γmx)
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Jacobians for K -groups

Theorem (Atiyah-Hirzebruch)

Assume X is torsion free (H∗(X ; Z) no torsion).
(1) The Chern character gives an injection

ch : K (X ) −→ H+(X ), Λ(X ) := Im(ch) a lattice.

(2) There exist multipliers a = 1 + a2 + · · · ∈ Λ(X ), i.e with
〈aα, β〉 ∈ Z for all α, β ∈ Λ(X );
(3) If a, multiplier with a ∈ H4∗(X ) =⇒ ω+

a unimodular.

As a consequence, for a multiplier a we have a PPAV

(H+(X )/Λ(X ), b
(g)√

a
, ω+

a )

Note also that there is a complex conjugation on K (X ) and

ω+
a (ch(α), ch(β)) =

∫
X

a ∪ ch(α⊗ β̄).
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Enter: Dirac-operators

Again: (X , g) a compact oriented Riemannian manifold
dim = 2n, n odd. Assume: X has no torsion and is spin.
Example X a compact Riemann surface, an abelian variety,
K3-surface, a Calabi-Yau.

Spin =⇒ ∃ a Dirac-operator ��De , e ∈ K (X ). Also, one has a
certain characteristic class, Hirzebruch’s A-roof genus

Â(X ) = 1 +
1

24
c2
1 (X ) + · · · ∈ H4∗(X )

which enters in the famous

Theorem (Atiyah-Singer index theorem)

Let (X , g) be a compact Riemannian manifold with a spin
structure, and let e ∈ K (X ). Then

ind(��De) =

∫
X

Â(X )ch(e).
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Jacobians for spin manifolds

Corollary (Witten, Moore-Witten)

The A-roof genus is a multiplier; indeed

ω+

Â
(ch(α), ch(β)) = ind(��De), e = α⊗ β̄.

In particular this defines a PPAV

(H+(X )/Λ(X ), b
(g)√

Â
, ω+

Â
)

canonically associated to any (torsion free) compact spin
manifold X of dimension 2n, n odd.
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Jacobians of even weight polarized Hodge
structures

Data: 1) (W ,Q): integrally polarized Hodge structure, weight
2`. 2) Weil-operator CW (i.e. CW |Hp,q = ip−q).
3) p =

∑
j h2`−2j ,2j , q = k − p =⇒ SO(W ,Q) ' SO(p, q).

Griffiths domain: SO(W ,Q)/U(2h2`,0)×· · ·U(2h`+1,`−1)×SO(h1,1).

Construction Set V = W ⊕W ∨(−k). Then

J(x + Q̂y) := Q̂CW (x)− CW (y) =⇒ J2 = − idW .

Then ∃ polarized weight 1 Hodge structure (V , q) with CV = J
and

q(x1 + Q̂y1, x2 + Q̂y2) = −Q(x1, y2) + Q(y1, x2).

Note: polarized weight 1 Hodgestructures on V , dim V = 2g
are classified by Sp(g)/U(g) parametrizing PPAV =⇒

Lemma

J(W ,Q) := (V /VZ, q) is a PAV.
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The connection with cohomology-jacobians

Situation (X , ω) compact Kähler dimC X = n with gω the
corresponding Riemannian metric. Recall that primitive
cohomology

W` := H2`
prim(X )R,

is polarized by the Riemann form

Q`(x , y) := (−1)`+1

∫
X
ωn−`x · y .

Proposition (Lefschetz decomposition)

Suppose ω is integral (e.g. (X , ω) a polarized projective
manifold). Suppose n is odd. On H2∗(X ) define
ω̃+(x , y) = (−1)`+1

∫
X ω

n−`x · ι(y). Then, for k ≤ n we have:

J2k(X , bgω , ω̃+)
(isogeneous)∼

k∏
`=0

J(W`,Q`).
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Group-theoretic explanation

Proposition

Introduce the (well-defined) homomorphism

ψ : SO(W ,Q) → Sp(W ⊕W ∨(−k), q)

f 7→ ψ(f ), ψ(f )(x + Q̂y) = f (x) + Q̂(f (y)).

With ψ̃ the induced map, one has a commutative diagram

D(W ) := SO(W ,Q)/H

π

))TTTTTTTTTTTTTTT

ψ̃ // Sp(g)/U(g)

SO(W ,Q)/K

66nnnnnnnnnnnn

where K ⊂ SO(W ,Q) is the unique maximal compact
subgroup containing H.
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An example: back to moduli

Let E = Eτ be the elliptic curve C/Z + Zτ and let α, β be the
two cycles coming from the two lattice generators {1, τ}. Set
W = H1(E )⊗ H1(E ) a natural polarizated weight 2 Hodge
structure. There is a period map p : h→ D(W ).

Define 1)

M :=

(
τ2 τ τ 1
τ̄2 τ̄ τ̄ 1

)
,N :=

(
|τ |2 −(τ + τ̄) 0 1

0 1 −1 0

)
.

2) An involution ι on (4× 2)-matrices: exchange column 1 and
4 as well as column 2 and 3.
3) The period map p composed with ψ̃ is described by

B :=

(
M iι(M)
N −iι(N)

)
.
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An example: continuation

One views this a a map into a Grasmannian and one calculates
two Plücker-coordinates:

1) det

(
M
N

)
= (τ − τ̄)(τ2 + 6|τ |2 + τ̄2)

2) Replace the first column by the last column of the block
matrix gives new determinant −i(τ − τ̄)(τ + τ̄)2.

3) Form the quotient −i
τ2 + 6|τ |2 + τ̄2

(τ + τ̄)2
which is non-constant

but neither holomorphic nor anti-holomorphic =⇒ ψ̃◦p neither
holomorphic nor anti-holomorphic.
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two Plücker-coordinates:

1) det

(
M
N

)
= (τ − τ̄)(τ2 + 6|τ |2 + τ̄2)

2) Replace the first column by the last column of the block
matrix gives new determinant −i(τ − τ̄)(τ + τ̄)2.

3) Form the quotient −i
τ2 + 6|τ |2 + τ̄2

(τ + τ̄)2
which is non-constant

but neither holomorphic nor anti-holomorphic =⇒ ψ̃◦p neither
holomorphic nor anti-holomorphic.


	Odd cohomology
	Odd cohomology
	Odd cohomology
	Even cohomology
	Generalization
	Generalization
	Spin manifolds
	Spin manifolds
	Link with Hodge theory

