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Abstract

Let X be a complete intersection inside a variety M with finite-dimensional motive and for which
the Lefschetz-type conjecture ( )B M holds. We show how conditions on the niveau filtration on
the homology of X influence directly the niveau on the level of Chow groups. This leads to a
generalization of Voisin’s result. The latter states that if M has trivial Chow groups and if X has
non-trivial variable cohomology parametrized by c-dimensional algebraic cycles, then the cycle
class maps ( )  ( )A X H Xk k2 are injective for <k c. We give variants involving group actions,
which lead to several new examples with finite-dimensional Chow motives.

1. Introduction

1.1. Background

Let X be a smooth complex projective variety of dimension d . While the cohomology ring (see
the conventions about the notation at the end of the introduction) ( )H X* is well understood, this is
far from true for the Chow ring ( )A X* , the ring of algebraic cycles on X modulo rational equiva-
lence. The two are linked through the cycle class map

↦g g( )  ( ) [ ]A X H X , .2* *

If this map is injective, we say that X has trivial Chow groups. If this is not the case, the kernel
( )A Xhom* , the ‘homologically trivial’ cycles, can then be investigated through the Abel–Jacobi map
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( )  ( )A X J Xhom* *

with kernel ( )A XAJ* , the ‘Abel–Jacobi trivial’ cycles. If X is a curve, Abel’s theorem tells us that
( ) =A X 0AJ

1 .
The interplay between Hodge theoretic aspects of cohomology and cycles became apparent

through the fundamental work of Bloch and Srinivas [7] as complemented by [20, 32]. They inves-
tigate the consequences for the Chow groups and cohomology groups of X if the class
d Î ( ´ )A X Xd of the diagonal D Ì ´X X admits a decomposition into summands having sup-
port on lower dimensional varieties. This clarifies the role of the so-called coniveau filtration

( )N H X• * in cohomology which takes care of cycle classes supported on varieties of varying
dimensions. Vial [41] discovered a variant which works better in homology which he called the
niveau filtration ( )

~
N H X

•

* . We introduce a refined niveau filtration on homology  ( )N H X
•

* which
is compatible with polarizations. The precise definitions are given below in Section 2.4. It suffices
to say that we have inclusions  ( ) Í ( ) Í ( )

~
N H X N H X N H X

• • •
* * * with equality everywhere if the

Lefschetz conjecture B is true for all varieties. Conjecture B is recalled below in Section 2.2.
Note that the Künneth formula d p= å =k

d
k0

2 , with p Î ( ) Ä ( ) = ( ) Ä-H X H X H Xk
d k k k2 *

( )H Xk , can be interpreted as an identity inside the ring of endomorphisms of ( )H X* . Since
d Î ( ´ )H X Xd2 acts as the identity on ( )H X* , in ( )H XEnd * one thus obtains the (cohomologi-
cal) Künneth decomposition

∣ ·åp p p d= Î ( ) =
=

( )H Xid , End a projector with id.
k

d

k k k H X jk
1

2

j*

The projectors are mutually orthogonal, that is, ◦p p = 0j k if ¹j k . Moreover, the Künneth decom-
position is by construction compatible with Poincaré duality and so is called self-dual; in other
words, pk is the transpose of p -d k2 for all <k d .

Even if the Künneth components pk are classes of algebraic cycles, their sum need not give a
decomposition of the diagonal. If this is the case, and if, moreover, these give a self-dual decom-
position of the identity in ( )A XEnd * by mutually orthogonal projectors, one speaks of a (self-
dual) Chow–Künneth decomposition, abbreviated as ‘CK-decomposition’. Its existence has been
conjectured by Murre [28], and it has been established in low dimensions and a few other cases.

One would like to have a refined CK-decomposition which takes into account the coniveau filtra-
tion or the (refined) niveau filtration, since then the conclusions of Bloch and Srinivas [7] can be
applied. This is related to the validity of the standard conjecture ( )B X as reviewed in Section 2.2.

1.2. Set up and results

Following Voisin [45, 46], we consider complete intersections X of dimension d inside a given
smooth complex projective variety M and we ask about the relations between the Chow groups of
M and X . On the level of cohomology, this is a consequence of the classical Lefschetz theorems:
apart from the ‘middle’ cohomology ( )H Xd , the cohomology of X is completely determined by

( )H M* , while for the middle cohomology, one has a direct sum splitting

( ) = ( ) Å ( )H X H X H Xd d d
fix var
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into fixed cohomology ( ) = ( )H X i H Md d
fix * and its orthogonal complement ( )H Xd

var under the cup
product pairing. Here ↪i X M: is the inclusion, and ( )  ( )i H M H X: d d* is injective.

For this to have consequences on the level of Chow groups, it seems natural to assume that M
has trivial Chow groups. This is the point of view of Voisin in [46]. Her main result uses the
notion of a subspace Ì ( )H H Xk ‘being parametrized by c-dimensional algebraic cycles’ [46, Def.
0.3] which is slightly stronger than demanding that Ì ( )H N H X

c k , where N is our refined version
of Vial’s filtration. A comparison of our filtration with Vial’s is given in Section 3.2. See in par-
ticular Remark 4.7. We can now state Voisin’s main result from [46]:

THEOREM 1.1 Assume that M has trivial Chow groups and that X has non-trivial variable co-
homology parametrized by c-dimensional algebraic cycles. Then the cycle class maps ( ) A Xk

( )H Xk2 are injective for <k c.

Our idea is to replace the condition of M having trivial Chow groups by finite dimensionality
of the motive of M—which conjecturally is true for all varieties. (See [29] for background on
Chow motives.) The main idea which makes this operational is the following nilpotency result
(= Proposition 2.9): if r is the codimension of X in M , a degree r correspondence which restricts to
a cohomologically trivial degree zero correspondence on X is nilpotent as a correspondence on X .

The second ingredient is due to Voisin [45, Proposition 1.6]: a degree d cohomogically trivial
relative correspondence can be modified in a controlled way such that the new relative correspond-
ence is fiberwise rationally equivalent to zero.

Given these inputs, the argument leading to our results now runs as follows. First we make use
of the refined niveau filtration by way of Propositions 4.5 and 4.8 to find relative correspondences
that decompose the diagonal in homology in the way we want. To the difference we apply the
Voisin result. This provides first of all information on the level of the Chow groups of the fibers
and, secondly, allows us to apply the nilpotency result. Writing this out gives strong variants of
the above theorem of Voisin. These have been phrased in homology rather than cohomology
because, as mentioned before, Vial’s filtration and ours behave better in the homological setting.
One of our main results can be paraphrased as follows.

THEOREM 1.2 (= Theorem 6.6). Suppose that ( )B M holds, that the Chow motive of M is finite-

dimensional and that ( ) = ( )[ ]+
H M N H Mk k

k 1
2 for £k d . Suppose ( ) ¹H X 0d

var , and that for some
positive integer c, we have ( ) Ì ( )H X N H Xd

c
d

var . Then ( ) =A X 0k
hom if <k c or > -k d c.

Voisin’s result is a direct consequence: by [39, Theorem 5] varieties with trivial Chow groups have
finite-dimensional motive and conjecture B holds for them as well and the condition ( ) =H Mk

( )[ ]+
N H Mk

k 1
2 holds since M has trivial Chow groups. Surprisingly, if we apply Vial’s result [38], we

find that if the condition in the above theorem holds for = [ ]c d

2
, then ( )h X itself also has finite dimen-

sion and up to motives of curves and Tate twists is a direct factor of ( )h M (Corollary 6.7).
The known examples of finite-dimensional motives are all directly related to curves, which

very much limits the search for examples. However, inside the realm of motives, we can use other
projectors besides the identity, namely those that come from group actions. In Section 7, we have
formulated variants of the main result involving actions of a finite abelian group, say G. Then,
even if the level of the Hodge-niveau filtration on variable cohomology is too big to apply our
main theorems, there might be a G-character space which has the correct Hodge-level. Provided
the (generalized) Hodge conjecture holds, which is automatically the case in dimensions £2, this
then ensures the desired condition on the niveau filtration. In Section 8, we construct examples
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where this is the case and for which one of the group variants of the main theorem can be success-
fully applied. These examples all yield new finite-dimensional motives because of the above-
mentioned result of Vial.

We thus obtain several new examples of finite-dimensional motives:

• hypersurfaces in abelian 3-folds, including the Burniat–Inoue surfaces,
• hypersurfaces in a product of a hyperelliptic curve and certain types of K3 surfaces,
• hypersurfaces in 3-folds that are products of three curves, one of which is hyperelliptic,
• odd-dimensional complete intersections of four quadrics—generalizing the Bardelli example [3].

The surface examples are all of general type.
For simplicity, we have only considered involutions since then all invariants can easily be

calculated, but it will be clear that the method of construction allows for many more examples of
varieties admitting all kinds of finite abelian groups of automorphisms.

NOTATION 1.3 Varieties will be defined over C. We use H H,* * for the (co)homology groups with
Q-coefficients and likewise we write A A,* * for the Chow groups with Q-coefficients.

The category of Chow motives (over a field k) is denoted by ( )kMotrat , the category of covari-
ant homological motives by ( )kMothom and the category of numerical motives ( )kMotnum . For a
smooth projective manifold X , we let ( ) Î ( )h X kMotrat be its Chow motive.

We denote the integer part of a rational number a by [ ]a .

2. Preliminaries

2.1. Correspondences

If X and Y are projective varieties with X irreducible of dimension dX , a correspondence of degree
p is an element of

≔( ) ( ´ )+X Y A X YCorr , .p d pX

A degree p correspondence g induces maps

g g( )  ( ) ( )  ( )+ +A X A Y H X H Y: , : .k k p k k p2* *

If, moreover, X and Y are smooth projective, we have correspondences of cohomological degree
p, that is, elements

≔g Î ( ) ( ´ )+Y X A Y XCorr , ,p d pY

which induce

g g( )  ( ) ( )  ( )+ +A Y A X H Y H X: , : .k k p k k p2* *

DEFINITION 2.1 Let g Î ( ) = ( ´ )+X X A X XCorr ,p d p be a self-correspondence of degree p
where =d dX .
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• Let Z be smooth and equi-dimensional. We say that g factors through Z with shift i if there
exist correspondences a Î ( )Z XCorr ,i and b Î ( )- X ZCorr ,j ( - =i j p) such that ◦g a b=
and - ( + ) =d i j Zdim .

• We say that g is supported on ´V W if

⟶g Î ( ( ´ ) ( ´ ))+
( ´ )

+A V W A X XIm d p
i j

d p
*

where i V X: and j W X: are inclusions of subvarieties of X .

The usefulness of these concepts follows from the following evident results.

LEMMA 2.2
• If a correspondence g Î ( )X XCorr ,0 factors through Z with shift c, then g and gt act trivially

on ( )A Xj for <j c or > -j d c.
• If a correspondence g Î ( )X XCorr ,0 is supported on ´ Ì ´V W X X , then g acts trivially on

( )A Xj for <j Vcodim or >j Wdim and gt acts trivially on ( )A Xj for <j Wcodim or
>j Vdim .

2.2. Standard conjecture ( )B X

Let X be a smooth complex projective variety of dimension d , and Î ( )h H X2 the class of an
ample line bundle. The hard Lefschetz theorem asserts that the map

( )  ( )-
-L H X H X:X

d k
d k k2

obtained by cap product with -hd k is an isomorphism for all <k d . One of the standard conjec-
tures asserts that the inverse isomorphism is algebraic:

DEFINITION 2.3 Given a variety X , we say that ( )B Xk holds if the isomorphism

L = ( ) ( )  ( )- - - @
-L H X H X:d k d k

k d k
1

2

is induced by a correspondence. We say that the Lefschetz standard conjecture ( )B X holds if
( )B Xk holds for all <k d .

REMARK 2.4 The Lefschetz (1,1) theorem implies that ( )B Xk holds if £k 1 and hence it holds
for curves and surfaces. It is stable under products and hyperplane sections [17, 18] and so, in par-
ticular, it is true for complete intersections in products of projective spaces. It is known that ( )B X ,
moreover, holds for the following varieties:

• abelian varieties [17, 18];
• 3-folds not of general type [37];
• hyperkähler varieties of [ ]K3 n -type [10];
• Fano varieties of lines on cubic hypersurfaces [25, Corollary 6];
• d-dimensional varieties X which have ( )A Xk supported on a subvariety of dimension +k 2 for

all £ -k d 3

2
[38, Theorem 7.1];

• d-dimensional varieties X which have ( ) = ( )[ ]H X N H Xk k
k
2 for all >k d [39, Theorem 4.2].
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Below we shall use the following well known implication of ( )B X .

PROPOSITION 2.5 ([17, Theorem 2.9]). Suppose that ( )B X holds. Then the Künneth projectors are
algebraic, that is, there exist correspondences p Î ( )X XCorr ,k 0 such that ∣ ·p d=( ) idk H X kjj* and

pD ~ åX k khom .

2.3. Finite-dimensional motives and nilpotence

We refer to [1, 13, 16, 29] for the definition of a Chow motive and its dimension. We also need
the concept of a motive of abelian type; by definition this is a Chow motive M for which some
twist ( )M n is a direct summand of the motive of a product of curves.

A crucial property of varieties with finite-dimensional motive is the nilpotence theorem.

THEOREM 2.6 (Kimura [16]). Let X be a smooth projective variety with finite-dimensional motive.
Let G Î ( )X XCorr ,0 be a correspondence which is numerically trivial. Then there exists a non-
negative integer N such that ◦G = 0N in ( )X XCorr ,0 .

Actually, the nilpotence property (for all powers of X ) could serve as an alternative definition
of finite-dimensional motive, as shown by a result of Jannsen [15, Corollary 3.9]. Conjecturally,
any variety has finite-dimensional motive [16]. We are still far from knowing this, but at least there
are quite a few non-trivial examples:

REMARK 2.7 The following varieties are known to have a finite-dimensional motive:

• varieties dominated by products of curves [16] as well as varieties of dimension £3 rationally
dominated by products of curves [40, Example 3.15];

• K3 surfaces with Picard number 19 or 20 [34];
• surfaces not of general type with vanishing geometric genus [12, Theorem 2.11] as well as

many examples of surfaces of general type with =p 0g [33, 47];
• Hilbert schemes of surfaces known to have finite-dimensional motive [8];
• Fano varieties of lines in smooth cubic 3-folds, and Fano varieties of lines in smooth cubic

5-folds [24];
• generalized Kummer varieties [49, Remark 2.9(ii)];
• 3-folds with nef tangent bundle [40, Example 3.16]), as well as certain 3-folds of general type

[42, Section 8];
• varieties X with Abel–Jacobi trivial Chow groups (that is, =A X 0AJ

k for all k) [39, Theorem 4];
• products of varieties with finite-dimensional motive [16].

REMARK 2.8 It is worth pointing out that, up till now, all examples of finite-dimensional Chow
motives happen to be of abelian type. On the other hand, ‘many’ motives are known to lie outside
this subcategory, for example the motive of a general hypersurface in P3 [2, Remark 2.34].

The following result is a kind of ‘weak nilpotence’ for subvarieties of a variety M with finite-
dimensional motive; any correspondence that comes from M and is numerically trivial turns out to
be nilpotent.
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PROPOSITION 2.9 Let M be a smooth projective variety with finite-dimensional Chow motive and
let ÌX M be a smooth projective subvariety of codimension r . For any correspondence
G Î ( )M MCorr ,r with the property that the restriction

∣G Î ( )X XCorr ,X 0

is homologically trivial, there exists a non-negative integer N such that

∣ ◦(G ) = ( )in X X0 Corr , .X
N

0

Proof. Put ◦= Î ( )-L i i M MCorr ,r* * and ◦= G Î ( )T L M MCorr ,0 . We have

∣ ◦ ◦G = ( ´ ) (G) = Gi i i i .X * * *

By induction on k one shows that

∣ ◦ ◦ ◦G = G ( )+ i T i 2.1X
k k1 * *

for all ³k 0. As

◦ ◦ ◦ ◦ ◦
◦ ◦ ∣ ◦

= G G
= G G

T i i i i

i i ,X

2
* * * *

* *

T 2 is homologically trivial. Hence, T 2 is nilpotent by [16], say =T 0ℓ2 . Hence, GX is nilpotent of
index = +N ℓ2 1 by (2.1). □

2.4. Coniveau and niveau filtration

DEFINITION 2.10 (Coniveau filtration [6]). Let X be a smooth projective variety of dimension d .
The jth level of the coniveau filtration on cohomology (with Q-coefficients) is defined as the sub-
space generated by the classes supported on subvarieties Z of dimension£ -d j:

å( ) = ( ( )  ( ))N H X i H X H XIm : .j k

Z
Z
k k

*

This gives a decreasing filtration on ( )H Xk . We may instead use smooth varieties Y of dimension
exactly -d j provided we use degree j correspondences from Y to X : such a correspondence
sends Y to a cycle Z of dimension£ -d j in X and all cycles can be obtained in this way. When
we rewrite this in terms of homology, we get

å g( ) = ( ( )  ( ))
g

N H X H Y H XIm : ,j
k

Y
k k

,
*

where Y is smooth projective of dimension -k j and g Î ( )Y XCorr ,0 .
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Since the jth level of the filtration consists of the classes supported on varieties of dimension
-k j, the filtration stops beyond /k 2: a variety of dimension < /k 2 has no homology in degrees

³k:

= ( ) Ì ( ) Ì Ì ( ) Ì ( ) = ( )[ ]+ [ ]N H X N H X N H X N H X H X0 .k k k k k
1 1 0k k

2 2

REMARK 2.11 Under Poincaré duality, one has an identification ( ) = ( )- +
-N H X N H Xj k d k j

d k2 .

Vial [41] introduced the following variant of the coniveau filtration:

DEFINITION 2.12 (Niveau filtration). Let X be a smooth projective variety. The niveau filtration on
homology is defined as

å g( ) = ( ( )  ( ))~
-N H X H Z H XIm : ,

j
k k j k2*

where the sum is taken over all smooth projective varieties Z of dimension -k j2 , and all cor-
respondences g Î ( )Z XCorr ,j .

REMARK 2.13 The idea behind this definition is that one should be able to lower the dimension of
the variety Y appearing in Definition 2.10 using the Lefschetz standard conjecture. By Hard
Lefschetz, we have an isomorphism ⟶L ( ) ( )-

@
H Y H Y:Y

j
k j k2 and by the Lefschetz hyperplane

theorem a surjection i ( )  ( )- -H Z H Y: k j k j2 2* with = Ç Ç¼ ÇZ Y H Hj1 a complete intersection
of Y with j general hyperplanes. Hence, there is a surjective map ◦i L ( )  ( )-H Z H Y:Y

j
k j k2* which

is algebraic if ( )-B Yk j2 holds and thus ( ) = ( )
~

N H X N H Xj
k

j
k .

This discussion also shows that

• ( ) Ì ( )
~
N H X N H X

j
k

j
k

• ( ) = ( )
~
N H X N H X

j
k

j
k if - £k j2 1.

2.5. On variable and fixed cohomology

Let M be a smooth projective variety of dimension +d r and ↪i X M: a smooth complete inter-
section of dimension d . Let us assume ( )B M so that the operator Lr on ( )H M* is induced by an
algebraic cycle LM

r on ´M M . Set

≔p p p( ) L ( ) = D - ( )X i i X X, .M
rfix var fix* *

Recall that setting

( ) = ( ( )  ( ))
( ) = ( ( )  ( ))

+H X i H M H X

H X i H X H M

Im : ,

ker : ,
d d r d

d d d

fix
2

var

*

*

one has a direct sum decomposition

( ) = ( ) Å ( )H X H X H X ,d d d
fix var

which is orthogonal with respect to the intersection product. We claim the following result.

8 R. LATERVEER et al.
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LEMMA 2.14 The operators p ( )Xfix and p ( )Xvar are homological projectors which give the pro-
jection of the total cohomology onto ( )H Xfix , ( ) = ( )H X H Xd

var var , respectively.

Proof. We first observe that ( )  ( )i H X L H M: r
* * * since ◦( ) = ( ) = ( )i H X i i H M L H Mrfix

* * * . On
the image of L the two operators L and L are inverses. So, since ◦ =i i Lr* * , (in fact this is only
true up to a multiplicative constant but changing Lr accordingly corrects this i) we find

◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦
◦ ◦

( L ) = L L
= L L
= L

i i i i i i

i L i

i i ,

r r r

r r r

r

2* * * * * *
* *
* *

that is, p fix is indeed a projector, and so is pvar. These projectors define a splitting on cohomology
given by

= L + ( - L )z i i z z i i z .r r* * * *

On the image of i* the two operators L and L commute and are each other’s inverse and so

( - L ) = - L
= - =

i z i i z i z L i z

i z i z 0,

r r r
* * * * *

* *

which shows that pvar indeed gives the projection onto variable homology and so p fix projects
onto the fixed cohomology. □

REMARK 2.15 The degree zero correspondences p fix and pvar are not necessarily projectors on the
level of Chow groups, although one can show that finite-dimensionality of ( )h M and ( )B M can be
used to modify these correspondences in such a way that they become projectors. For what follows
we do not need this.

3. Niveau filtrations and polarizations

3.1. Polarizations

Recall that for £ =k d Xdim , we have the Lefschetz decomposition

( ) = Å ( )-H X L H X .k
r

r k r
pr

2

Following [48, p. 77], we define a polarization QX on ( )H Xk as follows. Given a, Î ( )b H Xk ,
write = åa L ar

r
r, = åb L br

r
r and define

å( ) = (- ) á ñ+ - +( - )
Q a b L a b, 1 ,X

r

r d k r
r r

2
k k 1

2

where

á ñ ( ) Ä ( )  ( ) @- + -H X H X H X Q, : d k r k r d2 2 2 2
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denotes the cup product. As the Lefschetz decomposition is QX-orthogonal, we can rewrite this in
the following form. Let ( )  ( )-p H X L H X:r

k r k r
pr

2 be the projection, and define

◦å= (- ) +( - )
s L p1 .X

r

r r
r

k k 1
2

Then ( ) = á ( ) ( )ñ-Q a b L a s b, ,X
d k

X .
When we translate this to homology, we obtain a polarization QX on ( )H Xk ( £k d) given by

( ) = á L ( ( ))ñ-Q a b a s b, ,X
d k

X

where sX is (up to sign) the alternating sum of the projections ( )  ( )+p H X L H X:r k
r

k r2
pr to the

primitive homology (dual to primitive cohomology).

LEMMA 3.1 If ( )B Xℓ holds for £ - -ℓ X k2dim 2 the operator Î ( ( ))s H XEndX k is algebraic.

Proof. See [9, Lemma 7] or [41, Lemma 1.7] □

3.2. Modified niveau filtration

We start by a discussion of adjoint correspondences. This material is treated from a cohomological
point of view in [11, Section 4.2].

DEFINITION 3.2 Let X and Y be smooth projective varieties of dimension dX , dY . Let
g Î ( )X YCorr ,j .

(i) We say that g admits a k-adjoint if there exists g Î ( )- Y XCorr ,j
adj such that

g g( ( ) ) = ( ( ))Q a b Q a b, ,Y X
adj

* *

for all Î ( )-a H Xk j2 , Î ( )b H Yk .
(ii) We say that g admits an adjoint if it admits a k-adjoint for all k.

PROPOSITION 3.3 If the standard conjectures ( )B X and ( )B Y hold, every correspondence
g Î ( )X YCorr , admits an adjoint.

Proof. Let g Î ( )X YCorr ,j and consider the map

g ( )  ( )+H X H Y: .k k j2*

As ( )B X and ( )B Y hold, the operators sX and sY are algebraic by Lemma 3.1. As sX and sY com-
mute with the Lambda operator, we obtain

g g

g

g

( ( ) ) = á ( ) L ( ( ))ñ

= á (L ( ( )))ñ

= á (L ( ( ( (L ( ( )))))))ñ

- -

- -

- - - -

Q a b a s b

a s b

a s s L s b

, ,

,

, .

Y Y
d k j

Y

t
Y
d k j

Y

X X
d k

X X
d k t

Y
d k j

Y

2

2

2

Y

Y

X X Y

* *

*

*
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Hence,

◦ ◦ ◦ ◦g g= L- - -s L sX X
d k t

Y
d k j

Y
adj 2X Y

is an adjoint of g . □

To use the existence of an adjoint, we need a linear algebra lemma (cf. [43, 41, Lemma 5,
Lemma 1.6]).

LEMMA 3.4 Let H and ¢H be finite-dimensional Q-vector spaces equipped with nondegenerate
bilinear forms ´ Q H H Q: and ¢ ¢ ´ ¢ Q H H Q: . Suppose that there exist linear maps

a b¢   ¢H H H H: , :

such that

(a) a is surjective;
(b) ∣¢ b b( ´ )Q Im is non-degenerate;
(c) a b( ( ) ) = ¢( ( ))Q x y Q x y, , for all Î ¢x H , Îy H .

Then ◦a b H H: is an isomorphism.

Proof. As H is finite dimensional, it suffices to show that ◦a b( ) =ker 0. Suppose that
◦a bÎ ( )y ker . Then b a b( ) Î ( ) Ç ( )y ker Im . By (c), we have

a b b b= ( ( ( )) ) = ¢( ( ) ( ))Q y z Q y z0 , ,

for all Îz H , hence b ( ) =y 0 by condition (b). This gives

b a= ¢( ( )) = ( ( ) )Q x y Q x y0 , ,

for all Î ¢x H and since a is surjective we obtain =y 0. □

COROLLARY 3.5 Suppose that g ( )Y X: Corr ,j admits an adjoint. Consider the map
g ( )  ( )-H Y H X: k j k2*

. Then ◦g g ( )  ( )H X H X: k k
adj

* *
induces an isomorphism

◦ ⟶g g g g( ) ( )
~

: Im Im .adj
* * * *

Proof. Apply the previous lemma with ¢ = ( )H H Xk , a g=
*
, b g= adj

*
and

g= ( ) Í ( )H H XIm k*
. Condition (a) is satisfied by construction, (b) by Hodge theory (Hodge–

Riemann bilinear relations) and (c) by the adjoint condition. □

DEFINITION 3.6 The modified niveau filtration N •
is defined by

 å g( ) = ( ( )  ( ))-N H X H Z H XIm : ,j
k k j k2*

where the sum runs over all pairs g( )Z, such that Z is smooth projective of dimension -k j2 and
such that g Î ( )Z XCorr ,j admits a k-adjoint.
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We have

 ( ) Í ( ) Í ( )~
N H X N H X N H X .j

k
j

k
j

k

The filtrations N • and
~
N

•
are compatible with the action of correspondences. The filtration N •

is
compatible with correspondences that admit an adjoint.

PROPOSITION 3.7 Let g Î ( )X YCorr ,j . If ( )B X and ( )B Y hold then we have g ( ) ÍN H X
c

k* ( )+
+N H Y

c j
k j2 .

Proof. There exists a smooth projective variety Z and a correspondence l Î ( )Z XCorr ,c such
that l admits an adjoint and

 l( ) = ( )  ( )-N H X H Z H XIm : .c
k k c k2*

We have

◦l g l( ) = ( ) ( )  ( )- +N H X H Z H YIm :c
k k c k j2 2* *

The image is contained in  ( )+
+N H Y

c j
k j2 since g admits an adjoint by Proposition 3.3 and

◦ ◦g l l g( ) =adj adj adj. □

4. On Künneth decompositions

DEFINITION 4.1 Let X be a smooth projective variety.
• We say that X admits a refined Künneth decomposition if there exist mutually orthogonal corres-

pondences p Î ( )X XCorr ,i j, 0 such that
○ pD ~ åX i j i jhom , ,

○ ∣p( ) =
ì
í
ïï
îïï

( ) = ( )
( ) ¹ ( )

ü
ý
ïï
þïï

( )
p q i j

p q i j

id if , ,

0 , , .
i j H X, GrN

q
p*

○ p = 0i j, if and only if ( ) =H XGr 0N
j

i .
• We say that X admits a refined Chow–Künneth decomposition if in addition the pi j, are projec-

tors and pD ~ åX i j i jrat , , .
• We say that X admits a refined Künneth (or Chow–Künneth) decomposition in the strong sense

if pi j, factors with shift j through a smooth projective variety Zi j, of dimension -i j2 for all i
and j.

REMARK 4.2 By [41, Proposition 1.4] there exists a QX-orthogonal splitting

( ) = Å ( )H X H XGr .i j N
j

i,*

The variety X admits a refined Künneth decomposition if this decomposition lifts to the category
( )kMothom of homological motives. It admits a refined Chow–Künneth decomposition if the

decomposition lifts to the category ( )kMotrat of Chow motives.
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In an analogous way, one can define refined Künneth (or Chow–Künneth) decompositions with
respect to the filtrations

~
N

•
and N •

.

PROPOSITION 4.3 If ( )B X holds, there exists a refined Künneth decomposition in the strong sense
with respect to the filtration N •

.

Proof. (This proof is a reformulation of the argument of [41, Theorem 1] in terms of the modified
niveau filtration.) Conjecture ( )B X implies that the Künneth components are algebraic, that is,
there exist correspondences p Î ( )X XCorr ,i 0 such that ∣ ·p d( ) =( ) idi H X ijj* . By Proposition 3.7, the
proof of [41, Proposition 1.4] goes through for the filtration N •

, and we obtain aQX-orthogonal splitting

( ) = Å ( )H X H XGr .i j N
j

i,*

The aim is to construct correspondences p Î ( )X XCorr ,i j, 0 that induce this decomposition. This is
done by descending induction on j. If > /j i 2 we take p = 0i j, . Suppose that the correspondences
pi k, have been constructed for >k j. As before there exists Z , smooth of dimension -i j2 , and
g Î ( )Z XCorr ,j such that

 g( ) = ( ( )  ( ))-N H X H Z H XIm : .j
i i j i2*

By replacing g with ◦p gi if necessary, we may assume that ∣g =( ) 0H Zℓ*
if ¹ -ℓ i j2 . The corres-

pondence p p p= - å >i k j i k, induces the projection  ( )  ( )N H X H XGrj
i N

j
i . Put ◦g p g¢ = . By

construction

g ¢ ( )  ( )-H Z H X: Gri j N
j

i2*

is surjective. As ( )B X holds, p admits an adjoint by Proposition 3.3. By definition, g admits an
adjoint, hence ◦g p g¢ = admits an adjoint and the correspondence ◦g g= ¢ ( ¢)T adj induces an
isomorphism

 j = ( )  ( )T H X H X: Gr Gr
N
j

i N
j

i*

by Corollary 3.5. By the Cayley–Hamilton theorem, there exists a polynomial expression
y j= ( )P such that ◦y j = id. Put y= ( )U T and define ◦p = U Ti j, . As j=T* and y=U* we
have

∣

∣




p

p

( ) =

( ) = ( ) ¹ ( )

( )

( ) p q i j

id

0 if , , .

i j H X

i j H X

, Gr

, Gr

N
j

i

N
q

p

*

*

By construction pi j, factors with shift j through a smooth projective variety of dimension -i j2
and p = 0i j, if and only if  ( ) =H XGr 0

N
j

i . □

COROLLARY 4.4 If ( )B X holds and ( ) Í ( )H X N H Xk
c

k , then there exists p¢ Î ( )X XCorr ,k 0 such
that p p~ ¢k khom and such that p¢k factors with shift c through a smooth projective variety Z of
dimension -k c2 as in Definition 2.1.
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Proof. By Proposition 4.3, we obtain a decomposition

åp p= .k
j

k j,

with respect to the filtration N •
. As ( ) Í ( )H X N H Xk

c
k , we have p = 0k j, for all <j c, and the

result follows. □

The corollary can be generalized to the following setting. Suppose that there exists
p Î ( )X XCorr ,k 0 such that ∣ ·p d( ) =( ) idk H X kℓℓ* . If p Î ( )X XCorr ,0 satisfies

◦
◦ ◦

p p p
p p p p p

~
~ ~k k

hom

hom hom

the motive p( )X, is a direct factor of p( )X, k in ( )kMothom .

COROLLARY 4.5 Suppose that ( )B X holds and that p Î ( )X XCorr ,0 is a correspondence as
above. Let p= ( ) Í ( )pH H XIm k be the sub-Hodge structure defined by p. If Í ( )pH N H X

c
k ,

there exists a correspondence p p¢ ~hom such that p¢ factors with shift c through a smooth pro-
jective variety Z as in Definition 2.1.

Proof. The proof of Proposition 4.3 shows that we have a decomposition p p= åk j k j, in
( )kMothom . Hence,

◦ ◦åp p p p p= = .k
j

k j,

Suppose that there exists <j c0 such that ◦p p ¹ 0k j, 0
. Then there exists Î ( )x H Xk such that

p p( ( )) ¹x 0k j, . Hence pÇ ( ) ¹pH Im 0k j, 0
. This contradicts the hypothesis Í ( )pH N H X

c
k since

∣p =( ) 0k j N H X, c
k0

. □

This result implies a modification of [21, Corollary 3.4, Lemma 3.5] that we need later on.

COROLLARY 4.6 We make the same assumptions about M and X . Suppose that
( ) Ì ( )H X N H Xd

c
d

var . Then p p~var
hom

var where p Î ( )X XCorr ,var 0 factors through a smooth
projective variety Z with shift c in the sense of Definition 2.1.

REMARK 4.7 The condition ( ) Ì ( )H X N H Xd
c

d may be replaced by Voisin’s condition of ‘being
parametrized by algebraic cycles of codimension c’ [46, Definition 0.3]. Voisin’s condition implies
that

◦g g ( )  ( )H X H X:t
d d* *

is a multiple of the identity. Our condition implies that there exists an adjoint gadj such that ◦g g adj

* *is an isomorphism with an algebraic inverse (see Corollary 3.5 and the proof of Proposition 4.5).
This weaker result suffices for our purposes.

PROPOSITION 4.8 Suppose that ( )B X holds and that for every smooth projective variety Z of
dimension -k j2 the condition ( )B Zℓ holds if £ - -ℓ k j2 2. Then ( ) = ( )

~
N H X N H X

j
k

j
k .
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Proof. It suffices to show that for every pair g( )Z, as in Definition 3.6, g admits a k-adjoint. This
follows directly from Lemma 3.1. □

COROLLARY 4.9 We have ( ) = ( )
~
N H X N H X

j
k

j
k if - £k j2 3. In particular, if ( ) =H Xk ( )[ ]N H Xk

k
2

the filtrations
~
N and N on ( )H Xk coincide with the coniveau filtration. This is true unconditionally on

( )H Xk , £k 3. If the conjecture ( )B M holds, all three filtrations are equal on ( )H Xk for £k 4.

REMARK 4.10 The condition ( )B Zℓ in Proposition 4.8 is needed to obtain an algebraic corres-
pondence that induces sZ . If Ì ( )H H Xd is a sub-Hodge structure such that there exists a smooth
projective variety Z of dimension -d c2 such that ( ) -H Z Hd c2

pr is surjective then this condi-
tion is not needed and we have Ì ( )H N H X

c
d . We present an example below.

EXAMPLE 4.11 Let Ì +X Pd 1 be a smooth hypersurface of degree +d 1. Let = ( )Z F X1 be the
Fano variety of lines contained in X . If X is general then Z is smooth of dimension -d 2 and the
incidence correspondence induces a surjective map (cylinder homomorphism)

g ( )  ( )-H Z H X: ;d d2
pr pr

*

see [27, Theorem (5.34)]. Hence, ( ) Ì ( )H X N H Xd d
pr 1

by the previous remark.

Concerning the existence of a refined Chow–Künneth decomposition (in the strong sense) for
the filtrations N •,

~
N

•
and N •

we have the following.

PROPOSITION 4.12 Let X be a smooth projective variety over C such that ( )B X holds and ( )h X is
finite dimensional. Then the following hold.

(i) There exists a refined Chow–Künneth decomposition in the strong sense for the filtration N •
.

(ii) There exists a refined Chow–Künneth decomposition in the strong sense for
• ~

N
•
if £Xdim 5,

• N • if £Xdim 3.

Proof. By Proposition 4.3, there exists a refined Künneth decomposition in the strong sense for
the filtration N •

. If ( )h X is finite dimensional the ideal

( ´ )  ( ´ )A X X H X Xker d d2

is nilpotent, and the refined Künneth decomposition lifts to ( )kMotrat by a lemma of Jannsen [14]. This
proves part (i). Part (ii) follows from the comparison between the filtrations: ( ) = ( )

~
N H X N H X

j
i

j
i if

- £i j2 3 (Corollary 4.9) and ( ) = ( )
~

N H X N H Xj
i

j
i if - £i j2 1. □

REMARK 4.13 Part (ii) is due to Vial [41]. The assumption £Xdim 5 can be replaced by the con-
ditions of Proposition 4.8.

REMARK 4.14 Using Proposition 4.12, the main result of [22] can be extended to arbitrary dimen-
sion, provided one replaces Vial’s filtration

~
N

•
in the statement of [22, Theorem 3] by the filtration

N •
.
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5. A variant of Voisin’s arguments

PROPOSITION 5.1 Let G be a codimension-k cycle on ´ B and suppose that for Îb B very
general,

∣G ( ´ )´ in H X XX X
k

b b
2

b b

is supported on ´V Wb b, with ÌV W X,b b b closed of codimension c1, respectively c2. Then there
exist closed Ì  , of codimension c1, respectively c2, and a codimension-k cycle G¢ on

´ B supported on ´ B and such that

∣ ∣G¢ = G ( ´ )´ ´ in H X XX X X X
k

b b
2

b b b b

for all Îb B.

Proof. Use the same Hilbert schemes argument as in [45, Proposition 3.7], which is the case
=V Wb b. □

PROPOSITION 5.2 Suppose that ( ) = ( )H X N H Xk b
c

k b for all Î { + ¼ }k e d1, , and all Îb B.
Then there exist families  Bk of relative dimension -k c2 and relative degree zero corres-
pondences P¢ Î ( ) Corr ,k B such that

(a) P¢k factors through k;
(b) ∣P¢ ´k X Xb b is homologous to the kth Künneth projector p ( )Xk b for = + ¼k e d1, , .

Proof. Using the assumptions and a Hilbert scheme argument as in [46], there exist a Zariski open
subset ÌU B, a finite étale covering p V U: , a family  Vk of relative dimension -i c2
and relative correspondences G Î ( ) Corr ,V k , G¢ Î ( ) Corr ,V k such that

( ) (G ( ) ) = ¢( G¢ ( ))Q x y Q x y, ,v v*

for all Î ( )p ( )x H Xk v , Î ( )p- ( )y H Zk c v2 and Îv V . We now consider G and G¢ as relative cycles
over U . Let Îu U . If p ( ) = { ¼ }- u v v, , N

1
1 , we have G = å Gu j vj

, G¢ = å G¢u j vj
. As condition ( )*

holds for all vj, we obtain

( ) (G ( ) ) = ¢( G¢ ( ))Q x y Q x y, , .u u*

We can extend  to B by relative projective completion and desingularization, and extend G and
G¢ to relative correspondences over B by taking their Zariski closure.

As before, let ( )H Xk b
fix be the image of the restriction map ( )  ( )+H M H Xk r k b2 . As ( )B M

holds, there exists an algebraic cycle b + -d r k that induces the operator L + -d r k . Set
◦ ◦b p= ( )+ -

-
+R L Mk d r k

d k
k r2 . If we pull back these cycles to ´ ´M M B and then to ´ B ,

we obtain relative correspondences P Î ( ) Corr ,k B such that ∣P ( )k H Xk b
fix is the identity for all k

(see for example [21, Lemmas 3.2 and 3.3]). Note that, by construction, Rk factors through a sub-
variety of dimension +r k of M and ∣P ´k X Xb b factors through a subvariety ÌY Xb b of dimension
k , that is, ∣P Î ( ´ )  ( ´ )´ A Y X A X XImk X X d b b d b bb b

.
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Write ◦= G G¢ Î ( )  Corr ,B . Replacing  by ◦P k if necessary, we may assume that
∣ ´ X Xb b

acts as zero on ( )H Xj b for all ¹j k . By construction, ( ) ( )  ( ) H X H X:b k b k b* is an iso-
morphism, hence it has an algebraic inverse by the Cayley–Hamilton theorem, as we saw in the
proof of Proposition 4.3. We want to perform a relative version of this construction. To this end,
note that since f B: is a smooth morphism, the sheaf R f Qk *

is locally constant. Hence, there
exists an open covering { }aU of B and isomorphisms af from ∣ aR f Qk U*

to the constant sheaf with
fiber ( )H Xk 0 ( Î aU0 a base point). As  is a relative correspondence defined over B, the maps

∣ ∣ ∣( ) a a a U R f R fQ Q: k U k U* * *
induce automorphisms

( )  ( )aT H X H X: k k0 0

that commute with the transition functions ◦=ab a b
-f f f 1:

◦ ◦=a ab b ab
-T f T f .1

Hence, the characteristic polynomial of aT does not depend on a. This implies that there exists a
polynomial l( )P such that

( ) = ( )- P b b
1

* *

for all Îb B. Define = ( ) Î ( )   P Corr ,B and set ◦P¢ =  k . □

COROLLARY 5.3 There exist relative correspondences Pleft, Pmid and Pright and families  B of
relative dimension d ,  B of relative dimension -d c2 , such that

• Pleft is supported on ´ B and Pright is supported on ´ B ;
• Pmid factors through  ;
• the restriction of

D - P - P - P/ B left mid right

to ´X Xb b is homologous to zero for all Îb B.

Proof. Define P = å P=k
e

kleft 0 , P = P¢ + å (P¢ + P )= +
- ¢

d k e
d

k k
t

mid 1
1 and P = Pℓ

t
right . For the sup-

port condition on Pℓ and Pr use Proposition 5.1. □

6. The main results

The setup that we consider in this section is the following. Let M be a smooth projective variety
of dimension +d r . Let ¼L L, , r1 be very ample line bundles on M , and let f B: denote the
family of all smooth complete intersections of dimension d defined by sections of
= Å ¼ ÅE L Lr1 . We write = ( )-X f bb

1 . The next result plays a major role in deriving the main
results. It uses the assumption that the Lj are very ample in a crucial way.

PROPOSITION 6.1 (Voisin [46]). Suppose that for general Îb B one has that Xb has non-trivial
variable homology in degree d . Let  be a codimension-d cycle on ´ B with the property
that
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∣ = ( ´ )´ in H X X0 .X X d b b2b b

Then there exists a codimension-d cycle g on ´M M such that

∣ ∣g- = ( ´ )´ ´ in A X X0X X X X d b bb b b b

for all Îb B.

Proof. As we will show, the argument is really the same as that of Voisin’s original result [46,
Proposition 1.6] (where it is assumed that M has trivial Chow groups).

Consider the blow-up ´
~
M M of the diagonal and the natural quotient map m ´ 

~ [ ]M M M: 2

to the Hilbert scheme of zero-dimensional subschemes of M of length 2. Set = ( )H X EP P ,0 and
as in [46, Lemma 1.3] introduce

≔ ∣ ∣( ) {( ) Î ´ ´ = }~
m ( )I E s y M M sP, 0 .y2

Next, consider the blow-up of ´ B along the relative diagonal:

´  ´
~
   p: .B B

Observe that ´
~
 B is Zariski open in ( )I E2 and so it makes sense to restrict cycles on ( )I E2 to

the fibers ´
~
X Xb b of ´ 
~
  BB . Very ampleness of the Lj implies that ( )  ´

~
I E M M2 is a

projective bundle and hence its cohomology can be expressed in terms of cohomology coming
from ´
~
M M and a tautological class. Assume now that

∣$ Î ( ( )) ~~́R A I E Rwith 0.d
X X2 homb b

Voisin shows that this implies the existence of a codimension-d cycle g on ´M M and an integer
k such that

∣ ∣g( ) ( ) = D + ( ´ )´ ´ ´~p R k A X Xin .b X X X X X X d b bb b b b b b*

The first summand acts on all of homology, while the second summand, by construction, acts only
on the fixed homology. So the assumption that there is some variable homology implies that
=k 0 and so the cycle g is homologous to zero. To prove the above variation, suppose we are

given  of codimension d on ´ B as above. As ´ Ì ( )
~
  I EB 2 is Zariski open, there exists

a codimension-d cycle R on ( )I E2 such that ∣ =´
~  R p

B
* . Then we have

∣ ∣ ∣= = ( ) ( ) = ( ´ )~
´ ´ ´~ ~ R p p H X X0 inX X X X b X X d b b2b b b b b b

* *

for all Îb B, where ´  ´
~

p X X X X:b b b b b denotes the blow-up of the diagonal. Hence, if we
apply Voisin’s original proposition to this cycle R, we get the desired conclusion. □

THEOREM 6.2 Notation as above. Suppose that ( )B M holds and the Chow motive of M is finite-
dimensional. Assume that for a general Îb B the fiber Xb has non-trivial variable homology:

18 R. LATERVEER et al.
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( ) ¹H X 0,d b
var

and that for some non-negative integers c e, , with <e d , we have

( ) = ( ) Î { + ¼ }H X N H X for all k e d1, , .k b
c

k b

Then, for any Îb B, we have

( ( )) £ - < { - }Niveau A X e k for all k d e cmin , ,k b

that is, there exists a subvariety ÌY Xb b of dimension e such that ( )  ( )A Y A Xk b k b is surjective.

Proof. Step 1. We first construct a homological decomposition of the diagonal of Xb

D ~ D + D + D ( ´ )H X Xin ,X d b bhom left mid right 2b

where the right-hand side consists of self-correspondences of X of degree 0, D = Dt
right left and

Dmid factors with shift c through a smooth variety Z .
This is done as follows. As conjecture B is stable by hyperplane sections (see Remark 2.4), the

complete intersections Xb satisfy ( )B Xb , and hence, by Proposition 2.5, there are correspondences
p Î ( )X XCorr ,j b b

0 , =j d0 ,..., 2 inducing the corresponding homological Künneth projectors. By
Proposition 4.5, for Î { + ¼ }k e d1, , , we have that p p( ) ~ ¢( )X Xk b k bhom , a projector that factors
through a variety of dimension -k c2 with shift c as in Definition 2.1. Now set

å

å

p

p

D = ( )

D = D

D = ¢( )

£

= +

- -

X

X .

k e
k b

t

k e

d e

k b

left

right left

mid
1

2 1

Step 2. We spread out the fiberwise correspondences D D D, ,left right mid to the family of
hypersurfaces

 B,

using Voisin’s argument in the form of Propositions 5.1 and 5.2. This gives a homological decom-
position of the relative diagonal, in the sense that there exists Ì  of relative dimension d and
a family  B of relative dimension -d c2 , and codimension-d cycles

P P P, ,left right mid

on ´ B such that P P,left right have support on ´ B , respectively on ´ B , and Pmid fac-
tors through  B such that, for any Îb B, restriction gives back the diagonal:
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∣(P + P + P ) = D ( ´ )´ H X Xin .X X X d b bleft mid right 2b b b

Step 3. We upgrade this to rational equivalence using properties of M . So we consider the
difference

≔ D - P - P - P  ,left mid right

a relative correspondence with the property that

∣ = ( ´ )´ H X X0 in ,X X d b b2b b

for all Îb B. We now apply the key Proposition 6.1 to . We find a codimension-d cycle g on
´M M such that

∣ ∣g- = ( ´ )´ ´ X X0 in Corr ,X X X X b b0b b b b

for all Îb B. The crucial point is that the restriction ∣g Î ( ´ )´ X XCorrX X b b0b b
is homologically

trivial, and so, by Proposition 2.9, is nilpotent.
Step 4. We can now finish the proof. Observe that a specialization argument reduces the proof

to showing it for a general Îb B (cf. [45, Theorem 1.7] and [46, Theorem 0.6]). For general b,
the fiber Xb will be in general position with respect to  and  so that

≔ ∣G P ´X Xleft left b b

will be supported on ´Y Xb b with Yb of dimension c, and likewise

≔ ∣G P ( )´ 6.1X Xmid mid b b

will factor with a shift c. Let Gright be the transpose of Gleft. For some N 0, we have

◦(D - G - G - G ) = ( ´ ) ( )X X0 in Corr , 6.2X
N

b bleft mid right 0b

where G G,left right is supported on ´Y Xb b, respectively on ´X Yb b, and Gmid factors through Zb

with shift c as in equation (6.1).
Since Gleft is supported on ´Y Xb b, Lemma 2.2 implies that its action on ( )A Xk b is trivial for
< = -k Y d ecodim . The correspondence Gmid by construction factors through Zb with shift c

and so (by the same lemma) its action on ( )A Xk b is trivial, since <k c. Now expand the expres-
sion (6.2) to conclude that

(D ) = ( G ) ( )  ( )A X A Xpolynomial in : .X k b k brightb * *

Since DXb acts as the identity on ( )A Xk b , this implies indeed that ( )A Xk b is supported on Yb, a var-
iety of dimension e. □
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REMARK 6.3 It is possible to be more precise: in the situation of Theorem 6.2, we even have that

· ( )  ( )- - -L A X A X:d e e k
b

d k
b

is surjective in the range < { - }k d e cmin , , so the k-cycles of Xb are supported on a dimension
e complete intersection. To obtain this, we remark that the Gright in the above proof can be
expressed in terms of -Ld e, just as in the proof of [23].

Recall that for curves =A 00
AJ and so, if ( )A Xb0 is supported on a curve, we have

( ) =A X 0b0
AJ . We thus deduce that for =c 1, =e 1, we get the following special case:

COROLLARY 6.4 Let M be a smooth ( + )d 1 -dimensional projective variety for which ( )B M holds
and whose (Chow) motive is finite dimensional.

Let Xb, Îb B be the family of all smooth hypersurfaces in a very ample linear system and sup-
pose that

( ) ¹ ( ) = ( ) = ¼H X and H X N H X k d0 , 2, ,d b k b k b
var 1

for general Îb B. Then

( ) =A X 0AJ
b0

for all Îb B.

REMARK 6.5 (1) In view of Corollary 4.9(1), for =n 2, the condition on the coniveau becomes
( ) = ( )N H X H Xb b

1
2 2 , that is, all cohomology is algebraic. For =n 3, we should have in addition

that ( ) = ( )N H X H Xb b
1

3 3 , that is, ( ) =h X 0b
3,0 , as well as the generalized Hodge conjecture for

( )H Xb
3 .
(2) Note that in Corollary 6.4 there is no condition on ( )+H Md 1 , so ( )p Mg could be non-zero.

In this case, nothing is known about the Chow groups of M , so it is remarkable that one can at
least control the image ( ( )  ( ))A M A XIm b1 0 .

We now come to our second main theorem. It asserts that a ‘short’ niveau filtration on the vari-
able cohomology already has strong implications for the Abel–Jacobi kernels.

THEOREM 6.6 Let ↪i X M: be a complete intersection of dimension d . Suppose that

• ( )B M holds;
• the Chow motive of M is finite dimensional;
• ( ) ¹H X 0d

var and for some positive integer c we have ( ) Ì ( )H X N H Xd
c

d
var .

Then for <k c or for > -k d c we have

↪( ) ( ) ( ) ( )+ i A M A X i A X A M: , : .k r k k k* *
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Moreover, in this range

⟶( ) = ( ( ) ( )) =A X A X A Mker 0,k k
i

k
var *

If in addition

(a) ( ) = ( )[ ]H M N H Mk k
k
2 for £k d , then ( ) =A X 0k

AJ if <k c or > -k d c;
(b) ( ) = ( )[ ]+

H M N H Mk k
k 1

2 for £k d , then ( ) =A X 0k
hom if <k c or > -k d c.

Proof. Let X be a smooth complete intersection. In Section 2.5, we showed that there is a
decomposition

p pD = ( ) + ( )X XX
fix var

which in cohomology induces projection onto fixed and variable cohomology, respectively. By
Proposition 5.2, there exist relative codimension-d cycles P¢ and Pvar on ´ B such that P¢
comes from ´ ´M M B and Pvar induces p ( )Xvar . Moreover, the restriction of

= D - P¢ - P/R B d
var

to the general fiber is homologically trivial. By Proposition 6.1, there exists a codimension-d cycle
g on ´M M such that

∣ ∣g-´ ´R X X X Xb b b b

is rationally equivalent to zero for Îb B general. In particular, ∣g ´X X is homologically trivial.
Hence, ∣g ´X X is nilpotent by Proposition 2.9. Let N be the index of nilpotency of ∣g ´X X . We
obtain

∣◦ ◦g p p= = (D - ( ) - ( ))´ X X0 .N
X X X

Nfix var

By assumption (3) and Corollary 4.6, the correspondence p ( )Xvar factors through a correspond-
ence of degree -c over a variety of dimension -d c2 and so acts trivially on ( )A Xk if <k c or
> -k d c. Setting y p= ( )Xfix , we find that for some polynomial P we have ◦y y( ) =P * *

◦y y( ) =P id
* * on the Chow groups ( )A Xk with k in this range and the first assertion follows. For

the second, observe that y acts as zero on ( )A Xk
var .

The assumption (a) above implies that p ( )Xfix factors through a curve and so this summand acts
trivially on ( )A Xk

AJ for all k. So then the above argument indeed gives that ( ) =A X 0k
AJ if <k c

or > -k d c. In case (b), p ( )Xfix factors through a point and we obtain ( ) =A X 0k
hom if <k c or

> -k d c. □

COROLLARY 6.7 In the above situation, suppose that = [ ]c d

2
. Then the motive ( )h X is finite-

dimensional. Moreover, if for M we have ( ) =A M 0k
AJ for all k, then also ( ) =A X 0k

AJ for all k.

Proof. The assumptions imply surjectivity of ( )  ( ( ) )i A M r A h X: , id, , id, 0k
AJ

k
AJ* in the range

= ¼ [ ]-k 0, , d 2

2
. We then apply Vial’s result [40, Theorem 3.11] (NB: for an alternative proof of

Vial’s result in terms of birational motives, cf. [26, Appendix B]). □
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7. Variants with group actions

Let M be a projective manifold of dimension +d r and let ¼L L, , r1 be ample line bundles on M
and, as before, set

≔ Å ÅE L L .r1

We assume that a finite group G acts on M and on the Lj, and that the linear systems ∣ ∣Lj
G,

= ¼j r1 , , , are base point free. The complete intersection in M corresponding to
= ( ¼ ) Îs s s, , r1 ( ( ))H M EP ,0 is denoted Xs. We consider smooth complete intersections coming

from G-invariant hypersurfaces and set accordingly

≔ ∣{ Î ( ( ) ) }B b H M E XP , is smooth .G
b

0

This is Zariski open in ( ( ) )H M EP , G0 .
The graph of the action of Îg G on M will be written G Ì ´M Mg . As before, we let
´
~
M M be the blow-up of ´M M in the diagonal and [ ]M 2 the Hilbert scheme of length 2 sub-
schemes of M with the natural quotient morphism m ´ 

~ [ ]M M M: 2 . Consider the ‘bad’ locus

∣
m

= { Î ´ } Î ( )

- ( )

~
mB y M M s H M E

y

no , separates the points

of the length 2 scheme .
E

G
,

0

Note that the G-invariant sections of E do not separate points in G-orbits. We demand instead that
they separate entire G-orbits; in fact, we want something less stringent, as expressed by the follow-
ing notion, involving the proper transforms G

~
g of Gg in ´
~
M M .

DEFINITION 7.1 Assume ( )M E, and G are as above. We say that ( )H M E, G0 almost separates
orbits if the ‘bad’ locus mBE, is contained in ⋃ G È

~
¹ Rg g Gid , where RG is a (possibly empty) union

of components of codimension> = +M d rdim .

This demand ensures that ( )  ´
~

I E M M2 is a repeated blow-up of a projective bundle so that
its cohomology can be controlled. In order to have an analog of Proposition 6.1, we demand that
for Îg G the endomorphisms

g = [G ] Î ( )H XEndg g b d b
var

,
var var
*

should be independent. This can be tested using the following result.

LEMMA 7.2 Let r  ( )G V: GL be a representation of a finite group on a finite-dimensional
Q-vector space V . Then the endomorphisms r{ Î }g G,g are independent in VEnd if G is abelian
and every irreducible representation occurs in V .

Proof. This is a consequence of elementary representation theory. We may work over C. In the
abelian case, the group ring [ ]GC is isomorphic to the regular representation of G and since the
former has for its base the irreducible non-isomorphic characters, the elements Îg g G, , give a
basis for [ ]GC . The representation r induces an algebra homomorphism r̃ [ ] G VC: End which
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is injective if every irreducible representation occurs in V . So the images r̃g, Îg G form an inde-
pendent set. □

Let us next introduce some notation. Suppose that c G Q: is a Q-character defining an irre-
ducible Q-representation cV , that is, ∣c ( ) = ( ) cg gTr V for all Îg G. The corresponding projector
in the group ring of G is

∣ ∣ åp c= ( ) Î [ ]c
ÎG

g g GQ
1

g G

leading to

≔
∣ ∣ åcG ( )G Î ( ) ( )c

ÎG
g X X

1
Corr , 7.1

g G
g b b b, 0

acting on the Chow group of M and on the homology groups of M as well as the homology of the
complete intersections Xb. The latter action preserves the decomposition into variable and fixed
homology. The jth Chow group of the motive ( G )cX, is by definition

( G ) = (G ( )  ( )) = ( )c c
cA X A X A X A X, Im : ,j j j j

where for any G-module V we set

≔ ∣ ∣c{ Î ( ) = ( ) Î } = { Î (G ) = }c
cV v V g v g v g G v V v vfor all .*

Thus Gc acts as the identity on cV .
We are now ready to formulate a variant of Proposition 6.1. Its validity is shown in the course

of the proof of [46, Theorem 3.3].

PROPOSITION 7.3 Let ( )M E, , G and Ì ( ( ) )B H M EP , G0 be as above. Suppose that

• ( )H M E, G0 almost separates orbits;
• the endomorphisms g Î ( )H XEndg d b

var var , Îg G, are linearly independent;
• for general Îb B one has ( ) ¹H X 0d b

var .

Then for any Î ( ´ )c  Ad
B with the property that

∣ = ( ´ )c´ in H X X0 ,X X d b b2b b

there exists a codimension-d cycle g on ´M M such that

∣ ∣g- = ( ´ )c´ ´ in A X X0X X X X d b bb b b b

for all Îb B.
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Using this variant, the arguments we employed in Section 6 for DX can thus be applied to Gc
provided we restrict to ( )cH Xb* . Since Gc acts as the identity on ( )cA Xj , the same conclusions as
before can be drawn for these Chow groups and we obtain the following results.

THEOREM 7.4 Let ( )M E, , G and Ì ( ( ) )B H M EP , G0 be as above. Moreover, let c be a Q-char-
acter for G and Gc the associated projector (7.1). Suppose that

• ( )B M holds;
• ( )H M E, G0 almost separates orbits;
• the endomorphisms g Î ( )H XEndg d b

var var , Îg G, are linearly independent;
• the Chow motive ( G )cM, is finite dimensional.

Assume, moreover, that for a general Îb B one has ( ) ¹H X 0d b
var and that

( ) Ì ( ) Î { + ¼ }cH X N H X for all k e d1, , .k b
c

k b

Then, for any Îb B,

(( ( )) ) £ - < { - }cNiveau A X e j for all j d e cmin , ,j b

that is, there exists a subvariety ÌZ Xb b of dimension d such that ( )  ( G )cA Z A X ,j b j b is surjec-
tive if < { - }j d e cmin , .

THEOREM 7.5 Notation as in the previous theorem. Let ÌX M be a G-invariant complete inter-
section of dimension d . Suppose that

• ( )B M holds;
• ( )H M E, G0 almost separates orbits;
• the endomorphisms gg

var, Îg G, are linearly independent in ( ( ) )H XEnd d
var ;

• the Chow motive ( G )cM, is finite dimensional;
• ¹ ( )H X0 n

var and for some positive integer c we have ( ) Ì ( )cH X N H Xd
c dvar, .

Then, for <k c or for > -k d c we have

↪( ) ( ) ( ) ( )c c c c
+ i A M A X i A X A M: , : .k r k k k* *

Moreover, in this range

⟶( ) = ( ( ) ( ) ) =c c cA X A X A Mker 0.k k
i

k
var *

If in addition ( ) = ( )c c[ ]H M N H Mk k
k
2 for £k d , then ( ) =cA X 0k

AJ if <k c or > -k d c.

We also have the analog of Corollary 6.7:

COROLLARY 7.6 In the above situation, suppose that = [ ]c d

2
. Then the motive ( G )ch X, is finite-

dimensional.
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8. Examples

8.1. Hypersurfaces in abelian 3-folds

We let A be an abelian variety of dimension 3. Let i = -1A be the standard involution. Choose an
irreducible principal polarization L that is preserved by i. The following facts are well known (see
for example [19]).

Facts:

• L is ample and sections of ÄL 2 correspond to even theta functions (and hence are invariant
under the involution).

• = ! =L 3 63 and ( ) =ÄH Ldim 80 2 .
• The linear system ∣ ∣ÄL 2 defines a 2-to-1 morphism k  ( ) Ì = ( )ÄA A H LP P: Km 7 0 2 *, where

( )AKm is the Kummer 3-fold associated to A, an algebraic 3-fold, smooth outside the images of
the 26 two-torsion points of A.

We let q= { = } ÌX A00 be a general divisor in ∣ ∣ÄL 2 . This is a smooth surface invariant under
i and k induces an étale double cover of surfaces ≔ ∣i /( ) Ì ( )X Y X AKmX . The surfaces X
and Y are of general type. The crucial properties of X are as follows. We use the standard notation
for the character spaces for the action of i/ = { }Z Z2 id, on a vector space V :

∣i= { Î ( ) =  }V v V v v .

PROPOSITION 8.1
(1) We have ( ) =+H X 01 .
(2) The splitting

( ) = ( ) Å ( )+ -H X H X H X2
var

2
var,

2
var ,

is non-trivial and ( ) = ( )+ +H X N H X2
var, 1

2
var, , that is, ( ) =+H X 02,0 var, .

Before giving the proof, we observe that Theorem 7.5 and Corollary 7.6 imply:

COROLLARY 8.2 We have ( ) =+A X 00
var and the motive ( ) = ( )+h X h Y is finite dimensional

(of abelian type).

Proof of Proposition 8.1. (1) Since i acts as -id on 1-forms, ( ) = ( ) =+b Y b X 01 1 . (2) We con-
sider cohomology instead of homology. Consider the Poincaré residue sequence

⟶ W  W ( ) W X0 0.A A X
3 3 res 2

In cohomology, this gives

⟶ (W )  (W ( )) (W )  (W ) H H X H H0 0.A A X A
0 3 0 3 res 0 2 1 3
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Since (W ( )) = ( )ÄH X H LA
0 3 0 2 , we deduce that

( ) = ( ) =h X h X7, 3.var
0,2

fix
0,2

By the residue sequence, variable holomorphic 2-forms are the Poincaré-residues along X of mero-
morphic 3-forms on A with at most a simple pole along q= { = }X 00 and are given by expres-
sions of the form

q
q

 dz dz dz
0

1 2 3

with q being a theta-function on A corresponding to a section of ÄL 2, and where z z z, ,1 2 3 are holo-
morphic coordinates on C3. It follows that such forms are anti-invariant under i and so

( ) = ( ) =-h X h X 7var
2,0

var ,
2,0 .

To complete the proof, we need to show that ( ) = ( )+H X H Yvar,
1,1

var
1,1 is non-trivial. This is a con-

sequence of the following calculation. □

LEMMA 8.3 The invariants of X and Y are as follows.

Variety b1 = ( )b h h h, ,2
var

var
2,0

var
1,1

var
0,2 = ( )b h h h, ,2

fix
fix
2,0

fix
1,1

fix
0,2

X 6 = ( )43 7, 29, 7 = ( )15 3, 9, 3
Y 0 = ( )7 0, 7, 0 = ( )15 3, 9, 3

Proof. By Lefschetz’ theorem ( ) = ( ) =b X b A 61 1 . To calculate b2 we observe that ( )=c X1

∣- L2 X and ∣( ) =c X L4 X2
2 so that

∣( ) = ( ) = = =c X c X L L4 8 48.X1
2

2
2 3

Since ( ) = ( ) = - ( ) + ( ) =c X e X b X b X2 2 482 1 2 , it follows that ( ) =b X 582 . Now ( ) =+b X2
fix,

( ) =b A 152 and so ( ) =b X 432
var . The 2-forms on X that are the restrictions of holomorphic

2-forms on A are clearly invariant and ( ) = ( ) =+h X h X 3fix
2,0

fix,
2,0 . Since =h 7var

2,0 , the invariants
for X follow.

For ( )b Y2 , we use that ∣i X acts freely on the generic X and so ( ) = ( ) = ( ) =e Y e X c X1

2

1

2 2

= + ( )b Y24 2 2 implying that ( ) =b Y 222 . Using Künneth, we find ( ) = ( ) =+ +b X b A2
fix,

2

( ) =b A 152 and so ( ) =+b X 152
fix, and ( ) =+b X 72

var, . Since ( ) =+h X 0var,
2,0 , this yields the invar-

iants for Y . □

8.2. Hypersurfaces in products of a hyperelliptic curve and a K3-surface

Let C be a hyperelliptic curve with hyperelliptic involution iC , and let S be a K3-surface with ( )h S
finite dimensional and which admits a fixed point free involution i2. Such surfaces exist; see for
example the examples of Enriques surfaces in [4, Section 4] coming from a K3-surface with
Picard number ³19. By Remark 2.7, the motive of S (and hence of ≔ ´M C S) is finite
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dimensional. The involution i i i= ( ),1 2 acts without fixed points on M . We let L1 be the hyper-
elliptic divisor on C and we pick a very ample divisor L2 on S invariant under the Enriques involu-
tion i2 and we set = L L L1 2. Let

↪ = ´i X M C S:

be a smooth hypersurface in ∣ ∣L invariant under i. Since i has no fixed points, i= /Y X is a smooth
surface. Since it has an étale cover with ample canonical divisor, Y is a surface of general type.
The analogs of Proposition 8.1 and its corollary are valid here.

PROPOSITION 8.4 We have

• ( ) =+H X 01 ;
• ( ) =+H X 02,0 fix, ;
• the splitting

( ) = ( ) Å ( )+ -H X H X H X2
var

2
var,

2
var ,

is non-trivial and ( ) =+H X 02,0 var, ;
• ( ) =+A X 00

var, and the motive ( ) = ( )+h X h Y is finite dimensional of abelian type.

Proof. To simplify notation, we write =u L2 2
2 with Îu Z, which is possible since L2

2 is even.
Step 1. Calculation of the Betti numbers of X and Y
We claim:

• ( ) =b X g21 and ( ) = + ( + ) +b X g g u4 4 2 462 ,
• ( ) =b Y 01 and ( ) = + ( + ) +b Y g g u2 2 222 .

To show this, observe that the Künneth formula and the Lefschetz hyperplane theorem imply
( ) = ( ) = ( ) =b X b M b C g21 1 1 and ( ) = ( ) = ( ) =+ +b Y b X b C 01 1 1 . To calculate ( )b X2 , we calcu-

late the Euler number ( ) = ( )e X c X2 from the Whitney product formula


( + ( ))( + ( ) + ( ))

= + ( - ) + + = [ ] = [ ]

c j L c X c X

g P P P i p C P i p S

1 1

1 2 2 24 , ,

1 1 2

1 2 1 1 2 2

*

* * * *

which gives ( ) = ( - ) - ( )c X g P c i L2 21 1 1 * and hence

·
·

( ) = - ( ) ( )

= + ( - ) ( ) + ( )

= + ( - ) ( + ) + ( + ) = ( )

c X P c j L c X

P g P c i L c i L

P g P P ℓ P ℓ ℓ c i p L

24

24 2 2

24 2 2 2 2 , .

2 2 1 1

2 1 1 1
2

2 1 1 2 1 2
2

2 1 2 2

*

* *

* *

Identifying ( )H X Z,4 with the integers, we have

·= = ( ) = = =P P P ℓ L u ℓ u0, 2, 2 , 4 .1
2

2 1 2 2
2

2
2

and so
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⟹( ) = + ( + ) = - + ( ) ( ) = + + ( + )c X g u g b X b X g g u48 4 2 2 4 46 4 4 2 .2 2 2

We calculate ( )b Y2 from the Euler number of Y as follows.

⟹

+ ( ) = ( ) = ( ) = ( - + ( ))

( ) = ( ) - ( + ) = + + ( + )

b Y e Y e X g b X

b Y b X g g g u

2
1

2

1

2
2 2

1

2
1 22 2 2 .

2 2

2 2

Step 2. Variable and fixed homology
Remarking that the fixed cohomology equals ↪( ( ) ( ))i H M H XIm : 2 2* , we find

( ) = ( ) = ( ) + ( ) =b X b M b C b S 232
fix

2 2 2 . Since i/ = ´ { }M P Enriques surface1 , we find
i( ) = ( / ) =b X b M 112

fix
2 . We put the result in a table.

Variety b2
var b2

fix

X + ( + ) +g g u4 4 2 23 23
Y + ( + ) +g g u2 2 22 11

Step 3. Hodge numbers of X
As one readily verifies, the fixed cohomology has Hodge numbers

( ) = ( ) =h X h X1, 21.fix
2,0

fix
1,1

For the variable cohomology, we have

·( ) = ( + ) + + ( ) = ( + ) + -h X g u g h X g u g1 2, 2 3 2 2.var
2,0

var
1,1

To see this, consider the Poincaré residue sequence in this situation.

⟶ W  W ( ) W X0 0.M M X
3 3 res 2

From the long exact sequence in cohomology, we deduce that

⟹ ·w w wW ( ) = ( )  ( ) ( ) = ( Ä ) ( ( ) - ) ( )X p L p L h X h C L h S L g, , . 8.1M C S C
3

1 1 2 2 var
2,0 0

1
0

2* *

By Riemann–Roch w( Ä ) = ( ) = +h C L h L g, 1C
0

1
1

1* and ( ) = +h S L u, 20
2 . The result for

( )h Xvar
2,0 follows.

Step 4. Hodge numbers of Y
From the fact that i/M is the product of P1 and an Enriques surface, we that find =+h 0fix

2,0 and
=+h 11fix

1,1 . To find the Hodge numbers for the variable cohomology, we use a basic
observation. □
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LEMMA 8.5 We have w( Ä ) =+h C L, 0C
0

1 .

Proof. Invariant meromorphic 1-forms on C having a pole at most in the hyperelliptic divisor cor-
respond to meromorphic 1-forms on P1 with at most one pole. But there are no such forms. □

As a corollary, from (8.1), it then follows that ( ) =+h X 0var
0,2 and so ( )+H X2

var is pure of type
( )1, 1 . We claim that ( ) ¹+H X 02

var . Indeed, our calculations lead to the following table.

Variety ( )h h h, ,var
2,0

var
1,1

var
0,2 ( )h h h, ,fix

2,0
fix
1,1

fix
0,2

X (( + ) + + ( + ) + + + ) + + )g u g g u g g u g1 2, 2 3 2 21, 1 2 ( )1, 21, 1
Y ( ( + ) + + )g u g0, 2 3 2 10, 0 ( )0, 11, 0

8.3. Hypersurfaces in products of three curves

Let = ´ ´M C C C1 2 3 where aC are curves equipped with an involution ia. Assume that aL is a
very ample line bundle on aC which is preserved by ia and such that the system ∣ ∣a iaL gives a
morphism. Put i i i i= ( ), ,1 2 3 and let ÌX M be a general member of the system ∣ ∣Ä Ä iL L L1 2 3

where we identify aL with its pull back to M . The group G generated by the three involutions ia
acts on M . As in the previous subsections, one can calculate the various character spaces for the
action of G on ( )H X2

var. Suppose one factor, say C1, is hyperelliptic. Using Lemma 8.5, one sees
that this makes the niveau of ( )iH X2

,var1 equal to 1. Choosing the other factors suitably so that all
character spaces appear in ( )H X2

var one finds (many) projectors p with ( G ) =pA X, 00
AJ,var . Let us

give one concrete example.
We let C1 be a genus g hyperelliptic curve, and C C,2 3 genus 3 unramified double covers of

some genus 2 curve. We take for L1 the degree 2 hyperelliptic bundle and we take for aL ,
a = 2, 3, the degree 2 bundles for which the system ∣ ∣aL induces the unramified double cover of
aC onto the genus 2 curve. Note that i acts without fixed points in this case. As before, we obtain

a surface of general type ≔ i/Y X . We find the following invariants.

Variety b1 ( )h h h, ,var
2,0

var
1,1

var
0,2 ( )h h h, ,fix

2,0
fix
1,1

fix
0,2

X ( + )g2 6 ( + + + )g g g7 16, 14 477 16 ( + + + )g g g6 9, 12 21, 6 9
Y 8 ( + )g0, 12 28, 0 ( )4, 8, 4

Concluding, ( )+H Xvar,
2 is pure of type ( )1, 1 and ( )H Xvar

2 contains an invariant and anti-
invariant part so that we can apply our considerations to the motive i( ( + ))X, 11

2
and hence

( ) =+A X 0.0
AJ,var

It follows, as before, that ( ) = ( )+h Y h X is finite dimensional.
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REMARK 8.6 Using [22], we have that the map

( ) Ä ( )  ( )A Y A Y A Y1
hom

1
hom

0
AJ

induced by intersection product is surjective, like in the case of an abelian surface. To see this,
consider the commutative diagram

H1,0(Y ) ⊗ H1,0(Y )

�
∧ H2,0(Y )

�

2 (H1,0(C2/ι2) ⊕ H1,0(C3/ι3)) H1,0(C2/ι2) ⊗ H1,0(C3/ι3),

which shows that the top-line is a surjection.

8.4. Odd-dimensional complete intersections of four quadrics

The following example is due to Bardelli [3]. Let i P P: 7 7 be the involution defined by

i ( ¼ ¼ ) = ( ¼ - ¼ - )x x y y x x y y: : : : : : : : : : .0 3 0 3 0 3 0 3

Let = ( ¼ )X V Q Q, ,0 3 be the intersection of four i-invariant quadrics. Then ( ) =-H X 03,0 , hence
( )-H X3 is a Hodge structure of level 1. Bardelli showed that there exist a smooth curve C and

a correspondence g Î ( )C XCorr ,1 such that g ( )  ( )-H C H X: 1 3*
is surjective. Hence

( ) Í ( ) = ( )
~-H X N H X N H X3

1
3

1
3 . By Theorem 7.5, we get ( ) =-A X 00

AJ .
Consider the projector i= ( - )p idX

1

2
* . As i i=* *, we have =p pt . Hence, the motive

= ( )N X p, satisfies @ ( )N N 3 and we can apply [40, Theorem 3.11] to the map
i= ( ( - )) i M NP: , idP

7 1

2
* * . This shows that the motive = ( )-N h X is finite dimensional;
more precisely, it is a direct factor of ¢ = Å ( ) Å ( )( )M M M h C i3 i i for some curves Ci. As

( ¢) =A M 0i
AJ for all i, we obtain that

( ) =-A X 0i
AJ

for all i. In other words, the quotient morphism ≔ i /f X Y X: induces an isomorphism

( )  ( )
@

f A Y A X: .AJ AJ* * *

This example can be generalized to higher dimension.

THEOREM 8.7 Let i be the involution on +P m2 3 ( ³m 2) defined by

   i ( ) = ( - - )+ + + +x x y y x x y y: : : : : : : : : :m m m m0 1 0 1 0 1 0 1

and let = ( ¼ )X V Q Q, ,0 3 be a complete intersection of four i-invariant quadrics. Let i= { }G id,
and let c  { }G: 1 be the character defined by c i( ) = (- ) -1 m 1. Then ( )c-H Xm2 1 is a Hodge
structure of level 1, and there exist a smooth curve C and a correspondence g Î ( )- C XCorr ,m 1

such that g ( )  ( )c-H C H X: m1 2 1*
is surjective.
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Proof. See [30, Chapter 3] or [31, Chapter 4]. □

COROLLARY 8.8 The motive ( )ch X is finite dimensional and ( ) =cA X 0i
AJ for all i.

REMARK 8.9 The same reasoning can be applied to the examples in [44] and the 3-fold studied in
[35]. Also, as detailed in [26], our method gives an easy proof of the Bloch conjecture for
Burniat–Inoue surfaces (this is first proven in [33, Theorem 9.1] and [5]). A more involved appli-
cation of our method is given in [36].
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