
Pure and Applied Mathematics Quarterly
Volume 0, Number 0, 1, 2022

A note on the primitive cohomology lattice of a
projective surface

Chris Peters

Abstract: The isometry class of the intersection form of a compact
complex surface can be easily determined from complex-analytic in-
variants. For projective surfaces the primitive lattice is another natu-
rally occurring lattice. The goal of this note is to show that it can be
determined from the intersection lattice and the self-intersection of
a primitive ample class, at least when the primitive lattice is indefi-
nite. Examples include the Godeaux surfaces, the Kunev surface and
a specific Horikawa surface. There are also some results concerning
(negative) definite primitive lattices, especially for canonically polar-
ized surfaces of general type.
Keywords: COMPLEX PROJECTIVE SURFACES, PRIMITIVE IN-
TERSECTION LATTICE.
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1. Introduction

The intersection form of a compact connected orientable 4𝑛-dimensionalman-
ifold 𝑋 is the bilinear, symmetric form on 𝖧𝑋 = 𝐻2𝑛(𝑋,ℤ)∕(torsion) given by
cup product. By Poincaré duality this form isunimodular, that is, its Gramma-
trix has determinant±1. The pair consisting of 𝖧𝑋 and the intersection pairing
is called the intersection lattice of 𝑋.
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57N65.
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If 𝑋 ⊂ ℙ𝑁 is a smooth compact complex manifold with hyperplane section
𝐻, the orthogonal complement of the class of 𝐻𝑛 in 𝐻2𝑛(𝑋,ℤ) is called the
(middle) primitive cohomology, denoted 𝖯𝑋 . Precise knowledge of this lattice
and its group of isometries turns out to be useful, especially for arithmetic ques-
tions. This motivates interest in the main result of this note which deals with
the case of surfaces (=Theorem 4.1):

Theorem. Let 𝑋 be a complex projective surface with 𝑝𝑔(𝑋) ≠ 0 and let 𝑐 ∈ 𝖧𝑋
be a primitive representative of an ample divisor. Then the isometry class of the
lattice 𝑐⟂ is uniquely determined by the following data:

1. the triple (𝑏1(𝑋), 𝑐21(𝑋), 𝑐2(𝑋)) of topological invariants,
2. whether or not 𝑐 is characteristic
3. the self-intersection of 𝑐.

The above result implies in particular that for a given surface 𝑋 the prim-
itive lattice does not not depend on the particular choice of the projective em-
bedding of𝑋, but only on the degree of𝑋. The proof of the theorem uses firstly
Nikulin’s reformulation of the classical classification results on integral quadratic
forms in terms of the discriminant quadratic form and, secondly, on a fine anal-
ysis of the type of intersection lattices occurring for projective surfaces based
on the Enriques classification. This result is effective as illustrated for surfaces
with small 𝑐21, e.g. for some Horikawa surfaces. See Examples 4.2.

The assumption 𝑝𝑔(𝑋) ≠ 0 is equivalent to 𝖯𝑋 being indefinite, a prerequi-
site for applying Nikulin’s results. However in the definite situation one can in
several instances still determine the isometry class of the primitive intersection
lattice making use of a series of investigations by G. Watson [18, 19, 20, 21, 22,
23, 24, 25]. See Remark 4.3.
Remark 1.1. Primitive cohomology plays a central role in Hodge theory since
the Hodge decomposition together with the intersection pairing gives 𝖯𝑋 the
structure of a polarized pure Hodge structure of weight 2𝑛. To explain why
this is the case, consider an embedding 𝑋 ⊂ ℙ𝑁 . The Hodge structure on the
middle primitive cohomology in smooth families {𝑋𝑠}𝑠∈𝑆 of smooth varieties
embedded in the same ℙ𝑁 gives rise to a period map 𝑆 → Γ∖𝐷 where 𝐷 is
a suitable period domain and where Γ, the (maximal) monodromy group, is
the isometry group of the primitive lattice of a fibre 𝑋𝑠 (all such groups are
isomorphic). More precisely, since monodromy preserves the polarization, Γ is
the subgroup of the isometry group of 𝑃 = 𝖯𝑋𝑠 inducing the identity on the
discriminant group 𝑃∗∕𝑃.
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Conventions and Notations

• A lattice is a freeℤ-module of finite rank equippedwith a non-degenerate
symmetric bilinear integral form which is denoted with a dot.

• A rank one latticeℤ𝑒 with 𝑒.𝑒 = 𝑎 is denoted ⟨𝑎⟩, orthogonal direct sums
by ⦹. Other standard lattices are the hyperbolic plane 𝑈, and the root-
lattices 𝐴𝑛, 𝐵𝑛 (𝑛 ≥ 1), 𝐷𝑛, 𝑛 ≥ 4. and 𝐸𝑛, 𝑛 = 6, 7, 8. Their 𝑝-adic lo-
calizations will be denoted by the same symbol. More details are given
below in Section 2.

• If one replaces the form on the lattice 𝐿 by𝑚-times the form,𝑚 ∈ ℤ, this
scaled lattice is denoted 𝐿(𝑚).

• An inner product space over a field 𝑘 is a 𝑘-vector space equipped with
a non-degenerate symmetric bilinear form over 𝑘. It will likewise be de-
noted with a dot.

• The signature of a non-degenerate symmetric bilinear integral form 𝑏
is denoted by (𝑏+, 𝑏−) and the index by 𝜏 = 𝑏+ − 𝑏−. The signature of
the intersection lattice 𝖧𝑋 = 𝐻2𝑛(𝑋,ℤ)∕torsion, 𝑋 a compact connected
orientable 4𝑛-dimensional manifold, will be denoted by 𝜏(𝑋). If𝑋 is pro-
jective, its "primitive cohomology" is the integral primitive cohomology
(classes of 𝖧𝑋 orthogonal to an ample class) and is denoted by 𝖯𝑋 .

2. On lattices

Unimodular lattices

As is well known (cf. [13, 14]) if a unimodular form is indefinite, its isometry
class is uniquely determined by the signature and type of the form. The type of
a bilinear symmetric form by definition is even or odd. Being even means that
𝑥.𝑥 is even for all elements 𝑥 of the lattice and odd otherwise. The results from
loc. cit. state that odd unimodular forms are diagonalizable over the integers.
This is evidently not the case for unimodular even forms. Instead these are
orthogonal sums of three building blocks, the hyperbolic plane𝑈, the positive
definite root lattice 𝐸8, and its negative 𝐸8(−1). The first has rank two and has
a basis {𝑒, 𝑓} for which 𝑒.𝑒 = 𝑓.𝑓 = 0 and 𝑒.𝑓 = 1. The root lattice 𝐸8 has rank
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8with form given in the basis by the Coxeter matrix for the root lattice 𝐸8, that
is by

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

2 0 −1 0 0 0 0 0
0 2 0 −1 0 0 0 0
−1 0 2 −1 0 0 0 0
0 −1 −1 2 −1 0 0 0
0 0 0 −1 2 −1 0 0
0 0 0 0 −1 2 −1 0
0 0 0 0 0 −1 2 −1
0 0 0 0 0 0 −1 2

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

It turns out that every indefinite even unimodular form is isometric to⦹𝑠𝑈 ⦹
⦹𝑡𝐸8, a lattice of index 𝑡 ≥ 0, or to⦹𝑠𝑈⦹⦹𝑡𝐸8(−1) if the index equals−𝑡 < 0.

For definite forms the situation is more complicated. The number of non-
isometric lattices grows rapidly with the rank. See e.g. [16, Ch. IV § 2.3].

Characteristic elements

To test whether the form on a lattice 𝐿 is even or odd, one makes use of a char-
acteristic element 𝑐 ∈ 𝐿. By definition it has the property that 𝑐.𝑥+𝑥.𝑥 is even
for all 𝑥 ∈ 𝐿. Such characteristic elements exist if the discriminant of 𝐿 is odd
as one easily sees by reduction modulo 2. In fact, characteristic classes exist for
inner product spaces over the field 𝔽2. Of course, if 𝑐 ∈ 𝐿 is not isotropic and 𝐿
is even, then 𝑐⟂ is an even lattice, but this holds also if 𝑐 is characteristic in an
odd lattice 𝐿. For later use I set this apart:

Lemma 2.1. If 𝐿 is a lattice with odd discriminant and 𝑐 ∈ 𝐿 not isotropic, i.e.
𝑐 ⋅ 𝑐 ≠ 0, then 𝑐⟂ is an even lattice if and only if 𝑐 is a characteristic element.

Remark 2.2. An odd unimodular indefinite lattice being diagonalizable, the
reader may be surprised that it can have unimodular even sublattices. That
this is indeed the case can be illustrated with the lattice 𝐿 = ⟨1⟩ ⦹ ⟨1⟩ ⦹ ⟨−1⟩.
The basic observation is that 𝐿 is isometric to ⟨1⟩ ⦹ 𝑈. Explicitly, if {𝑒1, 𝑒2, 𝑒3}
is an orthogonal basis for 𝐿, then 𝑐 = 2𝑐′, 𝑐′ = 𝑒1 + 𝑒2 + 𝑒3 is a characteristic
element with 𝑐′.𝑐′ = 1 and 𝑐⟂ is the lattice with basis {𝑒1+𝑒3, 𝑒2+𝑒3} isometric
to 𝑈.

Discriminant forms and the genus

Let 𝐿 be a lattice.We recall the concept of discriminant group and discriminant
form. Remark that the pairing on 𝐿 extends to a ℚ-bilinear pairing on 𝐿 ⊗ ℚ
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and induces the ℚ∕ℤ-valued form on the discriminant group 𝐴(𝐿) = 𝐿∗∕𝐿,
𝐿∗ = Homℤ(𝐿, ℤ) given by

𝑏𝐿 ∶ 𝐴(𝐿) ×𝐴(𝐿) → ℚ∕ℤ, 𝑥̄.𝑦̄ ↦ 𝑥.𝑦 mod ℤ (discriminant bilinear form).

Even lattices come with an integral quadratic form 𝑞 given by 𝑞(𝑥) = 1
2
𝑏(𝑥, 𝑥)

and for these one considers a finer invariant, thediscriminantquadratic form

𝑞𝐿 ∶ 𝐴(𝐿) → ℚ∕ℤ, 𝑥̄ ↦ 𝑞(𝑥) mod ℤ.

The discriminant form is completely local in the sense that it decomposes into
𝑝-primary forms where 𝑝 is a prime dividing the discriminant. More precisely,
it is the orthogonal sum of the discriminant forms of the localizations 𝐿𝑝 =
𝐿 ⊗ ℚ𝑝 and so it ties in with the genus of the lattice, i.e. the set of isometry
classes {𝐿𝑝}𝑝 prime together with 𝐿 ⊗ ℝ. A celebrated result of V. Nikulin [15,
Cor. 1.16.3] emphasizes the role of the discriminant form in determining the
genus:
Theorem. The genus of non-degenerate lattice is completely determined by its
type, rank, index and the discriminant form.

It is well known that the number of isometry classes in a genus is finite. It
is also called the class number of the genus.

For applications in geometry it is important to have a criterion for class
number 1 lattices. This is often the case in the indefinite situation as stated by
another result due to V. Nikulin [15, 1.13.3 and 1.16.10] and M. Kneser [10]:
Theorem 2.3. Let 𝐿 be a non-degenerate indefinite lattice of rank 𝑟. Its class
number is 1 in the following instances:

1. In case 𝐿 is even and the discriminant group of 𝐿 can be generated by≤ 𝑟−2
elements. Hence, in this case𝐿 is uniquely determined by its rank, index and
the discriminant quadratic form.

2. In case 𝐿 is odd, and the discriminant group of 𝐿 can be generated by≤ 𝑟−3
elements. Hence, in this case𝐿 is uniquely determined by its rank, index and
the discriminant bilinear form.

These results will be in particular applied to primitive sublattices of 𝐿, i.e.
sublattices 𝑆 such that 𝐿∕𝑆 is free of torsion. In case 𝑆 is well understood, one
can say much about its orthogonal complement:
Lemma 2.4. Let 𝑆 be a primitive non-degenerate sublattice of 𝐿 and𝑇 = 𝑆⟂ then
disc (𝑆) = ±disc

(
𝑆⟂
)
and (𝐴(𝑆), 𝑏𝑆) is isometric to (𝐴(𝑇), −𝑏𝑇).

For proofs, see e.g. [9, 11].
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Intersection lattices

Lemma 2.4 has the following implication for intersection lattices:
Corollary 2.5. Let 𝑋 be a compact connected orientable 4𝑛-dimensional mani-
fold 𝑋 with indefinite intersection form and let 𝑐 ∈ 𝖧𝑋 be primitive with 𝑐.𝑐 ≠ 0.
If 𝖧𝑋 is even assume that 𝑏𝑛(𝑋) ≥ 4 and if 𝖧𝑋 is odd and 𝑐 is not characteristic,
assume that 𝑏𝑛(𝑋) ≥ 5. Then the isometry class of 𝑐⟂ is uniquely determined by
the signature (𝑏+, 𝑏−) of 𝖧𝑋 and the integer 𝑐.𝑐.
Proof. The discriminant form of ℤ.𝑐 equals ⟨1∕(𝑐.𝑐)⟩ and by Lemma 2.4 the
discriminant form for 𝑇 ∶= 𝑐⟂ equals −⟨1∕(𝑐.𝑐)⟩ and, in particular, is a torsion
form on a length one group. The assumptions imply that 1 ≤ rank(𝑇) − 2 in
the even case, and 1 ≤ rank(𝑇) − 3 in the odd case. Since 𝑇 is odd if and only
if 𝑐 is not characteristic, the statement follows.

Assume now that 𝑋 is a compact orientable 4-dimensional manifold with
intersection lattice 𝖧𝑋 . The second Stiefel–Whitney class 𝑤2 is a characteristic
class for the inner product space𝐻2(𝑋, 𝔽2). To pass to integral cohomology one
uses the reduction mod 2map, induced by the natural projection ℤ → ℤ∕2ℤ:

𝜌2 ∶ 𝐻2(𝑋,ℤ) → 𝐻2(𝑋,ℤ∕2ℤ).(1)

Any lift of 𝑤2 under 𝜌2 is an integral characteristic element since the intersec-
tion pairing is compatible with reduction modulo 2. In the special case where
𝑋 is a compact almost complex manifold of complex dimension 2, there is a
canonical choice for a lift, namely the first Chern class 𝑐1. We note a simple
consequence:
Lemma 2.6. The intersection pairing on a compact almost-complex surface 𝑋
is even if 𝑐1(𝑋) is divisible by 2 in integral cohomology. The converse is true if
𝐻1(𝑋,ℤ) is free of 2-torsion.

If 𝑐21(𝑋) ≠ 0, and 𝑐1(𝑋) = 𝑘𝑐 with 𝑐 primitive, then the lattice 𝑐1(𝑋)⟂ ⊂
𝐻2(𝑋,ℤ) is a non-degenerate even lattice of discriminant ±𝑐.𝑐.
Proof. The preceding remarks show that if 𝑐1(𝑋) is divisible by 2 in cohomol-
ogy, 𝑥.𝑥 is even for all 𝑥 ∈ 𝐻2(𝑋,ℤ). For the converse, consider the long exact
sequence associated to 0 → ℤ ×2−−→ ℤ → ℤ∕2ℤ → 0 and use that the inter-
section pairing on𝐻2(𝑋, 𝔽2) is non-degenerate. Here surjectivity of the map 𝜌2
(cf. (1)) is used which follows since by Poincaré-duality, 𝐻3(𝑋,ℤ) ≃ 𝐻1(𝑋,ℤ)
– which has no 2-torsion by assumption.

The penultimate assertion is also clear since 𝑐1.𝑥 + 𝑥.𝑥 = 𝑥.𝑥 is even
for all 𝑥 ∈ 𝑐1(𝑋)⟂. The assertion about the discriminant is a special case of
Lemma 2.4.
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3. Complex algebraic surfaces

Invariants

Let𝑋 be a compact complex projective surface. It is well known that the Chern
numbers, a priori complex invariants, are in fact (oriented) topological invari-
ants. This is clear for 𝑐2(𝑋) since it can be identified with the Euler number
𝑒(𝑋). To see that 𝑐21(𝑋) is a topological invariant, one invokes a deep theorem,
the index theorem ([6, Thm. 8.2.2]):

Theorem 3.1 (Index theorem – special case). For a compact differentiable 4-
manifold 𝑋 admitting a complex structure, the index 𝜏(𝑋) satisfies

𝜏(𝑋) = 1
3(𝑐

2
1(𝑋) − 2𝑐2(𝑋)).

For algebraic surfaces the Hodge decomposition gives two more invariants
for 𝑋, namely 𝑞(𝑋) = 1

2
𝑏1(𝑋) and 𝑝𝑔(𝑋) = dim𝐻2,0(𝑋). In particular, 𝑞 is a

topological invariant. Because of Noether’s formula [1, p. 26],

𝜒(𝑋) ∶= 1 − 𝑞(𝑋) + 𝑝𝑔(𝑋) =
1
12(𝑐

2
1(𝑋) + 𝑐2(𝑋)),(2)

also 𝑝𝑔 is a topological invariant.
Recalling that since 𝑐1 is a characteristic element for the intersection lattice,

these observations make it possible to determine the isometry class of 𝖧𝑋 from
the type of 𝑐1 together with the integer invariants 𝑐21 and 𝑐2.

Example 3.2. A K3 surface by definition is a surface with 𝑏1 = 0 and trivial
canonical bundle and so 𝑐1 = 0 and 𝑝𝑔 = 1, 𝑞 = 0 implying 2 = 1

12
𝑐2. Hence

𝑏2 = 24 − 2 = 22. The index theorem gives 𝜏 = 1
3
(−48) = −16 and since the

intersection lattice is even, it is isometric to⦹3𝑈 ⦹⦹2𝐸8(−1).
An Enriques surface has 𝑝𝑔 = 𝑞 = 0 while 𝑐1 is 2-torsion. A similar rea-

soning shows that 𝑈 ⦹ 𝐸8(−1) is its intersection lattice.

For algebraic surfaces (and more generally for compact Kähler surfaces)
there is a characterization of the signature in terms of Hodge numbers:

Lemma 3.3 ([1, Thm. IV.2.6]). Let 𝑋 be a compact Kähler surface. Then the
signature of 𝑋 equals (2𝑝𝑔(𝑋) + 1, ℎ1,1(𝑋) − 1) where ℎ1,1(𝑋) = dim𝐻1,1(𝑋).
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Surface classification

I also make use of the Enriques classification of surfaces. The notion of a min-
imal surface plays an essential role. All surfaces are obtained from these by
repeated blowing up in points. In the present context it is important to recall
how the intersection lattice changes under a blow-up. Since blowing up 𝑋 in
a point does not affect 𝐻𝑖, 𝑖 ≠ 2 and replaces 𝐻2(𝑋) by 𝐻2(𝑋) ⊕ ℤ, where the
summand ℤ is generated by the exceptional curve which has self-intersection
−1, one has:

Lemma 3.4. Let 𝑋 be a compact complex surface and let 𝑋 be the surface ob-
tained by blowing up 𝑋 in a point. Then 𝖧𝑋 = 𝖧𝑋 ⦹ ⟨−1⟩. In particular, the
intersection lattice of a non-minimal surface is odd.

Moreover 𝑐21(𝑋) = 𝑐21(𝑋) − 1, 𝑐2(𝑋) = 𝑐2(𝑋) + 1 and 𝜏(𝑋) = 𝜏(𝑋) − 1.

In the Enriques classification – besides the already mentioned classes (K3
surfaces, Enriques surfaces) – some other classes appear. Firstly the rational
and ruled surfaces which by definition are obtained from the projective plane,
respectively a minimal ruled surface by repeatedly blowing up and blowing
down. Then there are the elliptic surfaceswhich by definition admit a holomor-
phic map onto a curve such that the general fibre is an elliptic curve. Among
these are some ruled surfaces, the Enriques surfaces and some K3 surfaces.
Next, there are so-called bi-elliptic or hyperelliptic surfaces and, finally, the
large class of properly elliptic surfaces which by definition have Kodaira di-
mension 1. The surfaces with Kodaira dimension 2 are called "surfaces of gen-
eral type". Together these exhaust the classification (see e.g. [2]). Summarizing,
replete with invariants, one has:

Theorem 3.5 (Enriques classification). Every minimal complex projective sur-
face belongs to exactly one of the following classes ordered according to their Ko-
daira dimension 𝜅:

𝜅 Class 𝑏1 𝑝𝑔 𝑐21 𝑐2
−∞ minimal rational surfaces 0 0 8 or 9 4 or 3

ruled surfaces of genus > 0 2𝑔 0 8(1 − 𝑔) 4(1 − 𝑔)
0 Two-dimensional tori 4 2 0 0

K3 surfaces 0 1 0 24
Enriques surfaces 0 0 0 12
bielliptic surfaces 2 0 0 0

1 minimal properly elliptic surfaces 0 ≥ 0
2 minimal surfaces of general type > 0 > 0
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In the next section one considers indefinite primitive lattices.Here I discuss
the – rather small – list of surfaces having definite primitive lattices. First of all,
these cannot be positive definite:

Lemma 3.6. Let 𝑋 be a complex projective surface. Then 𝐻2(𝑋,ℝ) is positive
definite if and only if 𝑏2(𝑋) = 1 and so 𝖯𝑋 ≠ 0 cannot be positive definite.

Proof. Lemma 3.3 implies that the signature of a primitive lattice is (2𝑝𝑔, ℎ1,1−
1) which is positive definite precisely if 𝑏2 = 𝜏 = 2𝑝𝑔 + 1. Moreover, 𝑋 is
minimal of general type and one finds 𝑐21 = 10𝑝𝑔−8𝑞+9 and 𝑐2 = 2𝑝𝑔−4𝑞+3.
Now invoke the Bogomolov–Miyaoka–Yau inequality (cf. [1, §VII.4]), stating

𝑐21 − 3𝑐2 ≤ 0,(3)

which gives 4𝑝𝑔 + 4𝑞 ≤ 0 and so 𝑝𝑔 = 𝑞 = 0. But then 𝑏2 = 1 which forces
𝖯𝑋 = 0.

Secondly, as to negative definite 𝖯𝑋 , by Lemma 3.4 one may restrict to min-
imal surfaces and hence, inspecting the table from Theorem 3.5, one sees:

Lemma 3.7. Let 𝑋 be complex projective surface with 𝖯𝑋 ≠ 0 and negative def-
inite. Then 𝑋 is either rational or ruled, a (possibly blown-up) Enriques surface,
an elliptic surface with 𝑝𝑔 = 0 or a surface of general type with 𝑝𝑔 = 0.

Remark 3.8. In the definite situation there might be more isometry classes in
the genus. There are however instances where the class number is exactly one.
For minimal surfaces that are canonically polarized and with 𝑝𝑔 = 0 this can
be used to determine the primitive cohomology. See the table in Remark 4.3.

In the next section one also needs the following result:

Lemma 3.9. Let 𝑋 be a complex projective surface with 𝑏2(𝑋) ≤ 4 and 𝑝𝑔(𝑋) =
1. Then𝑋 is a minimal algebraic surface satisfying 𝑐21(𝑋) = 3𝑐2(𝑋) = 18, 𝑞(𝑋) =
0 (and so 𝑏2(𝑋) = 4).

Proof. Assume that 𝑋 is minimal elliptic. Since 𝑝𝑔 = 1 the surface is either K3
or properly elliptic. However, since 𝑏2 ≤ 4, the surface cannot be K3. So it is
properly elliptic with invariants 𝑐21(𝑋) = 0 and 𝑐2(𝑋) = 12(𝑝𝑔(𝑋)−𝑞(𝑋)+1) =
12(2 − 𝑞). On the other hand 𝑐2(𝑋) = 2 − 4𝑞(𝑋) + 𝑏2(𝑋) and so 4 ≥ 𝑏2(𝑋) ≥
2𝑝𝑔+1 = 3must be even and hence 𝑏2(𝑋) = 4, but then 𝑐2(𝑋) = 12(2−𝑞(𝑋)) =
6 − 4𝑞(𝑋) which is impossible. If 𝑋 is not minimal, for its minimal model we
have 𝑏2 ≤ 3 and so it also does not exist

If 𝑋 is of general type, then from 𝑐2(𝑋) = 2 − 4𝑞(𝑋) + 𝑏2(𝑋) > 0 one
finds 𝑞(𝑋) = 0. Since 𝑏2(𝑋) = 3, 4, from 24 = 𝑐21(𝑋) + 𝑐2(𝑋) one finds that
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either (𝑐1(𝑋), 𝑐2(𝑋)) = (19, 5) or = (18, 6). The inequality (3) excludes the first
possibility and then 𝑏2(𝑋) = 4. If𝑋were notminimal and𝑋 itsminimalmodel,
then 𝑏2(𝑋) = 3 which is excluded by the previous calculation.

Remark 3.10. Since𝑋 satisfies 𝑐21(𝑋) = 3𝑐2(𝑋), by S.T. Yau’s results [26], its uni-
versal cover is the unit ball. The existence of a surface with 𝑝𝑔(𝑋) = 1, 𝑞(𝑋) = 0
and 𝑐21(𝑋) = 18 is not known.1 These are of course far from simply connected.
For simply connected surfaces the maximum 𝑐21 seems to be 12 (G. Urzua, un-
published).

4. On primitive intersection lattices of surfaces

The main result is as follows.

Theorem 4.1. Let 𝑋 be complex projective surface whose primitive lattice 𝖯𝑋 is
indefinite. Let ℎ ∈ 𝖧𝑋 be a primitive ample class. Then

1. If 𝖧𝑋 is even, the isometry class of 𝖯𝑋 is uniquely determined by the triple
(𝑏1(𝑋), 𝑐21(𝑋), 𝑐2(𝑋)) of topological invariants together with ℎ.ℎ.

2. In case 𝖧𝑋 is odd, this depends in addition to ℎ being characteristic or not:
In case ℎ is characteristic, 𝖯𝑋 is even and otherwise it is odd. If the latter
occurs, one assumes in addition that 𝑏2(𝑋) ≠ 4.

Proof. This is a direct consequence ofCorollary 2.5. Indeed, since 𝜏(𝑋) = 1
3
(𝑐21(𝑋)−

𝑐2(𝑋)), the index of 𝖯𝑋 equals 𝜏(𝑋) − 1 and rank(𝖯𝑋) = 𝑏2(𝑋) − 1 = 𝑐2(𝑋) −
2𝑏1(𝑋) − 1. The result follows from Corollary 2.5 and Lemma 3.9. Indeed, the
latter result implies that 𝑏2(𝑋) ≥ 4.

Examples 4.2. 1. For a complex projective surface 𝑋 with 𝑐21(𝑋) = 1 and
𝐾𝑋 ample and 𝑋 embedded by a suitable multiple of 𝐾𝑋 , one has 𝖯𝑋 ≃
⦹𝑠𝑈 ⦹ ⦹𝑡𝐸8(−1) since the index is negative by the index formula (cf.
Theorem 3.1). The Noether inequality [1, Theorem VII.3.1] stating that
𝑝𝑔 ≤

1
2
𝑐21 +2 implies that 𝑝𝑔 ≤ 2. Furthermore, in case 𝑞 > 0, O. Debarre

[4, 5] has show that 2𝑝𝑔 ≤ 𝑐21 so that 𝑝𝑔 = 0 in the present situation.
From this and the Noether formula (2), one arrives at the following sets
of possible invariants:

1Sai Kee Yeung explained to me that based on work of Cartwright–Steger (C.R.
Math. Ac. Sc. Paris 348) and Prasad–Yeung (Inv. Math.186 & 182), one can construct
unramified double covers of fake projective planes with these invariants.
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𝜒 1 2 3
𝑐2 11 23 35

(𝑝𝑔, 𝑞) (0, 0) (1, 0) (2, 0)
(𝑠, 𝑡) (0, 1) (2, 2) (4, 3)

Here are some surfaces within this range of invariants (the list is far from
complete!):

• The so-called Godeaux-type surfaces, i.e. those with 𝑝𝑔 = 𝑞 = 0
and 𝑐21 = 1. For concrete examples, see e.g. [1, §VII.10]. Here 𝖯𝑋 is
unimodular and negative definite of rank 8. It is known that then
𝖯𝑋 ≃ 𝐸8(−1) (cf. Table 1).

• The Kynev surface from [12, 17] with 𝑐21 = 1, 𝑝𝑔 = 1 and 𝑞 = 0 (so
that 𝑐2 = 23).

• E. Horikawa’s (simply connected) surface from [7] with 𝑐21 = 1, 𝑐2 =
35 (so that 𝑏2(𝑋) = 33).

2. The simplest non-unimodular 𝖯𝑋 are obtained for surfaces𝑋with 𝑐21(𝑋) =
2 and 𝐾𝑋 ample and 𝑋 embedded by a suitable multiple of 𝐾𝑋 . Here
disc (𝖯𝑋) = ±2. As before, using Noether’s inequality, Debarre’s inequal-
ity and the Noether formula, one arrives at the following sets of possible
invariants:

𝜒 1 2 3 4
𝑐2 10 22 34 46

(𝑝𝑔, 𝑞) (0, 0), (1, 1) (1, 0) (2, 0) (3, 0)

These surfaces are known to exist. I give some examples:

• The numerical Campedelli surfaces, i.e., those with 𝑝𝑔 = 𝑞 = 0
and 𝑐21 = 2. Again, for examples see e.g. [1, §VII.10] For these, 𝖯𝑋
is negative definite of rank 2 and with disc (𝖯𝑋) = −2. It is known
that 𝖯𝑋 ≃ 𝐸7(−1). See Remark 4.3 and Table 1 below.

• The surfaces with 𝑝𝑔 = 𝑞 = 1 and 𝑐21 = 2 have been completely
classified. See [3]. Here 𝖯𝑋 has signature (2, 9) and discriminant−2.
Such a lattice is isometric to ⟨2⟩ ⦹ 𝑈 ⦹ 𝐸8(−1). This follows from
Theorem 2.3 since the given lattice has the correct signature and
discriminant form.

• Horikawa’s surface with 𝑐21 = 2, 𝑝𝑔 = 3, 𝑞 = 0 (and 𝑐2 = 46) from
[8]. Here 𝖯𝑋 has signature (6, 37) and discriminant−2. Such a lattice
is isometric to ⟨2⟩ ⦹⦹5𝑈 ⦹⦹4𝐸8(−1).
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3. Let𝑋 be an Enriques surface. Then𝖧𝑋 ≃ 𝑈⦹𝐸8(−1). Let 𝑐 be a primitive
vector in the𝑈 component, say 𝑐 = 𝑒+𝑓where {𝑒, 𝑓} is the standard basis
of 𝑈. Then 𝑐⟂ ≃ ⟨−2⟩ ⦹ 𝐸8(−1). By the main theorem in [23] this lattice
has class number 1. By loc. cit. for vectors of the form 𝑐′ = 𝑑.𝑒+𝑓, 𝑑 ≠ ±1,
the class number of the lattice (𝑐′)⟂ is larger than 1.
In fact, to interpret Watson’s results, one has to be careful since his ter-
minology differs form what is nowadays usual. First of all, Watson only
considers quadratic forms and so the associated bilinear forms (the polar
forms) are always even. His notation compares to the one used in this
note as follows: 𝑃 = 𝑈, 𝑄 = ⟨2⟩, 𝐵 = 𝐴2. 𝐸 = 𝐸8 so that the two forms of
rank 9 having class number 1 are 𝐹9 = 𝐸8⦹ ⟨2⟩ and 𝐺9, an indecompos-
able form of discriminant 8 (in loc. cit. the discriminant of forms of odd
rank have been divided by 2). The last form is not isometric to 𝐸8 ⦹ ⟨8⟩
since (𝐺9)2 = ⦹3𝑈 ⦹𝐴2 ⦹ ⟨−3.23⟩.

Remark 4.3. If 𝖯𝑋 is definite, Theorem 2.3 does not apply. However, there are
lists of low rank definite lattices that have one isometry class in its genus. See
e.g., [18, 19, 20, 21, 22, 23, 24, 25]. This leads to the following table.

Table 1: List of lattices 𝖯𝑋 for 𝑋 canonically polarized with 𝜒(𝑋) = 12.

𝑐21, rank(𝑃𝑋) lattice discrim. form
(1, 8) 𝐸8(−1) 0
(2, 7) 𝐸7(−1) ⟨−1∕2⟩
(3, 6) 𝐸6(−1) ⟨1∕3⟩
(4, 5) 𝐷5(−1) ⟨−1∕4⟩
(5, 4) 𝐴4(−1) ⟨−4∕5⟩
(6, 3) 𝐴2(−1) ⦹ ⟨−2⟩ ⟨1∕3⟩ ⦹ ⟨−1∕2⟩

(7, 2) (−4 1
1 −2) ⟨1∕7⟩

(8, 1) ⟨−8⟩ ⟨−1∕8⟩

That the given lattices of rank 8, 2 and 1 have class number 1 is trivial or
else well known. For other ranks I refer to the cited articles by G. Watson. The
lattices in the table indeedhave rank 9−𝑘 anddiscriminant groupℤ∕𝑘ℤ,𝑘 = 𝑐21
and so these match with those for which the results in loc. cit. show that the
class number of the genus equals one.
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[11] Kondō, S. 𝐾3 surfaces, vol. 32 of EMS Tracts in Mathematics. EMS Pub-
lishing House, Berlin, 2020. 5

[12] V. I. Kynev. An example of a simply connected surface of general type
for which the local Torelli theorem does not hold. (Russian). C. R. Acad.
Bulgare Sci. 30, (1977) 323–325. 11

[13] Milnor, J. On simply connected 4-manifolds. In Symposium interna-
cional de topología algebraica International symposi um on algebraic topol-
ogy. Universidad Nacional Autónoma de México and UNESCO, Mexico
City, 1958, pp. 122–128. 3

[14] Milnor, J., and Husemoller, D. Symmetric Bilinear Forms, vol. 73 of
Ergebn. der Math. und ihrer Grenzgebiete. 3. Folge. Springer Verlag, Berlin,
1973. 3

[15] Nikulin, V. V. Integral symmetric bilinear forms and some of their geo-
metric applications. Math. USSR Izv. 49, (1980), 103–167. 5

[16] Serre, J.-P. A course in arithmetic. Springer Verlag, Berlin etc., 1973. 4
[17] A. N. Todorov. Surfaces of general type with 𝑝𝑔 = 1 and (𝐾, 𝐾) = 1. I.

Ann. Sci. École Norm. Sup. (4), (1980), 1–21. 11



14 Chris Peters

[18] G. L Watson. One-class genera of positive quadratic forms. J. London
Math. Soc. (38), (1963), 387–392. 2, 12

[19] G. L Watson. One-class genera of positive ternary quadratic forms.
Mathematika (19), (1972), 96–104. 2, 12

[20] G. L Watson. One-class genera of positive quadratic forms in at least
five variables. Acta Arith. (24), (1973/74), 309–327. 2, 12

[21] G. L Watson. One-class genera of positive ternary quadratic forms. II.
Mathematika (19), (1975), 96–104. 2, 12

[22] G. L Watson. One-class genera of positive quaternary quadratic forms.
Acta Arith. (26), (1974/75), 461–475. 2, 12

[23] G. L Watson. One-class genera of positive quadratic forms in nine and
ten variables. Mathematika (25), (1978), 57–675. 2, 12

[24] G. LWatson. One-class genera of positive quadratic forms in eight vari-
ables. J. London Math. Soc. (2) (26), (1982), 227–244. 2, 12

[25] G. LWatson. One-class genera of positive quadratic forms in seven vari-
ables. Proc. London Math. Soc. (3) (48), (1984), 175–192. 2, 12

[26] S. T. Yau. Calabi’s conjecture and some new results in algebraic geometry.
Proc. Nat. Acad. Sci. U.S.A. 74, (1977), 1798–1799. 10

Chris Peters
Technical University Eindhoven
Eindhoven, Netherlands
E-mail: c.a.m.peters@tue.nl

mailto:c.a.m.peters@tue.nl

	Introduction
	On lattices
	Complex algebraic surfaces
	On primitive intersection lattices of surfaces
	References

