Fast algorithms for the *p*-curvature of differential operators

Alin Bostan

joint work with Xavier Caruso (Univ. Rennes 1) and Éric Schost (Univ. Western Ontario)

Journées Holonomes Grenoble, February 12, 2014

Introduction

Main objects & Aim

k = a field with prime characteristic p, typically 𝔽_p
k(x)⟨∂⟩ = the non-commutative (right-) Euclidean algebra of linear differential operators L = ℓ₀(x) + ℓ₁(x)∂ + ··· + ℓ_r(x)∂^r

Def: p-curvature $\mathbf{A}_p(L)$ of L = the matrix in $\mathcal{M}_r(k(x))$ whose j-th column contains the coefficients of $\partial^{p+j} \mod L$ for $0 \le j < r$

Aim: design efficient algorithms for computing

- the *p*-curvature $\mathbf{A}_p(L)$ of L
- its characteristic polynomial $\chi(\mathbf{A}_p(L))$
- the solution space of L
- Efficiency = complexity estimates with a low exponent in p
- Complexity is measured in number of arithmetic operations in k

Basics on differential equations in characteristic *p*

- Main differences between characteristic zero and p
 - 1. (Honda 1981) solutions are simpler in characteristic p

 $\dim_{k(x^{p})} \mathcal{S}_{L}(k[x]) = \dim_{k(x^{p})} \mathcal{S}_{L}(k(x)) = \dim_{k((x^{p}))} \mathcal{S}_{L}(k[[x]])$

2. Cauchy's theorem does not hold: the common dimension dim S_L of the solution spaces is generally < r = ord(L)

Example: y' = y has no solution in k[[x]]

• Connection between solutions and *p*-curvature Theorem. (Katz & Cartier 1970) $\operatorname{rank}(\mathbf{A}_p(L)) = r - \dim(\mathcal{S}_L)$ $\longrightarrow p$ -curvature measures to what extent $\dim(\mathcal{S}_L)$ is close to *r*

Two famous statements on *p***-curvatures**

Def. A power series $\sum_{n\geq 0} \frac{a_n}{b_n} x^n$ in $\mathbb{Q}[[x]]$ is called a *G*-series if it is (a) D-finite; (b) analytic at x=0; (c) $\exists C > 0$, $\operatorname{lcm}(b_0, \ldots, b_n) \leq C^n$. Examples: ${}_2F_1\begin{pmatrix} \alpha & \beta \\ \gamma & \end{pmatrix}$, $\alpha, \beta, \gamma \in \mathbb{Q}$; algebraic functions (Eisenstein).

Chudnovsky's theorem (1985) The minimal-order operator $\Gamma \in \mathbb{Q}[x]\langle \partial \rangle$ annihilating a *G*-series is *globally nilpotent*: for almost all prime numbers *p*, the *p*-curvature $\mathbf{A}_p(\Gamma)$ is nilpotent.

Examples: $x(1-x)\partial^2 + (\gamma - (\alpha + \beta + 1)x)\partial - \alpha\beta x$; algebraic resolvents.

Grothendieck's conjecture $\Gamma(f) = 0$ with $\Gamma \in \mathbb{Q}[x]\langle \partial \rangle$ has a basis of algebraic solutions over $\mathbb{Q}(x)$ iff $\mathbf{A}_p(\Gamma) = 0$ for almost all primes p

p-curvature in Computer Algebra

- van der Put 1995: *p*-curvature publicised in computer algebra, as a tool for factoring operators in $k(x)\langle\partial\rangle$
- Cluzeau 2003: first complexity analysis and implementation of van der Put's algorithms; extension to systems
- Cluzeau, van Hoeij 2004: polynomial solutions mod p and p-curvature used as filters in modular algorithms for $\mathbb{Q}(x)\langle\partial\rangle$
- Concrete applications:
 - enumerative combinatorics (classification of lattice walks)
 - statistical physics (square lattice lsing model)

Why *p*-curvature is very useful in concrete applications

• Power series arising in Combinatorics / Physics often have integer coefficients (up to scaling), by design

- E.g. ordinary generating series in counting problems, or multiple integrals of algebraic functions with parameters
- Sometimes, they are even D-finite by design (e.g. integrals), sometimes not (e.g. solutions of functional equations)
- To conjecture D-finiteness, one common computational technique is *differential guessing*: one guesses a plausible annihilating differential operator from the first terms of the power series
- One way to empirically certify guessed operators is to *look at their p-curvatures* for random (large) primes *p*
- If they are nilpotent (or have a large valuation), then the guessed operator is very probably correct, because of Chudnovsky's theorem
- If, in addition, they are even zero, then the power series is very probably algebraic, because of Grothendieck's conjecture

Combinatorial application: Gessel's conjecture

- Gessel walks: walks in \mathbb{N}^2 using only steps in $\mathcal{S} = \{\nearrow, \swarrow, \leftrightarrow, \rightarrow\}$
- g(i, j, n) = number of walks from (0, 0) to (i, j) with n steps in S

Question: Nature of the generating function $G(x, y, t) = \sum_{i,j,n=0}^{\infty} g(i, j, n) x^{i} y^{j} t^{n} \in \mathbb{Q}[[x, y, t]]$

Theorem. (B. & Kauers 2010) G(x, y, t) is an algebraic function.[†]

→ Effective, computer-driven discovery and proof → Key step in discovery: *p*-curvature computation of two 11th order (guessed) differential operators for G(x, 0, t), and G(0, y, t)

[†]Minimal polynomial P(x, y, t, G(x, y, t)) = 0 has $> 10^{11}$ terms; ≈ 30 Gb (!)

Previous work

① *p*-curvature: generic size $\Theta(p)$, but complexity $\mathcal{O}(p^2)$

▶ Main difficulty: non-commutativity of $k(x)\langle \partial \rangle$ prevents from using binary powering techniques for $\mathbf{A}_p(L)$ via $\partial^p \mod L$

• Katz 1982: first algorithm, based on the matrix recurrence

 $\mathbf{A}_1 = \mathbf{A}, \quad \mathbf{A}_{k+1} = \mathbf{A}'_k + \mathbf{A} \cdot \mathbf{A}_k,$

where $\mathbf{A} \in \mathcal{M}_r(k(x))$ is the companion matrix associated to L• van der Put, Cluzeau: variants, all of complexity $\mathcal{O}(p^2)$

⁽²⁾ Its characteristic polynomial: required computation of A_p itself

③ Polynomial solutions mod p:

- Cluzeau 2003: quadratic degree bound for elements in $S_L(k[x])$
- Honda 1981, Dwork 1982: linear bound when r = 2, or $\mathbf{A}_p = 0$
- Cluzeau 2003: general algorithm of complexity $\mathcal{O}(p^3)$; different $\mathcal{O}(p^2)$ algorithm in the special case $\mathbf{A}_p = 0$

New results

- 1. on computing the *p*-curvature \mathbf{A}_p
- (1.a) for first order operators in time $\mathcal{O}(\log(p))$
- (1.b) for certain second order operators in time $\tilde{\mathcal{O}}(p)$
- (1.c) for arbitrary operators in time $\tilde{\mathcal{O}}(p^{1.79})$
- (1.d) deciding nullity of \mathbf{A}_p for arbitrary operators in time $\tilde{\mathcal{O}}(p)$
- 2. on computing the characteristic polynomial of \mathbf{A}_p (2.a) for arbitrary operators in time $\tilde{\mathcal{O}}(\sqrt{p})$
 - 3. on the space \mathcal{S}_L of polynomial solutions
- (3.a) degree bound linear in p for all elements in a basis of S_L (3.b) testing if $S_L = 0$ in time $\tilde{\mathcal{O}}(\sqrt{p})$ (3.c) computing a whole basis of S_I in time $\tilde{\mathcal{O}}(p)$

Computing the *p*-curvature

p-curvature of 1st order operators

Specific features of 1st order operators $L = \partial - u$ in $k(x) \langle \partial \rangle$

• *p*-curvature admits a *closed form expression*:

$$\mathbf{A}_{p}(L) = u^{(p-1)} + u^{p}$$
 (van der Put, 1995)

• *p*-curvature is *sparse*: numerator/denominator have O(1) terms:

 $\mathbf{A}_{p}(L)$ is the *p*-th power of the rational function $f = (u^{(p-1)})^{\frac{1}{p}} + u$.

Theorem (BoSc'09) $\mathbf{A}_p(L)$ can be computed in time $\mathcal{O}(\log(p))$.

Idea: If
$$u = \sum_{i \ge 0} a_i x^i$$
, then $(u^{(p-1)})^{\frac{1}{p}} = -\sum_{i \ge 1} a_{ip-1} x^{i-1}$ (Wilson)

 \rightarrow it is sufficient to compute by binary powering the $\mathcal{O}(1)$ terms $a_{p-1}, a_{2p-1}, \dots, a_{\deg(u)p-1}$ of the recurrent sequence $(a_n)_{n\geq 0}$.

p-curvature of arbitrary operators

Theorem. (BoSc'09) The *p*-curvature of any *L* in $k[x]\langle\partial\rangle$ can be computed in subquadratic time $\tilde{\mathcal{O}}(p^{1+\frac{\omega}{3}}) \subset \mathcal{O}(p^{1.79})$. If $\mathbf{A} = \text{CompanionMatrix}(L)$ and $\Lambda = \partial + \mathbf{A}$, then $\mathbf{A}_p = \Lambda^{p-1}(\mathbf{A})$

(1) Compute $\Gamma = \Lambda^k$ by binary powering. Basic operation: product in bidegree (k, k) in $k(x)\langle\partial\rangle$. Cost: $\mathcal{O}(k^{\omega})$ (B., Chyzak & Le Roux'08) (2) Compute $A_{(1)} = A$, $A_{(i)} = \Gamma A_{(i-1)}$, $i = 2, ..., \ell = (p-1)/k$. Basic operation: L(f) with $\operatorname{bideg}_{(x,\partial)}(L) = (k, k)$ and $\operatorname{deg}(f) \leq ik$. Cost: $\tilde{\mathcal{O}}(\ell^{\omega-1}k^2)$ (see next slide)

(3) Return $\mathbf{A}_{p} = \mathbf{A}_{(\ell)}$.

Total cost: $\tilde{\mathcal{O}}(p^{1+\frac{\omega}{3}})$ obtained for $k \approx p^{2/3}$.

Fast evaluation of differential operators

Theorem. Given $L \in k[x]\langle \partial \rangle$ of bidegree (k, k) and $f \in k[x]$ of degree ik, $(i \leq s := \sqrt{k})$, one can compute Lf in time $\tilde{\mathcal{O}}(i^{\omega-2}k^2)$.

Algo [baby steps / giant steps strategy inspired by Brent-Kung'78]

- ① (baby steps) Compute $f_0 = f$, $f_1 = \partial f$, ..., $f_{s-1} = \partial^{s-1} f$
- (rewriting) Cut L into s slices of bidegree (k, s) in (x, ∂) :

$$L = L_0 + \partial^s L_1 + \dots + \partial^{(s-1)s} L_{s-1}$$

③ (recombination) Deduce L₀f, ..., L_{s-1}f at once by a product of polynomial matrices of sizes (s, s) × (s, i) and degree k
④ (giant steps) Compute and return Lf = ∑_{0≤j<s} ∂^{js}L_jf

Cost: $\tilde{\mathcal{O}}(ik^{3/2})$ for ① and ④; $\tilde{\mathcal{O}}(k^2)$ for ② and $\tilde{\mathcal{O}}(i^{\omega-2}k^2)$ for ③

Computing polynomial solutions

Computing polynomial solutions (I)

• S_L = the $k(x^p)$ -vector space of polynomial solutions of Lf = 0• G = the k-vector space $S_L \cap k[x]_{<pd}$ where $d = \max(\deg(\ell_i))$

Theorem. (BoSc'09) S_L admits a $k(x^p)$ -basis included in G.

Algorithm for computing S_L :

- ① Decide if $S_L = 0$ (\Leftrightarrow decide if $\mathcal{G} = 0$). If so, stop.
- 2 If not, compute a k-basis $(f_1, ..., f_k)$ of \mathcal{G} .
- 3 $(f_1, ..., f_k)$ generates S_L over $k(x^p)$. Extract a basis.

Cost: $\tilde{\mathcal{O}}(\sqrt{p})$ for 1 and $\tilde{\mathcal{O}}(p)$ for 2 and 3

Corollary. One can decide nullity of $\mathbf{A}_p(L)$ in time $\tilde{\mathcal{O}}(p)$.

Computing polynomial solutions (II)

Pb: Compute an *k*-basis of sols
$$f = \sum_{i=0}^{pd-1} c_i x^i \in k[x]$$
 of $Lf = 0$.

- Band-diagonal linear system (S1) of size $\mathcal{O}(p)$ and width $\mathcal{O}(1)$
- Technical difficulty: some rightmost band elements can be zero!

Algorithm [generalization of (ABP1995) & (BCluzeauSalvy2005)]

① From (S1), deduce an equivalent system (S2) of size O(1)
 Basic operation: matrix factorial C(p − 1) ··· C(r)
 Cost: Õ(√p) (Chudnovsky² 1987)

 ② From a basis of (S2), deduce a basis of (S1)

Basic operation: forward substitution

Cost: $\mathcal{O}(p)$

Example

 $L = (5x^{2} + 4)\partial^{2} + (4x^{2} + 6x + 5)\partial + 2x + 2 \in \mathbb{F}_{7}[x]\langle \partial \rangle$ Polynomial solution $f = \sum_{i=0}^{7,2-1} c_{i}x^{i}$ in $\mathbb{F}_{7}[x]$ s.t. Lf = 0:

Rewriting the equations in red using the unknowns in blue yields

 $c_4 = 5c_1, c_5 = 2c_1, c_6 = 3c_1, c_{11} = 5c_8 + 5c_1, c_{12} = 2c_8, c_{13} = 3c_8 + 4c_1$

Plugging them back into the red equations gives

(S2): $3c_1 = 0, 6c_1 = 0, 3c_8 = 0, c_8 + 6c_1 = 0, 6c_8 + 3c_1 = 0$

⇒ dim(S1) = dim(S2) = 2 and Basis(S1) is obtained by subst. from Basis(S2) = { $(c_0, c_1, c_7, c_8) = (1, 0, 0, 0), (c_0, c_1, c_7, c_8) = (0, 0, 1, 0)$ }

Application: deciding nilpotency of the *p*-curvature for second order operators

Lemma One can compute the trace of $\mathbf{A}_{p}(L)$ in $\mathcal{O}(\log(p))$. Proof: If $L = \ell_{0}(x) + \ell_{1}(x)\partial + \dots + \ell_{r}(x)\partial^{r}$, then $\operatorname{trace}(\mathbf{A}_{p}(L)) = \mathbf{A}_{p}(\ell_{r}(x)\partial + \ell_{r-1}(x))$ (Katz, 1982)

Lemma One can decide if $\mathbf{A}_p(L)$ is invertible in $\tilde{\mathcal{O}}(\sqrt{p})$. *Proof*: By (Cartier & Katz 1970): det($\mathbf{A}_p(L)$) = 0 iff dim(\mathcal{S}_L) > 0.

Theorem (BoSc'09) If $\operatorname{ord}(L) = 2$, one can decide nilpotency of $\mathbf{A}_p(L)$ in time $\tilde{\mathcal{O}}(\sqrt{p})$.

Proof: $\mathbf{A}_{p} = \mathbf{A}_{p}(L)$ is nilpotent iff trace(\mathbf{A}_{p}) and det(\mathbf{A}_{p}) = 0.

Computing the characteristic polynomial of the *p*-curvature

Useful operator rings

• $k[x]\langle \partial^{\pm 1} \rangle$ and $k(x)\langle \partial^{\pm 1} \rangle$ are rings, with multiplication $\partial^{-1}f = \sum_{i=0}^{p-1} (-1)^i f^{(i)} \partial^{-i-1}$, for all $f \in k(x)$.

• $k[\theta]\langle \partial^{\pm 1} \rangle$ and $k(\theta)\langle \partial^{\pm 1} \rangle$ are rings, with multiplication $\partial^{i}g(\theta) = g(\theta + i) \partial^{i}$, for all $i \in \mathbb{Z}$ and $g \in k(\theta)$.

• Isomorphism of k-algebras

$$\begin{array}{rcl} k[x]\langle\partial^{\pm 1}\rangle &\rightleftarrows k[\theta]\langle\partial^{\pm 1}\rangle \\ & x &\mapsto & \theta\partial^{-1} \\ & x\partial & \leftarrow & \theta \\ \partial^{\pm 1} & \leftrightarrow & \partial^{\pm 1} \end{array}$$

• The central element $\theta^p - \theta$ corresponds to $x^p \partial^p$, since

$$heta^p = \sum_{k=1}^p igg\{ p \ k igg\} x^k \partial^k$$
, and p divides $igg\{ p \ k igg\}$ for $1 < k < p$.

p-curvature, revisited

Recall: Given L in $k(x)\langle\partial\rangle$ of degree r in ∂ , $A_{\rho}(L)$ is the matrix of ∂^{p} acting on $k(x)\langle\partial\rangle/k(x)\langle\partial\rangle L$ w.r.t. the basis $(1, \partial, ..., \partial^{r-1})$.

• ∂^p is k(x)-linear, since

$$\partial^p(fV) = \sum_{j=0}^p \binom{p}{j} f^{(j)} \partial^{p-j} V$$
, and p divides $\binom{p}{j}$ for $1 < j < p$.

• The coefficients of the characteristic polynomial

 $\chi(\mathbf{A}_{p}(L))(z) = \det(z \cdot \mathrm{Id} - \mathbf{A}_{p}(L))$

belong to $k(x^p)$.

Def: Given L in $k(x)\langle \partial \rangle$, define

 $\Xi_{x,\partial}(L) = \mathsf{lc}(L)^{p} \cdot \chi(\mathbf{A}_{p}(L))(\partial^{p})$

By multiplicativity, Ξ_{x,∂} can be extended to k(x)⟨∂^{±1}⟩.
Ξ_{x,∂}(L) belongs to the centre k(x^p)[∂^{±p}] of k(x)⟨∂^{±1}⟩.

A simpler *p*-curvature

Def: Given *L* in $k(\theta)\langle\partial\rangle$ of degree *r* in ∂ , let $\mathbf{B}_p(L)$ be the matrix of ∂^p acting on $k(\theta)\langle\partial\rangle/k(\theta)\langle\partial\rangle L$ w.r.t. the basis $(1, \partial, ..., \partial^{r-1})$.

Theorem (BoCaSc'14) Let $L \in k(\theta)\langle \partial \rangle$ and let $\mathbf{B}(\theta) \in \mathscr{M}_r(k(\theta))$ denote its companion matrix. Then:

$$\mathbf{B}_p(L) = \mathbf{B}(\theta) \cdot \mathbf{B}(\theta+1) \cdots \mathbf{B}(\theta+p-1).$$

• This is the analogue of Katz's formula for the usual *p*-curvature • Computation of $\mathbf{B}_p(L)$ in time $\tilde{\mathcal{O}}(\sqrt{p})$ via *matrix factorials*.

Def: Given L in $k(\theta)\langle\partial\rangle$, define $\Xi_{\theta,\partial}(L) = lc(L)(\theta) \cdots lc(L)(\theta + p - 1) \cdot \chi(\mathbf{B}_p(L))(\partial^p)$

By multiplicativity, Ξ_{θ,∂} can be extended to k(θ)⟨∂^{±1}⟩.
Ξ_{θ,∂}(L) belongs to the centre k(θ^p − θ)[∂^{±p}] of k(θ)⟨∂^{±1}⟩.

Relation between the two *p*-curvatures

Theorem (BoCaSc'14) The following diagram commutes:

"Proof": $k[x]\langle \partial^{\pm 1} \rangle$ and $k[\theta]\langle \partial^{\pm 1} \rangle$ are Azumaya algebras, and thus isomorphic to matrix algebras (after an étale extension), and thus endowed with reduced norm maps (Revoy'73, Knus-Ojanguren'74)

Corollary (BoCaSc'14) $\equiv_{x,\partial}(L)$, and thus $\chi(\mathbf{A}_p(L))$, can be computed in time $\tilde{\mathcal{O}}(\sqrt{p})$.

Implementation and timings

٠	For randor	<mark>n</mark> linear	differential	operators	of degrees	(d, r)	in $k[x]\langle\partial\rangle$
---	------------	-----------------------	--------------	-----------	------------	--------	---------------------------------

		p									
		83	281	983	3 433	12 007	42 013	120 011			
d = 5,	<i>r</i> = 5	0.11 s	0.26 s	0.75 s	1.95 s	5.09 s	12.43 s	33.78 s			
d = 5,	r = 8	0.19 s	0.47 s	1.32 s	3.43 s	9.20 s	22.55 s	65.25 s			
d = 5,	r = 11	0.26 s	0.66 s	1.85 s	5.01 s	14.68 s	37.91 s	104.86 s			
d = 5,	r = 14	0.37 s	0.86 s	2.38 s	6.61 s	20.52 s	59.47 s	154.76 s			
d = 5,	r = 17	0.52 s	1.21 s	3.26 s	8.29 s	24.18 s	76.81 s	234.28 s			
d = 5,	r = 20	0.76 s	1.74 s	4.67 s	11.93 s	33.88 s	109.02 s	298.72 s			
d = 8,	r = 20	1.12 s	2.41 s	6.69 s	18.86 s	56.24 s	239.49 s	881.45 s			
d = 11,	r = 20	1.96 s	4.33 s	10.42 s	30.87 s	92.84 s	388.50 s	922.34 s			
d = 14,	r = 20	3.05 s	6.11 s	14.45 s	45.53 s	141.81 s	507.89 s	1224.98 s			
d = 17,	r = 20	5.26 s	9.19 s	20.85 s	56.83 s	195.74 s	699.08 s	1996.87 s			
<i>d</i> = 20,	<i>r</i> = 20	7.76 s	13.94 s	28.40 s	82.43 s	240.47 s	889.48 s	2419.56 s			

• For operators with physical relevance: e.g., $\phi_H^{(5)}$ in $(\mathbb{Z}/27449\mathbb{Z})[x]\langle\partial\rangle$, of degree (108, 28) in (x, ∂) [Maillard et al. 2007]

 \rightarrow high valuation (17) of $\Xi_{x,\partial}(\phi_H^{(5)})$ agrees with the empirical prediction that the (globally nilpotent) minimal-order operator for $\phi_H^{(5)}$ has order 17. \rightarrow 27449-curvature itself (size 28, deg $\approx 3 \cdot 10^6$) impossible to compute!

Matrix factorials

Fast multiplication and division of power series [Schönhage-Strassen, 1971] and [Sieveking-Kung, 1972]

Schönhage-Strassen, 1971: FFT-multiplication in $k[x]_{<N}$ in $\tilde{\mathcal{O}}(N)$

Sieveking-Kung, 1972: To compute the reciprocal of $f \in k[[x]]$, use Newton iteration:

$$g_0=rac{1}{f_0} \quad ext{and} \quad g_{\kappa+1}=g_\kappa+g_\kappa(1-fg_\kappa) \mod x^{2^{\kappa+1}} \quad ext{for } \kappa\geq 0$$

$$\mathsf{R}(N) = \mathsf{R}(N/2) + \tilde{\mathcal{O}}(N) \implies \mathsf{R}(N) = \tilde{\mathcal{O}}(N)$$

Corollary: Division of power series at precision N in $\tilde{\mathcal{O}}(N)$

Application: fast polynomial Euclidean division [Strassen, 1973]

Given $F, G \in k[x]_{\leq N}$, compute (Q, R) in division F = QG + RSchoolbook algorithm: $O(N^2)$

Better idea: look at F = QG + R from the infinity: $Q \sim_{+\infty} F/G$ Formally: Let $N = \deg(F)$, $n = \deg(G)$, then $\deg(Q) = N - n$, $\deg(R) < n$ and

$$\underbrace{F(1/x)x^{N}}_{\operatorname{rev}(F)} = \underbrace{G(1/x)x^{n}}_{\operatorname{rev}(G)} \cdot \underbrace{Q(1/x)x^{N-n}}_{\operatorname{rev}(Q)} + \underbrace{R(1/x)x^{\operatorname{deg}(R)}}_{\operatorname{rev}(R)} \cdot x^{N-\operatorname{deg}(R)}$$

Strassen's Algorithm: $\tilde{\mathcal{O}}(N)$ \triangleright Compute rev $(Q) = rev(F)/rev(G) \mod x^{N-n+1}$ $\tilde{\mathcal{O}}(N)$ \triangleright Recover Q $\mathcal{O}(N)$ \triangleright Deduce R = F - QG $\tilde{\mathcal{O}}(N)$

Subproduct tree

Problem: Given $a_0, \ldots, a_{n-1} \in k$, compute $A = \prod_{i=0}^{n-1} (x - a_i)$

Cost: $S(n) = 2 \cdot S(n/2) + \tilde{\mathcal{O}}(n) \implies S(n) = \tilde{\mathcal{O}}(n).$

Fast multipoint evaluation

[Borodin-Moenck, 1974]

Given $a_0, \ldots, a_{n-1} \in k$, $P \in k[x]_{< n}$, compute $P(a_0), \ldots, P(a_{n-1})$

Naive algorithm: Compute the $P(a_i)$ independently $O(n^2)$ Idea: Use recursively Bézout's identity $P(a) = P(x) \mod (x - a)$ Divide and conquer: FFT-type idea, evaluation by repeated division

$$P_{0} = P \mod (x - a_{0}) \cdots (x - a_{n/2-1})$$

$$P_{1} = P \mod (x - a_{n/2}) \cdots (x - a_{n-1})$$

$$\implies \begin{cases} P_{0}(a_{0}) = P(a_{0}), \dots, P_{0}(a_{n/2-1}) = P(a_{n/2-1}) \\ P_{1}(a_{n/2}) = P(a_{n/2}), \dots, P_{1}(a_{n-1}) = P(a_{n-1}) \end{cases}$$

Fast multipoint evaluation

[Borodin-Moenck, 1974]

Given $a_0, \ldots, a_{n-1} \in k$, $P \in k[x]_{< n}$, compute $P(a_0), \ldots, P(a_{n-1})$

Cost: $\mathsf{E}(n) = 2 \cdot \mathsf{E}(n/2) + \tilde{\mathcal{O}}(n) \implies \mathsf{E}(n) = \tilde{\mathcal{O}}(n).$

Fast factorials and matrix factorials

Problem: Compute $N! = 1 \times 2 \times \cdots \times N$

Naive algorithm: unroll the recurrence O(N)

Better algorithm (Strassen, 1976): BS-GS $\tilde{\mathcal{O}}(\sqrt{N})$

(BS) Compute
$$P = (x+1)(x+2)\cdots(x+\sqrt{N})$$
 $\tilde{\mathcal{O}}(\sqrt{N})$

GS) Evaluate P at 0,
$$\sqrt{N}$$
, $2\sqrt{N}$, ..., $(\sqrt{N}-1)\sqrt{N}$
Return $u_N = P((\sqrt{N}-1)\sqrt{N})\cdots P(\sqrt{N})\cdot P(0)$ $\mathcal{O}(\sqrt{N})$

Chudnovsky², 1987: generalization to matrix factorials in $\mathcal{O}(\sqrt{N})$

Fast computation of the *N*-th term

Problem: Compute the *N*-th term u_N of a *P*-recursive sequence

$$p_r(n)u_{n+r}+\cdots+p_0(n)u_n=0, \qquad (n\in\mathbb{N})$$

Naive algorithm: unroll the recurrence $\mathcal{O}(N)$ Better algorithm: $U_n = (u_n, \dots, u_{n+r-1})^T$ satisfies the 1st order rec $U_{n+1} = \frac{A(n)}{p_r(n)}U_n, \text{ for } A(n) = \begin{bmatrix} p_r(n) & & \\ & \ddots & \\ & & p_r(n) \\ -p_0(n) & -p_1(n) & \dots & -p_{r-1}(n) \end{bmatrix}$

 $\implies u_N$ reads off the matrix factorial $A(N-1)\cdots A(0)$ in $\tilde{\mathcal{O}}(\sqrt{N})$

Conclusion

Conclusion, open questions

So far:

- characteristic polynomial of *p*-curvature $\mathbf{A}_p(L)$ in $\tilde{\mathcal{O}}(\sqrt{p})$
- algorithm of quasi-optimal complexity for solving Lf = 0.

Still open:

- Can one compute the *p*-curvature in quasi-linear time? (at least for second order operators!)
- Can one decide if $\mathbf{A}_{p}(L)$ is nilpotent in time less than $\tilde{\mathcal{O}}(\sqrt{p})$?