
Fast algorithms for the p-curvature
of differential operators

Alin Bostan

joint work with

Xavier Caruso (Univ. Rennes 1) and Éric Schost (Univ. Western Ontario)

Journées Holonomes
Grenoble, February 12, 2014

Introduction

Main objects & Aim

• k = a field with prime characteristic p, typically Fp

• k(x)〈∂〉 = the non-commutative (right-) Euclidean algebra of
linear differential operators L = `0(x) + `1(x)∂ + · · ·+ `r (x)∂r

Def : p-curvature Ap(L) of L = the matrix in Mr (k(x)) whose j-th
column contains the coefficients of ∂p+j mod L for 0 ≤ j < r

Aim: design efficient algorithms for computing
I the p-curvature Ap(L) of L
I its characteristic polynomial χ(Ap(L))
I the solution space of L

• Efficiency = complexity estimates with a low exponent in p

• Complexity is measured in number of arithmetic operations in k

Basics on differential equations in characteristic p

• Main differences between characteristic zero and p

1. (Honda 1981) solutions are simpler in characteristic p

dimk(xp) SL(k[x]) = dimk(xp) SL(k(x)) = dimk((xp)) SL(k[[x]])

2. Cauchy’s theorem does not hold: the common dimension
dimSL of the solution spaces is generally < r = ord(L)

Example: y ′ = y has no solution in k[[x]]

• Connection between solutions and p-curvature

Theorem. (Katz & Cartier 1970) rank(Ap(L)) = r − dim(SL)

−→ p-curvature measures to what extent dim(SL) is close to r

Two famous statements on p-curvatures

Def. A power series
∑

n≥0
an
bn

xn in Q[[x]] is called a G -series if it is
(a) D-finite; (b) analytic at x =0; (c) ∃C >0, lcm(b0, ... , bn)≤Cn.

Examples: 2F1

(
α β
γ

∣∣∣∣ x), α,β, γ ∈ Q; algebraic functions (Eisenstein).

Chudnovsky’s theorem (1985) The minimal-order operator
Γ ∈ Q[x]〈∂〉 annihilating a G -series is globally nilpotent: for
almost all prime numbers p, the p-curvature Ap(Γ) is nilpotent.

Examples: x(1− x)∂2 + (γ − (α+ β + 1)x)∂ − αβx; algebraic resolvents.

Grothendieck’s conjecture Γ(f) = 0 with Γ ∈ Q[x]〈∂〉 has a basis of
algebraic solutions over Q(x) iff Ap(Γ) = 0 for almost all primes p

p-curvature in Computer Algebra

• van der Put 1995: p-curvature publicised in computer algebra, as
a tool for factoring operators in k(x)〈∂〉
• Cluzeau 2003: first complexity analysis and implementation of
van der Put’s algorithms; extension to systems

• Cluzeau, van Hoeij 2004: polynomial solutions mod p and
p-curvature used as filters in modular algorithms for Q(x)〈∂〉

• Concrete applications:

I enumerative combinatorics (classification of lattice walks)

I statistical physics (square lattice Ising model)

Why p-curvature is very useful in concrete applications

• Power series arising in Combinatorics / Physics often have
integer coefficients (up to scaling), by design

• E.g. ordinary generating series in counting problems, or multiple
integrals of algebraic functions with parameters

• Sometimes, they are even D-finite by design (e.g. integrals),
sometimes not (e.g. solutions of functional equations)

• To conjecture D-finiteness, one common computational technique
is differential guessing : one guesses a plausible annihilating
differential operator from the first terms of the power series

• One way to empirically certify guessed operators is to look at
their p-curvatures for random (large) primes p

• If they are nilpotent (or have a large valuation), then the guessed
operator is very probably correct, because of Chudnovsky’s theorem

• If, in addition, they are even zero, then the power series is very
probably algebraic, because of Grothendieck’s conjecture

Combinatorial application: Gessel’s conjecture

• Gessel walks: walks in N2 using only steps in S = {↗,↙,←,→}
• g(i , j , n) = number of walks from (0, 0) to (i , j) with n steps in S

Question: Nature of the generating function

G (x , y , t) =
∞∑

i ,j ,n=0

g(i , j , n) x iy j tn ∈ Q[[x , y , t]]

Theorem. (B. & Kauers 2010) G (x , y , t) is an algebraic function.†

→ Effective, computer-driven discovery and proof
→ Key step in discovery: p-curvature computation of two 11th
order (guessed) differential operators for G (x , 0, t), and G (0, y , t)

†Minimal polynomial P(x , y , t,G(x , y , t)) = 0 has > 1011 terms; ≈30Gb (!)

Previous work

¬ p-curvature: generic size Θ(p), but complexity O(p2)

I Main difficulty: non-commutativity of k(x)〈∂〉 prevents from
using binary powering techniques for Ap(L) via ∂p mod L

• Katz 1982: first algorithm, based on the matrix recurrence

A1 = A, Ak+1 = A′k + A · Ak ,

where A ∈Mr (k(x)) is the companion matrix associated to L

• van der Put, Cluzeau: variants, all of complexity O(p2)

 Its characteristic polynomial: required computation of Ap itself

® Polynomial solutions mod p:

• Cluzeau 2003: quadratic degree bound for elements in SL(k[x])
• Honda 1981, Dwork 1982: linear bound when r = 2, or Ap = 0

• Cluzeau 2003: general algorithm of complexity O(p3); different
O(p2) algorithm in the special case Ap = 0

New results

1. on computing the p-curvature Ap

(1.a) for first order operators in time O(log(p))

(1.b) for certain second order operators in time Õ(p)

(1.c) for arbitrary operators in time Õ(p1.79)

(1.d) deciding nullity of Ap for arbitrary operators in time Õ(p)

2. on computing the characteristic polynomial of Ap

(2.a) for arbitrary operators in time Õ(
√

p)

3. on the space SL of polynomial solutions

(3.a) degree bound linear in p for all elements in a basis of SL
(3.b) testing if SL = 0 in time Õ(

√
p)

(3.c) computing a whole basis of SL in time Õ(p)

Computing the p-curvature

p-curvature of 1st order operators

Specific features of 1st order operators L = ∂ − u in k(x)〈∂〉

• p-curvature admits a closed form expression:

Ap(L) = u(p−1) + up (van der Put, 1995)

• p-curvature is sparse: numerator/denominator have O(1) terms:

Ap(L) is the p-th power of the rational function f =
(
u(p−1)

) 1
p + u.

Theorem (BoSc’09) Ap(L) can be computed in time O(log(p)).

Idea: If u =
∑
i≥0

aix
i , then (u(p−1))

1
p = −

∑
i≥1

aip−1x i−1 (Wilson)

−→ it is sufficient to compute by binary powering the O(1) terms
ap−1, a2p−1, ... , adeg(u)p−1 of the recurrent sequence (an)n≥0.

p-curvature of arbitrary operators

Theorem. (BoSc’09) The p-curvature of any L in k[x]〈∂〉 can be
computed in subquadratic time Õ(p1+ω

3) ⊂ O(p1.79).

If A = CompanionMatrix(L) and Λ = ∂ + A, then Ap = Λp−1(A)

¬ Compute Γ = Λk by binary powering.

Basic operation: product in bidegree (k , k) in k(x)〈∂〉.
Cost: O(kω) (B., Chyzak & Le Roux’08)

 Compute A(1) = A, A(i) = ΓA(i−1), i = 2, ... , ` = (p − 1)/k .

Basic operation: L(f) with bideg(x ,∂)(L) = (k, k) and deg(f) ≤ ik .

Cost: Õ(`ω−1k2) (see next slide)
® Return Ap = A(`).

Total cost: Õ(p1+ω
3) obtained for k ≈ p2/3.

Fast evaluation of differential operators

Theorem. Given L ∈ k[x]〈∂〉 of bidegree (k , k) and f ∈ k[x] of
degree ik, (i ≤ s :=

√
k), one can compute Lf in time Õ(iω−2k2).

Algo [baby steps / giant steps strategy inspired by Brent-Kung’78]

¬ (baby steps) Compute f0 = f , f1 = ∂f , ... , fs−1 = ∂s−1f

 (rewriting) Cut L into s slices of bidegree (k, s) in (x , ∂):

L = L0 + ∂sL1 + · · ·+ ∂(s−1)sLs−1

® (recombination) Deduce L0f , ... , Ls−1f at once by a product
of polynomial matrices of sizes (s, s)× (s, i) and degree k

¯ (giant steps) Compute and return Lf =
∑

0≤j<s ∂
jsLj f

Cost: Õ(ik3/2) for ¬ and ¯; Õ(k2) for and Õ(iω−2k2) for ®

Computing polynomial solutions

Computing polynomial solutions (I)

• SL = the k(xp)-vector space of polynomial solutions of Lf = 0
• G = the k-vector space SL ∩ k[x]<pd where d = max(deg(`i))

Theorem. (BoSc’09) SL admits a k(xp)-basis included in G.

Algorithm for computing SL:

¬ Decide if SL = 0 (⇔ decide if G = 0). If so, stop.

 If not, compute a k-basis (f1, ... , fk) of G.

® (f1, ... , fk) generates SL over k(xp). Extract a basis.

Cost: Õ(
√

p) for ¬ and Õ(p) for and ®

Corollary. One can decide nullity of Ap(L) in time Õ(p).

Computing polynomial solutions (II)

Pb: Compute an k-basis of sols f =

pd−1∑
i=0

cix
i ∈ k[x] of Lf = 0.

• Band-diagonal linear system (S1) of size O(p) and width O(1)

• Technical difficulty: some rightmost band elements can be zero!

Algorithm [generalization of (ABP1995) & (BCluzeauSalvy2005)]

¬ From (S1), deduce an equivalent system (S2) of size O(1)

Basic operation: matrix factorial C (p − 1) · · ·C (r)

Cost: Õ(
√

p) (Chudnovsky2 1987)

 From a basis of (S2), deduce a basis of (S1)

Basic operation: forward substitution

Cost: O(p)

Example
L = (5x2 + 4)∂2 + (4x2 + 6x + 5)∂ + 2x + 2 ∈ F7[x]〈∂〉

Polynomial solution f =
∑7·2−1

i=0 cix
i in F7[x] s.t. Lf = 0:

(S1)

2c0+5c1+c2=0,
2c0+c1+3c2+3c3=0,
6c1+3c2+c3+6c4=0,
3c2+c3+6c4+3c5=0,

2c4+4c5+c6=0,
4c4+6c5+2c6=0,

c5+6c6=0,
5c6+2c7+5c8+c9=0,
2c7+c8+3c9+3c10=0,
6c8+3c9+c10+6c11=0,
3c9+c10+6c11+3c12=0,

2c11+4c12+c13=0,
4c11+6c12+2c13=0,

c12+6c13=0,
5c13=0.

⇔

2 5 1 0 0 0 0 0 0 0 0 0 0 0
2 1 3 3 0 0 0 0 0 0 0 0 0 0
0 6 3 1 6 0 0 0 0 0 0 0 0 0
0 0 3 1 6 3 0 0 0 0 0 0 0 0
0 0 0 0 2 4 1 0 0 0 0 0 0 0
0 0 0 0 4 6 2 0 0 0 0 0 0 0
0 0 0 0 0 1 6 0 0 0 0 0 0 0
0 0 0 0 0 0 5 2 5 1 0 0 0 0
0 0 0 0 0 0 0 2 1 3 3 0 0 0
0 0 0 0 0 0 0 0 6 3 1 6 0 0
0 0 0 0 0 0 0 0 0 3 1 6 3 0
0 0 0 0 0 0 0 0 0 0 0 2 4 1
0 0 0 0 0 0 0 0 0 0 0 4 6 2
0 0 0 0 0 0 0 0 0 0 0 0 1 6
0 0 0 0 0 0 0 0 0 0 0 0 0 5

×

c0
c1
c2
c3
c4
c5
c6
c7
c8
c9
c10
c11
c12
c13

= 0

å Rewriting the equations in red using the unknowns in blue yields

c4 = 5c1, c5 = 2c1, c6 = 3c1, c11 = 5c8 + 5c1, c12 = 2c8, c13 = 3c8 + 4c1

å Plugging them back into the red equations gives(
S2

)
: 3c1 = 0, 6c1 = 0, 3c8 = 0, c8 + 6c1 = 0, 6c8 + 3c1 = 0

å dim(S1) = dim(S2) = 2 and Basis(S1) is obtained by subst. from

Basis(S2) = {(c0, c1, c7, c8) = (1, 0, 0, 0), (c0, c1, c7, c8) = (0, 0, 1, 0)}

Application: deciding nilpotency of the p-curvature

for second order operators

Lemma One can compute the trace of Ap(L) in O(log(p)).

Proof : If L = `0(x) + `1(x)∂ + · · ·+ `r (x)∂r , then

trace(Ap(L)) = Ap

(
`r (x)∂ + `r−1(x)

)
(Katz, 1982)

Lemma One can decide if Ap(L) is invertible in Õ(
√

p).

Proof : By (Cartier & Katz 1970): det(Ap(L)) = 0 iff dim(SL) > 0.

Theorem (BoSc’09) If ord(L) = 2, one can decide nilpotency of
Ap(L) in time Õ(

√
p).

Proof : Ap = Ap(L) is nilpotent iff trace(Ap) and det(Ap) = 0.

Computing the characteristic
polynomial of the p-curvature

Useful operator rings

• k[x]〈∂±1〉 and k(x)〈∂±1〉 are rings, with multiplication

∂−1f =

p−1∑
i=0

(−1)i f (i) ∂−i−1, for all f ∈ k(x).

• k[θ]〈∂±1〉 and k(θ)〈∂±1〉 are rings, with multiplication

∂ ig(θ) = g(θ + i) ∂ i , for all i ∈ Z and g ∈ k(θ).

• Isomorphism of k-algebras

k[x]〈∂±1〉 � k[θ]〈∂±1〉
x 7→ θ∂−1

x∂ ←[θ

∂±1 ↔ ∂±1

• The central element θp − θ corresponds to xp∂p, since

θp =

p∑
k=1

{
p
k

}
xk∂k , and p divides

{
p
k

}
for 1 < k < p.

p-curvature, revisited

Recall : Given L in k(x)〈∂〉 of degree r in ∂, Ap(L) is the matrix of
∂p acting on k(x)〈∂〉/k(x)〈∂〉L w.r.t. the basis (1, ∂, ... , ∂r−1).

• ∂p is k(x)-linear, since

∂p(fV) =

p∑
j=0

(
p

j

)
f (j)∂p−jV , and p divides

(
p

j

)
for 1 < j < p.

• The coefficients of the characteristic polynomial

χ(Ap(L))(z) = det(z · Id− Ap(L))

belong to k(xp).

Def : Given L in k(x)〈∂〉, define

Ξx ,∂(L) = lc(L)p · χ(Ap(L))(∂p)

• By multiplicativity, Ξx ,∂ can be extended to k(x)〈∂±1〉.
• Ξx ,∂(L) belongs to the centre k(xp)[∂±p] of k(x)〈∂±1〉.

A simpler p-curvature

Def : Given L in k(θ)〈∂〉 of degree r in ∂, let Bp(L) be the matrix
of ∂p acting on k(θ)〈∂〉/k(θ)〈∂〉L w.r.t. the basis (1, ∂, ... , ∂r−1).

Theorem (BoCaSc’14) Let L ∈ k(θ)〈∂〉 and let B(θ) ∈Mr (k(θ))
denote its companion matrix. Then:

Bp(L) = B(θ) · B(θ + 1) · · ·B(θ + p − 1).

• This is the analogue of Katz’s formula for the usual p-curvature
• Computation of Bp(L) in time Õ(

√
p) via matrix factorials.

Def : Given L in k(θ)〈∂〉, define

Ξθ,∂(L) = lc(L)(θ) · · · lc(L)(θ + p − 1) · χ(Bp(L))(∂p)

• By multiplicativity, Ξθ,∂ can be extended to k(θ)〈∂±1〉.
• Ξθ,∂(L) belongs to the centre k(θp − θ)[∂±p] of k(θ)〈∂±1〉.

Relation between the two p-curvatures

Theorem (BoCaSc’14) The following diagram commutes:

k[θ]〈∂±1〉
Ξθ,∂ //

∼θ 7→ x∂

��

k[θp − θ][∂±p]

∼ θp−θ 7→ xp∂p

��
k[x]〈∂±1〉

Ξx ,∂ // k[xp][∂±p]

“Proof”: k[x]〈∂±1〉 and k[θ]〈∂±1〉 are Azumaya algebras, and thus
isomorphic to matrix algebras (after an étale extension), and thus
endowed with reduced norm maps (Revoy’73, Knus-Ojanguren’74)

Corollary (BoCaSc’14) Ξx ,∂(L), and thus χ(Ap(L)), can be
computed in time Õ(

√
p).

Implementation and timings

• For random linear differential operators of degrees (d , r) in k[x]〈∂〉
p

83 281 983 3 433 12 007 42 013 120 011

d = 5, r = 5 0.11 s 0.26 s 0.75 s 1.95 s 5.09 s 12.43 s 33.78 s

d = 5, r = 8 0.19 s 0.47 s 1.32 s 3.43 s 9.20 s 22.55 s 65.25 s

d = 5, r = 11 0.26 s 0.66 s 1.85 s 5.01 s 14.68 s 37.91 s 104.86 s

d = 5, r = 14 0.37 s 0.86 s 2.38 s 6.61 s 20.52 s 59.47 s 154.76 s

d = 5, r = 17 0.52 s 1.21 s 3.26 s 8.29 s 24.18 s 76.81 s 234.28 s

d = 5, r = 20 0.76 s 1.74 s 4.67 s 11.93 s 33.88 s 109.02 s 298.72 s

d = 8, r = 20 1.12 s 2.41 s 6.69 s 18.86 s 56.24 s 239.49 s 881.45 s

d = 11, r = 20 1.96 s 4.33 s 10.42 s 30.87 s 92.84 s 388.50 s 922.34 s

d = 14, r = 20 3.05 s 6.11 s 14.45 s 45.53 s 141.81 s 507.89 s 1224.98 s

d = 17, r = 20 5.26 s 9.19 s 20.85 s 56.83 s 195.74 s 699.08 s 1996.87 s

d = 20, r = 20 7.76 s 13.94 s 28.40 s 82.43 s 240.47 s 889.48 s 2419.56 s

• For operators with physical relevance: e.g., φ
(5)
H in (Z/27449Z)[x]〈∂〉,

of degree (108, 28) in (x , ∂) [Maillard et al. 2007]

−→ high valuation (17) of Ξx ,∂(φ
(5)
H) agrees with the empirical prediction

that the (globally nilpotent) minimal-order operator for φ
(5)
H has order 17.

−→ 27449-curvature itself (size 28, deg ≈3 · 106) impossible to compute!

Matrix factorials

Fast multiplication and division of power series

[Schönhage-Strassen, 1971] and [Sieveking-Kung, 1972]

Schönhage-Strassen, 1971: FFT-multiplication in k[x]<N in Õ(N)

Sieveking-Kung, 1972: To compute the reciprocal of f ∈ k[[x]],
use Newton iteration:

g0 =
1

f0
and gκ+1 = gκ + gκ(1− fgκ) mod x2κ+1

for κ ≥ 0

R(N) = R(N/2) + Õ(N) =⇒ R(N) = Õ(N)

Corollary: Division of power series at precision N in Õ(N)

Application: fast polynomial Euclidean division

[Strassen, 1973]

Given F , G ∈ k[x]≤N , compute (Q, R) in division F = QG + R

Schoolbook algorithm: O(N2)

Better idea: look at F = QG + R from the infinity: Q ∼+∞ F/G

Formally: Let N = deg(F), n = deg(G), then deg(Q) = N − n,
deg(R) < n and

F (1/x)xN︸ ︷︷ ︸
rev(F)

= G (1/x)xn︸ ︷︷ ︸
rev(G)

·Q(1/x)xN−n︸ ︷︷ ︸
rev(Q)

+ R(1/x)xdeg(R)︸ ︷︷ ︸
rev(R)

·xN−deg(R)

Strassen’s Algorithm: Õ(N)

I Compute rev(Q) = rev(F)/rev(G) mod xN−n+1 Õ(N)

I Recover Q O(N)

I Deduce R = F − QG Õ(N)

Subproduct tree

Problem: Given a0, ... , an−1 ∈ k , compute A =
∏n−1

i=0 (x − ai)

Cost: S(n) = 2 · S(n/2) + Õ(n) =⇒ S(n) = Õ(n).

Fast multipoint evaluation

[Borodin-Moenck, 1974]

Given a0, ... , an−1 ∈ k, P ∈ k[x]<n, compute P(a0), ... , P(an−1)

Naive algorithm: Compute the P(ai) independently O(n2)

Idea: Use recursively Bézout’s identity P(a) = P(x) mod (x − a)

Divide and conquer: FFT-type idea, evaluation by repeated division

I P0 = P mod (x − a0) · · · (x − an/2−1)

I P1 = P mod (x − an/2) · · · (x − an−1)

=⇒
{

P0(a0) = P(a0), ... , P0(an/2−1) = P(an/2−1)
P1(an/2) = P(an/2), ... , P1(an−1) = P(an−1)

Fast multipoint evaluation

[Borodin-Moenck, 1974]

Given a0, ... , an−1 ∈ k, P ∈ k[x]<n, compute P(a0), ... , P(an−1)

Cost: E(n) = 2 · E(n/2) + Õ(n) =⇒ E(n) = Õ(n).

Fast factorials and matrix factorials

Problem: Compute N! = 1× 2× · · · × N

Naive algorithm: unroll the recurrence O(N)

Better algorithm (Strassen, 1976): BS-GS Õ(
√

N)

(BS) Compute P = (x + 1)(x + 2) · · · (x +
√

N) Õ(
√

N)

(GS) Evaluate P at 0,
√

N, 2
√

N, . . . , (
√

N − 1)
√

N Õ(
√

N)

Return uN = P((
√

N − 1)
√

N) · · ·P(
√

N) · P(0) O(
√

N)

Chudnovsky2, 1987: generalization to matrix factorials in O(
√

N)

Fast computation of the N-th term

Problem: Compute the N-th term uN of a P-recursive sequence

pr (n)un+r + · · ·+ p0(n)un = 0, (n ∈ N)

Naive algorithm: unroll the recurrence O(N)

Better algorithm: Un = (un, ... , un+r−1)T satisfies the 1st order rec

Un+1 =
A(n)

pr (n)
Un, for A(n) =

pr (n)

. . .

pr (n)
−p0(n) −p1(n) ... −pr−1(n)

=⇒ uN reads off the matrix factorial A(N − 1) · · ·A(0) in Õ(

√
N)

Conclusion

Conclusion, open questions

So far:

• characteristic polynomial of p-curvature Ap(L) in Õ(
√

p)

• algorithm of quasi-optimal complexity for solving Lf = 0.

Still open:

• Can one compute the p-curvature in quasi-linear time? (at
least for second order operators!)

• Can one decide if Ap(L) is nilpotent in time less than Õ(
√

p)?

