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ABSTRACT. Generalized Burniat surfaces are surfaces of general type with pg = q and Euler
number e = 6 obtained by a variant of Inoue’s construction method for the classical Burniat
surfaces. I prove a variant of the Bloch conjecture for these surfaces. The method applies also
to the so-called Sicilian surfaces introduced in [2]. This implies that the Chow motives of all of
these surfaces are finite–dimensional in the sense of Kimura.

1. INTRODUCTION

Quite recently in [2] I. Bauer et. al. have investigated a generalization of Inoue’s construction
[7] of the classical Burniat surfaces [5]. These surfaces are minimal, of general type and have
invariants pg = q = 0, 1, 2 or 3.

Recall that the Chow group CHk is said to be ”trivial”, if the natural cycle class map CHk ↪→
H2k is injective. The kernel of the cycle class map CHhom

k can be investigated by means of the
Abel–Jacobi map CHhom

k → Jk, where the target is the k-th intermediate Jacobian. Its kernel
is denoted CHAJ

k . If this vanishes, this has strong consequences. For instance for surfaces this
implies pg = 0 and the Albanese map is an isomorphism up to torsion. The converse is Bloch’s
conjecture [4]. In a follow-up study [3] this conjecture has been verified for the generalized
Burniat surfaces, i.e CHhom

0 = 0.
These generalized Burniat surfaces Y = X/G are all quotients of X by a freely acting abelian

group G ' (Z/2Z)3 and where (X,G) is a so called Burniat hypersurface pair (X,G): X
is a hypersurface in a product A of three elliptic curves having at most nodes as singularities
and G is an abelian group acting freely on A and leaving X invariant. The surface X is also
called Burniat hypersurface. These come in 16 families, enumerated S1–S16. The classical
Burniat surface belongs to the 4-parameter family S2. Also the family S1 is 4-dimensional. The
remaining families have only 3 parameters coming from varying the elliptic curve. This implies
that the equation of X in these cases is uniquely determined, contrary to the first two where there
is a pencil of hypersurfaces invariant under G. The surfaces Y have at most nodal singularities.
For simplicity I assume in this note that Y , and henceX is smooth, which is generically the case.
However, none of the arguments is influenced by the presence of nodal singularities.

In [9] it has been remarked that the main theorem of loc. cit. yields the Bloch conjecture for
the classical Burniat surfaces. The goal of this paper is to apply the same methods to all Burniat
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hypersurfaces. In particular, one obtains a short proof of the Bloch conjecture in the appropriate
cases.

To state the result, let me recall that the Chow motive1 h(X) is the pair (X,∆) where ∆ ⊂ X×
X is the diagonal considered as a (degree 0) self-correspondence ofX . As a self-correspondence
it is an idempotent in the ring Corr0(X) of degree 0 self-correspondences. If a finite group G
acts on X , any character χ of the group defines an idempotent

πχ =
1

|G|
∑
g∈G

χ(g)Γg ∈ Corr0(X),

where Γg is the graph of the action of g on X . The pair (X, πχ) is the motive canonically
associated to the character χ. Note that the trivial character gives the motive h(X/G) of the
Burniat hypersurface. The main result now reads as follows:

Theorem (=Theorem 4.2). With i : X ↪→ A the inclusion, let (X,G) be a Burniat hypersurface
pair as before and let Y = X/G be the corresponding generalized Burniat surface. Consider
the one-dimensional space H0(Ω3

A) as a G-representation space, i.e. as a character χA. Then
(1) For the families S1,S2 the involution j = ι1ι2ι3 belongs to G and the motives h(X/j)

and h(Y ) are finite dimensional.
(2) For all other families, the motive (X, πχA) is finite-dimensional. For the families S3,S4,

S11,S12,S16 this motive is just h(Y ).
(3) The Bloch conjecture holds for the families S1–S4. In the remaining cases a variant of

Bloch’s conjecture holds, namely2 ker(i∗ : CHAJ
0 (X)χA → CHAJ

0 (A)χA) = 0. For the
families S10,S11 and S16 this means that ker(i∗ : CH0(X)→ CH0(A)) = 0.3

As shown in [2] the families S11 and S12 give two divisors in a 4-dimensional component of
the Gieseker moduli space.

The above method applies also to the surfaces in this component, the so-called Sicilian sur-
faces so that the result for S11 and S12 is valid for these as well. See Remark 4.3.

Acknowledgements . Thanks to Robert Laterveer for his interest and remarks. I also want to
thank the referee for her helpful hints to improve the presentation; she also carefully checked the
calculations, thereby saving me from embarrassment.

2. PRELIMINARIES

2.1. Motives. A degree k (Chow) correspondences from X to Y from a smooth projective vari-
ety X to a smooth projective variety Y is a cycle class

Corrk(X, Y ) := CHdimX+k(X × Y ).

A correspondence of degree k induces a morphism on Chow groups of the same degree and on
cohomology groups (of double the degree). Correspondences can be composed and these give

1 See Section 2.1 for background on motives.
2As a matter of notation, for any G-module V we set V χ := {v ∈ V | g(v) = χ(g)v for all g ∈ G}.
3This can also be stated directly in terms of the so-called ”variable motive”. See Theorem 4.2.
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the morphisms in the category of Chow motives. Let me elaborate briefly on this but refer to [10]
for more details.

Precisely, an effective Chow motive consists of a pair (X, p) withX a smooth projective variety
and p a degree zero correspondence which is a projector, i.e., p2 = p. Morphism between motives
are induced by degree zero correspondences compatible with projectors. This procedure defines
the category of effective Chow motives. Every smooth projective variety X defines a motive

h(X) = (X,∆), ∆ ∈ CHdimX(X ×X) the class of the diagonal

and a morphism f : X → Y between smooth projective varieties defines a morphism h(Y ) →
h(X) given by the transpose of the graph of X .

One can also use correspondences of arbitrary degrees provided one uses triples (X, p, k)
where p is again a projector, but a morphism f : (X, p, k) → (Y, q, `) is a correspondence of
degree ` − k compatible with projectors. Such triples define the category of Chow motives. It
should be recalled that motives, like varieties have their Chow groups and cohomology groups:

CHm(X, p, k) := Im
(
CHm+k(X)

p∗−→ CHm+k(X)
)
,

Hm(X, p, k) := Im
(
Hm+2k(X)

p∗−→ Hm+2k(X)
)
.

Kimura [8] has introduced the concept finite-dimensionality for motives. If the motive of a
surface S is finite-dimensional, then the Bloch conjecture holds for any submotive M of S with
h2,0(M) = 0. This is the motivation for considering the variable cohomology. In [11] it is shown
that there is indeed a submotive of S whose cohomology is the variable motive.

2.2. A criterion for finite dimensional motives. The general situation of [9] concerns smooth
d-dimensional complete intersectionsX inside a smooth projective manifoldM of dimension d+
r for which Lefschetz’ conjecture B(M) holds. This conjecture is known to hold for projective
space and for abelian varieties and so in particular for the situation in this note.

Recall also (see e.g. [6, Ch. 3.2]) that in this situation, with i : X ↪→ M the inclusion, the
fixed and variable cohomology is defined as follows.

Hd
fix(X) = Im(i∗ : Hd(M)→ Hd(X)),

Hd
var(X) = ker(i∗ : Hd(X)→ Hd+2r(M)),

and that one has a direct sum decomposition

Hd(X) = Hd
fix(X)⊕Hd

var(X),

which is orthogonal with respect to the intersection product. In [11] I explained that validity of
B(M) implies the existence of a motive (X, πvar) such that πvar induces projection onto variable
cohomology.

The main input is the special case of [9, Thm. 6.5 and Cor. 6.6] for surfaces inside a threefold.
It reads as follows.

Theorem 2.1. Let M be a smooth projective threefold on which a finite abelian group G acts.
Let L be line bundle with G-action, X ⊂ M a G-invariant section and χ a character of G.
Suppose that
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(1) the conjecture B(M) holds;
(2) the sections of H0(M,L)G separates orbits;
(3) all characters of G appear in End(H2

var(X));
(4) the Chow motive (M,πχ) is finite-dimensional;
(5) 0 6= H2

var(X) and H2
var(X)χ is pure of Hodge type (1, 1).

Then CHvar
0 (X)χ = 0, and the motive (X, πχ) is finite-dimensional.

2.3. Elliptic curves. Let me recall the relevant facts about theta functions on an elliptic curve
E with period lattice Λ generated by 1 and τ ∈ h. Points in the elliptic curve referred to by
the standard coordinate z ∈ C and the corresponding line bundle by Lz. It is the bundle with
H0(E,Lz) = Cϑz, ϑz a theta-function with simple zeros in the points z + Λ only. Let tu : z 7→
z + u be a translation of E. Then Lz ' t∗zL0. If one takes for z one of the four two-torsion
points ε ∈ {0, 1

2
, 1

2
τ, 1

2
+ 1

2
τ} of E, the corresponding line bundles Lε have the four classical

theta functions ϑ1, ϑ2, ϑ3, ϑ4 respectively as sections. See e.g. [1, Appendix A, Table 16 ] for the
definitions.

Set
ME := H0(E,L2

0 ).

Lemma 2.2. i) The bundle L2
0 is a symmetric line bundle and all its sections are symmetric.

ii) The translations tε define a faithful action of (Z/2Z)2 on L2
0 .

iii) The character decomposition of ME for this action is (+−)⊕ (−+).

Proof : i) is clear.
ii) Since L2

ε ' L2
0 for all two-torsion points ε, the functions ϑ2

j define sections of the same bundle
L2

0 . The sections ϑ2
j , j = 1, 2, 3, 4 are characterized by having a double zero at exactly one of the

four 2-torsion points. This shows in particular that the action of the group {tε, ε a 2-torsion point}
is faithful on ME .
iii) It follows that there is a basis of two sections of L2

0 consisting of simultaneous eigenvectors
for this action. Since the action is faithful, the character decomposition must be (+−), (−+). �

3. SURFACES INSIDE ABELIAN THREEFOLDS INVARIANT UNDER INVOLUTIONS

3.1. Products of three elliptic curves. Consider the abelian threefold

A := E1 × E2 × E3, Eα = C/Λα, with Λα = Z⊕ Zτα, α = 1, 2, 3.

Using for a fixed elliptic curve E = CZ⊕ τZ the involutions

ιE : z 7→ −z, tE : z 7→ −z +
1

2
, τE : z 7→ −z +

1

2
τ ,

we obtain three involutions on A

(1)

ια = ιEα
ιαβ = tEαtEβ ,

ι123 = τE1τE2τE3 .

and we consider the group (Z/2Z)6 operating on A as

G0 := 〈 ι1, ι2, ι3, ι12, ι13, ι123 〉.
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Lemma 3.1. The action of G0 on holomorphic 1-forms of A is given by
form ι1 ι2 ι3 ι12 ι13 ι23 ι123

dz1 − + + − − + −
dz2 + − + − + − −
dz3 + + − + − − −

Consider now the symmetric line bundle L2
A where

LA := OE1(L0) � OE2(L0) � OE3(L0),

and set
H0(L2

A) = ME1 �ME3 �ME3 .

By Lemma 2.2 this is a representation space for G0 which admits a basis of simultaneous eigen-
vectors. If {θ1

Ej
, θ2
Ej
}, denotes the basis of Lemma 2.2, for MEj , j = 1, 2, 3, their products give

8 basis vectors as follows.

θj1j2j3 = θj1E1
· θj2E2

· θj3E3
, jk ∈ 1, 2.

The next result is a consequence.:

Lemma 3.2. The space H0(L2
A) is the G0-representation space which on the basis {θj1j2j3},

j1, j2, j3 ∈ {1, 2}, is given as follows
element ι1 ι2 ι3 ι12 ι13 ι23 ι123

θ111 + + + + + + −
θ211 + + + − − + +
θ121 + + + − + − +
θ112 + + + + − − +

θ1 2 2 + + + − − + −
θ2 1 2 + + + − + − −
θ221 + + + + − − −
θ222 + + + + + + +

3.2. Hypersurfaces of abelian threefolds and involutions. Let A be an abelian variety of di-
mension three and L a principal polarization so that L3 = 3! = 6 and let i : X ↪→ A be a
smooth surface given by a section of of L⊗2. The Lefschetz’s hyperplane theorem gives:

i∗ : H1(A)
'−→ H1(X)(2)

i∗ : H2(A)
'−→ H2

fix(X) ⊂ H2(X).(3)

Lemma 3.3. Suppose that ι : A→ A is an involution which acts on H0(Ω1
A) with p eigenvalues

1 and n = 3− p eigenvalues −1. Suppose also that ι preserves X and acts without fixed points
on X . Then we have

Tr(ι)|H2
var(X) = −29 + 8p(4− p) =


−29 for p = 0

−5 for p = 1

3 for p = 2

−5 for p = 3.
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Proof : The assumption implies that

Tr(ι)|H1(A) = 4p− 6 =


−6 for p = 0

−2 for p = 1

2 for p = 2

6 for p = 3,

and

Tr(ι)|H2(A) = 8p(p− 3) + 15 =


15 for p = 0

−1 for p = 1

−1 for p = 2

15 for p = 3.

If ι preserves X and acts without fixed points on X , Lefschetz’ fixed point theorem gives

0 = 2− 2 Tr(ι)|H1(X) + Tr(ι)|H2(X) = 2− 2 Tr(ι)|H1(A) + Tr(ι)|H2(A) + Tr(ι)|H2
var(X),

and so the above calculation immediately gives the desired result. �
In order to calculate the invariants on X , let me first consider the holomorphic two-forms in

detail.

Lemma 3.4. 1. One has
h0,2

var(X) = 7, h0,2
fix (X) = 3.

2. If X = {θ0 = 0}, the variable holomorphic 2-forms are the Poincaré-residues along X of the
meromorphic 3-forms on A given by expressions of the form

θ

θ0

dz1 ∧ dz2 ∧ dz3

with θ a theta-function on A corresponding to a section of L⊗2, and where z1, z2, z3 are holo-
morphic coordinates on C3.
3. Suppose ι acts with the character ε ∈ {±1} on holomorphic three forms. Let (p, n) be the
dimensions of the invariant, resp. anti-invariant sections of L⊗2. Then dimH2,0

var,ε(X) = p− 1 if
ε = 1 and = p otherwise.

Proof : Consider the Poincaré residue sequence

0→ Ω3
A → Ω3

A(X)
res−−→ Ω2

X → 0.

In cohomology this gives

(4) 0→ H0(Ω3
A)→ H0(Ω3

A(X))
res−−→ H0(Ω2

X)→ H1(Ω3
A)→ 0.

One sees that image of the residue map coincides with ker (H0(Ω2
X)→ H1(Ω3

A)), which is the
(2, 0)-part of the variable cohomology, by definition equal to ker

(
H2(X)

i∗−→ H4(A)
)
. Since

H0(Ω3
A(X)) = H0(L⊗2) the assertion 1. follows.

2. This is clear.
3. This follows directly from (4). �

Corollary 3.5. The invariants of X are as follows.
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b1 bvar
2 = (h2,0

var, h
1,1
var, h

0,2
var) bfix

2 = (h2,0
fix , h

1,1
fix , h

0,2
fix )

6 43 = (7, 29, 7) 15 = (3, 9, 3)

Proof : Equation (2) gives b1(X) = b1(A) = 6. To calculate b2(X) we observe that c1(X) =
−2L|X and c2(X) = 4L2|X so that

c2
1(X) = c2(X) = 4L2|X = 8L3 = 48.

Since c2(X) = e(X) = 2 − 2b1(X) + b2(X) = 48, it follows that b2(X) = 58. By (3) one has
bfix

2 (X) = b2(A) = 15 and so bvar
2 (X) = 43. Since h2,0

var = 7, the invariants for X follow. �

3.3. Burniat hypersurfaces. A Burniat hypersurface ofA = E1×E2×E3 is a surface which is
invariant under a subgroup G ⊂ G0 generated by 3 commuting involutions and which acts freely
on X . Each of the involutions is a product of the involutions (1). The quotient Y = X/G is
called a generalized Burniat surface. In [2] one finds a list of 16 types of such surfaces, denoted
S1, . . . ,S16. All of the surfaces are of general type with c2

1 = 6, pg = q and q = 0, 1, 2, 3 and
hence e = 6 = 2 − 4q + b2 so that b2 = (pg, h

11, pg) = (q, 4 + 2q, q). There are 4 families
with q = 0 and one of these, S2 gives the classical Burniat surfaces from [5]. See Table 1. The

TABLE 1. Burniat hypersurfaces

type involution 1 involution 2 involution 3 G-invariant 1-forms χA
S1 ι1ι2ι3 ι2ι3ι123 ι3ι23 none −−−
S2 ι1ι3ι23 ι3ι13 ι2ι23 none +−−
S3 ι1ι3ι23 ι3ι123 ι2ι3ι12 none + + +
S4 ι1ι3ι12 ι2ι123 ι2ι3ι23 none + + +

S5 ι1ι3ι13 ι3ι123 ι3ι23 dz3 + +−
S6 ι2ι3ι123 ι2ι3ι13 ι3ι23 dz3 −+−
S7 ι1ι3ι23 ι3ι123 ι2ι12 dz3 + +−
S8 ι1ι3ι23 ι2ι3ι123 ι2ι3ι13 dz3 +−+
S9 ι1ι2ι3ι23 ι3ι123 ι2ι12 dz3 −+−
S10 ι1ι2ι3ι13 ι2ι3ι123 ι3ι23 dz3 −−−
S11 ι1ι2ι23 ι2ι123 ι2ι3ι12 dz2 + + +
S12 ι1ι3ι13 ι3ι123 ι2ι3ι23 dz3 + + +

S13 ι1ι2ι3ι23 ι2ι3ι123 ι2ι12 dz2, dz3 −−−
S14 ι1ι13 ι12ι123 ι2ι23 dz1, dz2 −−−
S15 ι1ι3ι13 ι12ι123 ι2ι3ι23 dz1, dz2 +−+

S16 ι1ι3ι13 ι3ι12ι123 ι2ι3ι23 all + + +

last column of this table gives the action of the three generators (g1, g2, g3) on H0(Ω3
A). It is

calculated using Lemma 3.1. If an involution acts as the identity, there appears a “+” in the
corresponding entry and else a “−”; e.g. (+,−,−) means that g1 = id but g2 = g3 = − id.

In Table 2 the character spaces for the action on the forms coming from A is given. It is
calculated from the description of the generating involutions as given in Table 1 and the known
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TABLE 2. Action on forms and invariants of the generalized Burniat surfaces

type U = H0(A,Ω1
A) H0(A,Ω2

A) = ∧2U = W H1(A,Ω1
A) bfix

2 (Y ) bvar
2 (Y )

S1 (−+ +)(−−+)(−+−) (+−+)(+ +−)(+−−) 3 · 1 + 2W (0, 3, 0) (0, 1, 0)
S2 (−+ +)(−−+)(+ +−) (+−−)(−+−)(−−−) 3 · 1 + 2W (0, 3, 0) (0, 1, 0)
S3 (−−−)(−−+)(+ +−) (+ +−)(−−+)(−−−) 3 · 1 + 2W (0, 3, 0) (0, 1, 0)
S4 (+−+)(−+ +)(−−+) (−−+)(−+ +)(+−+) 3 · 1 + 2W (0, 3, 0) (0, 1, 0)

S5 (+−+)(+−−) + 1 (+−+)(+−−)(+ +−) 3 · 1 + 2W (0, 3, 0) (1, 3, 1)
S6 (−−+)(+−−) + 1 (−−+)(+−−)(−+−) 3 · 1 + 2W (0, 3, 0) (1, 3, 1)
S7 (−−−)(−−+) + 1 (−−−)(+ +−)(+−−) 3 · 1 + 2W (0, 3, 0) (1, 3, 1)
S8 (−−−)(−+−) + 1 (−−−)(−+−)(+−+) 3 · 1 + 2W (0, 3, 0) (1, 3, 1)
S9 (−−−)(+−+) + 1 (−−−)(+−+)(−+−) 3 · 1 + 2W (0, 3, 0) (1, 3, 1)
S10 (+−+)(−+−) + 1 (+−+)(−+−)(−−−) 3 · 1 + 2W (0, 3, 0) (1, 3, 1)
S11 2(−−−) + 1 2(−−−) + 1 3 · 1 + 2W (1, 5, 1) (0, 1, 0)
S12 2(+−+) + 1 2(+−+) + 1 3 · 1 + 2W (1, 5, 1) (0, 1, 0)

S13 (−−−) + 2 · 1 2 · (−−−) + 1 3 · 1 + 2W (1, 5, 1) (1, 3, 1)
S14 (−−−) + 2 · 1 2 · (−−−) + 1 3 · 1 + 2W (1, 5, 1) (1, 3, 1)
S15 (+−+) + 2 · 1 2 · (+−+) + 1 3 · 1 + 2W (1, 5, 1) (1, 3, 1)

S16 3 · 1 3 · 1 3 · 1 + 2W (3, 9, 3) (0, 1, 0)

action of 1-forms as given in Lemma 3.1. In Table 2 we use the shorthand 1 for (+ + +); the last
two columns give the Hodge numbers (h2,0, h1,1, h0,2). From the first column of this table one
finds the trace of the action of these generators onH0(Ω1

A), or, alternatively, the dimensions of the
eigenspaces for the eigenvalues +1 and −1. Writing the dimensions of the (+)-eigenspaces as a
vector according to the group elements written in the order (1, g1, g2, g3, g1g2, g1g3, g2g3, g1g2g3)
yields the type (3, t1, t2, t3, . . . ) ∈ Z8 of the group action. This gives the first row in Table 3
below. Using Lemma 3.3, this table enables to find the multiplicity of χA in H2

var(X).4

Lemma 3.6. For each of the families S3–S16 the character of χA appears with non-zero multi-
plicity in the variable cohomology. 5

Proof : For each of the families S3,S4,S11,S12 and S16 one has H0(A,Ω3
A) = (+ + +) and

dimH1,1
var(Y ) = H1,1

var,+++(X) = 1, as one sees from Table 2.
For the other families we argue as follows. In each case, g ∈ G, g 6= 1 act freely on X and so

one can apply Lemma 3.3 to find Tr g|H2
var(X), given the dimension p(g) of the (+1)-eigenspace

of H0(Ω1
A). This type is given in Table 3. The next column gives the corresponding trace vector.

Then follows the trace vector of χA. Now apply the trace formula for the multiplicity of an
irreducible representation inside a given representation (see e.g. [12, §2.3]): just take the ”dot”

4We recall that χA is the isomorphism classe of the one-dimensional representation space H0(A,Ω3
A).

5This is also true for the two remaining families, but this will not be used.
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TABLE 3. Trace vectors

type type H0(A,Ω1
A) trace vect. H2

var(X) trace vect. H0(A,Ω3
A) mult. χA

S5 (3|3 2 1|1 2 2|2) (43| − 5 − 5 3 | − 5 3 3|3) (1|1 1− 1 |1 − 1 − 1 | − 1) 2
S6 (3|2 1 2|2 12|3) (43|3 − 5 3| 3 − 5 3 | − 5) (1| − 1 1 − 1 | − 1 1 − 1|1) 2
S7 (3|1 1 2|3 2 2|2) (43| − 5 − 5 3| − 5 3 3|3) (1|1 1− 1 |1 − 1− 1| − 1) 2
S8 (3|1 2 1|2 3 2|3) (43| − 5 3− 5|3− 5 3 |3) (1|1 − 1 1| − 1 1 − 1| − 1) 2
S9 (3|2 1 2|2 1 2|3) (43|3 − 5 3| 3 − 5 3| − 5 ) (1| − 1 1 − 1| − 1 1 − 1|1) 2
S10 (3|2 2 2|1 3 1|2) (43|3 3 3 | − 5 − 5 − 5 3) (1| − 1 − 1 − 1|1 1 1| − 1) 2

S13 (3|2 2 2|2 3 3|2) (43|3 3 3| − 5 − 5 − 5 |3) (1| − 1 − 1 − 1|1 1 1| − 1) 2
S14 (3|2 2 2|3 3 3|2) (43|3 3 3| − 5 − 5 − 5 |3) (1| − 1 − 1 − 1|1 1 1| − 1) 2
S15 (3|3 2 3|2 3 2|2) (43| − 5 3 − 5 |3 − 5 3|3) (1|1 − 1 1| − 11 − 1| − 1) 2

product of the two trace vectors and divide by the order of the group. Let me do this explicitly for
the family S5. The trace vector for H2

var(X) is (43,−5,−5, 3,−5, 3, 3, 3), the first number being
dimH2

var(X). The representation χA = (++−) has trace vector (1, 1, 1,−1, 1,−1,−1,−1) and
the trace formula reads

1

8
(43− 5− 5−3− 5− 3− 3− 3) = 2. �

4. THE MAIN RESULT

In this section I shall show that the main theorem 4.2 below follows upon application of The-
orem 2.1. First an auxiliary result.

Lemma 4.1. Consider for each of the families S1–S16 the space of theta-functions H0(L2
A) as

G-representation space. This 8-dimensional space is the direct sum for all 8 characters of G
except for the families S1 and S2. For these families we have

• for S1 we have H0(L2
A) = 2 ((+ + +) + (+ +−) + (+−+) + (+−−)),

• for S2 we have H0(L2
A) = 2 ((+ + +) + (+−+) + (−+−) + (−−−)).

Proof : This follows from the G-action on the basis θj1,j2j3 for H0(L2
A) which can be deduced

from Lemma 3.2. I shall work this out for two cases: the family S2, and for the family S6. For
S2 we have g1 = ι1ι3ι23, g2 = ι3ι13 and g3 = ι2ι23 and for S6 we have g1 = ι2ι3ι123, g2 = ι2ι3ι13

and g3 = ι3ι23, and the action of these involutions is given in the following table.
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element g1 = ι1ι3ι23 g2 = ι3ι13 g3 = ι2ι23 g1 = ι2ι3ι123 g2 = ι2ι3ι13 g3 = ι3ι23

θ111 + + + − + +

θ211 + − + + − +
θ121 − + − + + −
θ112 − − − + − −
θ1 2 2 + − + − − +
θ2 1 2 − + − − + −
θ221 − − − − − −
θ222 + + + + + +

�

Theorem 4.2. Let (X,G) be a Burniat hypersurface pair as before and let Y = X/G be the
corresponding generalized Burniat surface. Consider the one-dimensional space H0(Ω3

A) as a
G-representation space, i.e. as a character χA. Then

(1) For the families S1,S2 the involution j = ι1ι2ι3 belongs to G and the motives h(X/j)
and h(Y ) are finite dimensional.

(2) For all other families, the motive (X, πχA) is finite-dimensional. For the families S3,S4,
S11,S12 and S16 the latter motive is just h(Y ).

(3) The Bloch conjecture holds for the families S1–S4. In the remaining cases a variant of
Bloch’s conjecture holds, namely CHvar

0 (X)χA = 0. For the families S10,S11 and S16 this
means that CHvar

0 (X) = 0.

Proof : (1) For the family S2 this is [9, Example 7.3]. The same proof goes through for the
family S1.
(2) The conditions (1), (2) and (4) of Theorem 2.1 are verified. Condition (5) is a consequence
of Lemma 3.4.3. Indeed, if all characters in the 8-dimensional space H0(A,L2) appear once,
this result implies that there is one character missing in H0,2

var(X), namely the character χA for
the holomorphic three-forms on A. So for this character space condition (5) holds. As to (3),
Lemma 4.1 states that in this case all characters appear in H2

var(X) except maybe this missing
character χA. But its multiplicity has been calculated in Table 3. It is non-zero and so condition
(3) holds as well.
(3) This is one of the assertions of Theorem 2.1. �

Remark 4.3. Recall the following definition from [2]: a Sicilian surface is a minimal surface S of
general type with numerical invariants pg(S) = q(S) = 1, c2

1(S) = 6 for which, in addition, there
exists an unramified double cover Ŝ → S with q(Ŝ) = 3, and such that the Albanese morphism
α̂ : Ŝ → Alb(Ŝ) is birational to its image Z, a divisor in its Albanese variety with Z3 = 12. In
loc. cit. one finds the following explicit construction. Let T = C2/Λ2, Λ2 = Z2 ⊕ τ1Z ⊕ Zτ2

be an Abelian surface with a (1, 2)-polarization L2 and let E = C/Λ, Λ = Z ⊕ τZ be an
elliptic curve. Consider the sections of the line bundle L = L⊗2

0 �L2 on A := E × T that are
invariant under the action of the bi-cyclic group K generated by (e, a) 7→ (e + 1

2
τ,−a + 1

2
τ1)

and (e, a) 7→ (e + 1
2
, a + 1

2
τ2). These sections define hypersurfaces X ⊂ A and the quotient

Y = X/K is a Sicilian surface and all such surfaces are obtained in this way.
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Let me consider the invariants. Note that pg(Y ) = q(Y ) = 1, c2
1(Y ) = 6 implies that

h1,1(Y ) = h1,1(X)++ = 6. In the same manner as for the families S11 and S12 one shows
that h2,0

var,++ = 0 so that H1,1(X)var,++ = H2(X)var,++. Moreover, one finds h1,1(X)var,++ = 1.
In the course of the proof of [2, Theorem 6.1] it is remarked that H0(A,L) = (++)⊕ (+−)⊕
(−+) ⊕ (−−). Clearly, H0(Ω3

A) is invariant under K and the residue calculus (cf. Lemma 3.4)
shows that H2,0

var = (+−) ⊕ (−+) ⊕ (−−) and so the ”missing character” χA is the trivial
character. Since h1,1(X)var,++ = 1 this missing character is present in H2(X)var and by The-
orem 2.1 it follows that for Sicilian surfaces Y , one has CHvar

0 (Y ) = 0 and the motive h(Y ) is
finite-dimensional.
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