Fast algorithms for the p-curvature of differential operators

Alin Bostan

joint work with
Xavier Caruso (Univ. Rennes 1) and Éric Schost (Univ. Western Ontario)

Journées Holonomes
Grenoble, February 12, 2014

Introduction

Main objects \& Aim

- $k=$ a field with prime characteristic p, typically \mathbb{F}_{p}
- $k(x)\langle\partial\rangle=$ the non-commutative (right-) Euclidean algebra of linear differential operators $L=\ell_{0}(x)+\ell_{1}(x) \partial+\cdots+\ell_{r}(x) \partial^{r}$

Def: p-curvature $\mathbf{A}_{p}(L)$ of $L=$ the matrix in $\mathscr{M}_{r}(k(x))$ whose j-th column contains the coefficients of $\partial^{p+j} \bmod L$ for $0 \leq j<r$

Aim: design efficient algorithms for computing

- the p-curvature $\mathbf{A}_{p}(L)$ of L
- its characteristic polynomial $\chi\left(\mathbf{A}_{p}(L)\right)$
- the solution space of L
- Efficiency $=$ complexity estimates with a low exponent in p
- Complexity is measured in number of arithmetic operations in k

Basics on differential equations in characteristic p

- Main differences between characteristic zero and p

1. (Honda 1981) solutions are simpler in characteristic p

$$
\operatorname{dim}_{k\left(x^{p}\right)} \mathcal{S}_{L}(k[x])=\operatorname{dim}_{k\left(x^{p}\right)} \mathcal{S}_{L}(k(x))=\operatorname{dim}_{k\left(\left(x^{p}\right)\right)} \mathcal{S}_{L}(k[[x]])
$$

2. Cauchy's theorem does not hold: the common dimension $\operatorname{dim} \mathcal{S}_{L}$ of the solution spaces is generally $<r=\operatorname{ord}(L)$

Example: $y^{\prime}=y$ has no solution in $k[[x]]$

- Connection between solutions and p-curvature

Theorem. (Katz \& Cartier 1970) $\operatorname{rank}\left(\mathbf{A}_{p}(L)\right)=r-\operatorname{dim}\left(\mathcal{S}_{L}\right)$
$\longrightarrow p$-curvature measures to what extent $\operatorname{dim}\left(\mathcal{S}_{L}\right)$ is close to r

Two famous statements on p-curvatures

Def. A power series $\sum_{n \geq 0} \frac{a_{n}}{b_{n}} x^{n}$ in $\mathbb{Q}[[x]]$ is called a G-series if it is (a) D-finite; (b) analytic at $x=0$; (c) $\exists C>0, \operatorname{Icm}\left(b_{0}, \ldots, b_{n}\right) \leq C^{n}$.

Examples: ${ }_{2} F_{1}\left({ }_{\gamma} \beta \mid x\right), \alpha, \beta, \gamma \in \mathbb{Q}$; algebraic functions (Eisenstein).

Chudnovsky's theorem (1985) The minimal-order operator $\Gamma \in \mathbb{Q}[x]\langle\partial\rangle$ annihilating a G-series is globally nilpotent: for almost all prime numbers p, the p-curvature $\mathbf{A}_{p}(\Gamma)$ is nilpotent.

Examples: $x(1-x) \partial^{2}+(\gamma-(\alpha+\beta+1) x) \partial-\alpha \beta x$; algebraic resolvents.

Grothendieck's conjecture $\Gamma(f)=0$ with $\Gamma \in \mathbb{Q}[x]\langle\partial\rangle$ has a basis of algebraic solutions over $\mathbb{Q}(x)$ iff $\mathbf{A}_{p}(\Gamma)=0$ for almost all primes p

p-curvature in Computer Algebra

- van der Put 1995: p-curvature publicised in computer algebra, as a tool for factoring operators in $k(x)\langle\partial\rangle$
- Cluzeau 2003: first complexity analysis and implementation of van der Put's algorithms; extension to systems
- Cluzeau, van Hoeij 2004: polynomial solutions mod p and p-curvature used as filters in modular algorithms for $\mathbb{Q}(x)\langle\partial\rangle$
- Concrete applications:
- enumerative combinatorics (classification of lattice walks)
- statistical physics (square lattice Ising model)

Why p-curvature is very useful in concrete applications

- Power series arising in Combinatorics / Physics often have integer coefficients (up to scaling), by design
- E.g. ordinary generating series in counting problems, or multiple integrals of algebraic functions with parameters
- Sometimes, they are even D-finite by design (e.g. integrals), sometimes not (e.g. solutions of functional equations)
- To conjecture D-finiteness, one common computational technique is differential guessing: one guesses a plausible annihilating differential operator from the first terms of the power series
- One way to empirically certify guessed operators is to look at their p-curvatures for random (large) primes p
- If they are nilpotent (or have a large valuation), then the guessed operator is very probably correct, because of Chudnovsky's theorem
- If, in addition, they are even zero, then the power series is very probably algebraic, because of Grothendieck's conjecture

Combinatorial application: Gessel's conjecture

- Gessel walks: walks in \mathbb{N}^{2} using only steps in $\mathcal{S}=\{\nearrow, \swarrow, \leftarrow, \rightarrow\}$
- $g(i, j, n)=$ number of walks from $(0,0)$ to (i, j) with n steps in \mathcal{S}

Question: Nature of the generating function $G(x, y, t)=\sum_{i, j, n=0}^{\infty} g(i, j, n) x^{i} y^{j} t^{n} \in \mathbb{Q}[[x, y, t]]$

Theorem. (B. \& Kauers 2010) $G(x, y, t)$ is an algebraic function. ${ }^{\dagger}$
\rightarrow Effective, computer-driven discovery and proof
\rightarrow Key step in discovery: p-curvature computation of two 11th order (guessed) differential operators for $G(x, 0, t)$, and $G(0, y, t)$

[^0]
Previous work

(1) p-curvature: generic size $\Theta(p)$, but complexity $\mathcal{O}\left(p^{2}\right)$

- Main difficulty: non-commutativity of $k(x)\langle\partial\rangle$ prevents from using binary powering techniques for $\mathbf{A}_{p}(L)$ via $\partial^{p} \bmod L$
- Katz 1982: first algorithm, based on the matrix recurrence

$$
\mathbf{A}_{1}=\mathbf{A}, \quad \mathbf{A}_{k+1}=\mathbf{A}_{k}^{\prime}+\mathbf{A} \cdot \mathbf{A}_{k},
$$

where $\mathbf{A} \in \mathscr{M}_{r}(k(x))$ is the companion matrix associated to L

- van der Put, Cluzeau: variants, all of complexity $\mathcal{O}\left(p^{2}\right)$
(2) Its characteristic polynomial: required computation of \mathbf{A}_{p} itself
(3) Polynomial solutions mod p :
- Cluzeau 2003: quadratic degree bound for elements in $\mathcal{S}_{L}(k[x])$
- Honda 1981, Dwork 1982: linear bound when $r=2$, or $\mathbf{A}_{p}=0$
- Cluzeau 2003: general algorithm of complexity $\mathcal{O}\left(p^{3}\right)$; different $\mathcal{O}\left(p^{2}\right)$ algorithm in the special case $\mathbf{A}_{p}=0$

New results

1. on computing the p-curvature \mathbf{A}_{p}
(1.a) for first order operators in time $\mathcal{O}(\log (p))$
(1.b) for certain second order operators in time $\tilde{\mathcal{O}}(p)$
(1.c) for arbitrary operators in time $\tilde{\mathcal{O}}\left(p^{1.79}\right)$
(1.d) deciding nullity of \mathbf{A}_{p} for arbitrary operators in time $\tilde{\mathcal{O}}(p)$
2. on computing the characteristic polynomial of \mathbf{A}_{p}
(2.a) for arbitrary operators in time $\tilde{\mathcal{O}}(\sqrt{p})$
3. on the space \mathcal{S}_{L} of polynomial solutions
(3.a) degree bound linear in p for all elements in a basis of \mathcal{S}_{L}
(3.b) testing if $\mathcal{S}_{L}=0$ in time $\tilde{\mathcal{O}}(\sqrt{p})$
(3.c) computing a whole basis of \mathcal{S}_{L} in time $\tilde{\mathcal{O}}(p)$

Computing the p-curvature

p-curvature of 1st order operators

Specific features of 1st order operators $L=\partial-u$ in $k(x)\langle\partial\rangle$

- p-curvature admits a closed form expression:

$$
\mathbf{A}_{p}(L)=u^{(p-1)}+u^{p}
$$

(van der Put, 1995)

- p-curvature is sparse: numerator/denominator have $\mathcal{O}(1)$ terms:
$\mathbf{A}_{p}(L)$ is the p-th power of the rational function $f=\left(u^{(p-1)}\right)^{\frac{1}{p}}+u$.
Theorem (BoSc'09) $\mathbf{A}_{p}(L)$ can be computed in time $\mathcal{O}(\log (p))$.
Idea: If $u=\sum_{i \geq 0} a_{i} x^{i}$, then $\left(u^{(p-1)}\right)^{\frac{1}{p}}=-\sum_{i \geq 1} a_{i p-1} x^{i-1}$ (Wilson)
\longrightarrow it is sufficient to compute by binary powering the $\mathcal{O}(1)$ terms $a_{p-1}, a_{2 p-1}, \ldots, a_{\operatorname{deg}(u) p-1}$ of the recurrent sequence $\left(a_{n}\right)_{n \geq 0}$.

p-curvature of arbitrary operators

Theorem. (BoSc'09) The p-curvature of any L in $k[x]\langle\partial\rangle$ can be computed in subquadratic time $\tilde{\mathcal{O}}\left(p^{1+\frac{\omega}{3}}\right) \subset \mathcal{O}\left(p^{1.79}\right)$.
If $\mathbf{A}=$ CompanionMatrix (L) and $\Lambda=\partial+\mathbf{A}$, then $\mathbf{A}_{p}=\Lambda^{p-1}(\mathbf{A})$
(1) Compute $\Gamma=\Lambda^{k}$ by binary powering.

Basic operation: product in bidegree (k, k) in $k(x)\langle\partial\rangle$. Cost: $\mathcal{O}\left(k^{\omega}\right)$ (B., Chyzak \& Le Roux'08)
(2) Compute $\quad \mathbf{A}_{(1)}=\mathbf{A}, \mathbf{A}_{(i)}=\Gamma \mathbf{A}_{(i-1)}, i=2, \ldots, \ell=(p-1) / k$. Basic operation: $L(f)$ with $\operatorname{bideg}_{(x, \gamma)}(L)=(k, k)$ and $\operatorname{deg}(f) \leq i k$.

Cost: $\tilde{\mathcal{O}}\left(\ell^{\omega-1} k^{2}\right)$ (see next slide)
(3) Return $\quad \mathbf{A}_{p}=\mathbf{A}_{(\ell)}$.

Total cost: $\tilde{\mathcal{O}}\left(p^{1+\frac{\omega}{3}}\right)$ obtained for $k \approx p^{2 / 3}$.

Fast evaluation of differential operators

Theorem. Given $L \in k[x]\langle\partial\rangle$ of bidegree (k, k) and $f \in k[x]$ of degree $i k$, $(i \leq s:=\sqrt{k})$, one can compute $L f$ in time $\tilde{\mathcal{O}}\left(i^{\omega-2} k^{2}\right)$.

Algo [baby steps / giant steps strategy inspired by Brent-Kung'78]
(1) (baby steps) Compute $f_{0}=f, f_{1}=\partial f, \ldots, f_{s-1}=\partial^{s-1} f$
(2) (rewriting) Cut L into s slices of bidegree (k, s) in (x, ∂) :

$$
L=L_{0}+\partial^{s} L_{1}+\cdots+\partial^{(s-1) s} L_{s-1}
$$

(3) (recombination) Deduce $L_{0} f, \ldots, L_{s-1} f$ at once by a product of polynomial matrices of sizes $(s, s) \times(s, i)$ and degree k
(4) (giant steps) Compute and return $L f=\sum_{0 \leq j<s} \partial^{j s} L_{j} f$

Cost: $\tilde{\mathcal{O}}\left(i k^{3 / 2}\right)$ for (1) and (4); $\tilde{\mathcal{O}}\left(k^{2}\right)$ for (2) and $\tilde{\mathcal{O}}\left(i^{\omega-2} k^{2}\right)$ for (3)

Computing polynomial solutions

Computing polynomial solutions (I)

- $\mathcal{S}_{L}=$ the $k\left(x^{p}\right)$-vector space of polynomial solutions of $L f=0$
- $\mathcal{G}=$ the k-vector space $\mathcal{S}_{L} \cap k[x]_{<p d}$ where $d=\max \left(\operatorname{deg}\left(\ell_{i}\right)\right)$

Theorem. (BoSc'09) \mathcal{S}_{L} admits a $k\left(x^{p}\right)$-basis included in \mathcal{G}.

Algorithm for computing \mathcal{S}_{L} :
(1) Decide if $\mathcal{S}_{L}=0(\Leftrightarrow$ decide if $\mathcal{G}=0)$. If so, stop.
(2) If not, compute a k-basis $\left(f_{1}, \ldots, f_{k}\right)$ of \mathcal{G}.
(3) $\left(f_{1}, \ldots, f_{k}\right)$ generates \mathcal{S}_{L} over $k\left(x^{p}\right)$. Extract a basis.

Cost: $\tilde{\mathcal{O}}(\sqrt{p})$ for (1) and $\tilde{\mathcal{O}}(p)$ for (2) and (3)
Corollary. One can decide nullity of $\mathbf{A}_{p}(L)$ in time $\tilde{\mathcal{O}}(p)$.

Computing polynomial solutions (II)

$P b$: Compute an k-basis of sols $f=\sum_{i=0}^{p d-1} c_{i} x^{i} \in k[x]$ of $L f=0$.

- Band-diagonal linear system (S1) of size $\mathcal{O}(p)$ and width $\mathcal{O}(1)$
- Technical difficulty: some rightmost band elements can be zero!

Algorithm [generalization of (ABP1995) \& (BCluzeauSalvy2005)]
(1) From (S1), deduce an equivalent system (S2) of size $\mathcal{O}(1)$ Basic operation: matrix factorial $C(p-1) \cdots C(r)$ Cost: $\tilde{\mathcal{O}}(\sqrt{p})\left(\right.$ Chudnovsky 2 1987)
(2) From a basis of (S2), deduce a basis of (S1)

Basic operation: forward substitution
Cost: $\mathcal{O}(p)$

Example

$$
L=\left(5 x^{2}+4\right) \partial^{2}+\left(4 x^{2}+6 x+5\right) \partial+2 x+2 \in \mathbb{F}_{7}[x]\langle\partial\rangle
$$

Polynomial solution $f=\sum_{i=0}^{7.2-1} c_{i} x^{i}$ in $\mathbb{F}_{7}[x]$ s.t. $L f=0$:

\Leftrightarrow Rewriting the equations in red using the unknowns in blue yields

$$
c_{4}=5 c_{1}, c_{5}=2 c_{1}, c_{6}=3 c_{1}, c_{11}=5 c_{8}+5 c_{1}, c_{12}=2 c_{8}, c_{13}=3 c_{8}+4 c_{1}
$$

\Leftrightarrow Plugging them back into the red equations gives

$$
\text { (S2) : } \quad 3 c_{1}=0,6 c_{1}=0,3 c_{8}=0, c_{8}+6 c_{1}=0,6 c_{8}+3 c_{1}=0
$$

$\Leftrightarrow \operatorname{dim}(\mathrm{S} 1)=\operatorname{dim}(\mathrm{S} 2)=2$ and $\operatorname{Basis}(\mathrm{S} 1)$ is obtained by subst. from $\operatorname{Basis}(\mathrm{S} 2)=\left\{\left(c_{0}, c_{1}, c_{7}, c_{8}\right)=(1,0,0,0),\left(c_{0}, c_{1}, c_{7}, c_{8}\right)=(0,0,1,0)\right\}$

Application: deciding nilpotency of the p-curvature

 for second order operatorsLemma One can compute the trace of $\mathbf{A}_{p}(L)$ in $\mathcal{O}(\log (p))$.
Proof: If $L=\ell_{0}(x)+\ell_{1}(x) \partial+\cdots+\ell_{r}(x) \partial^{r}$, then

$$
\begin{equation*}
\operatorname{trace}\left(\mathbf{A}_{p}(L)\right)=\mathbf{A}_{p}\left(\ell_{r}(x) \partial+\ell_{r-1}(x)\right) \tag{Katz,1982}
\end{equation*}
$$

Lemma One can decide if $\mathbf{A}_{p}(L)$ is invertible in $\tilde{\mathcal{O}}(\sqrt{p})$.
Proof: By (Cartier \& Katz 1970): $\operatorname{det}\left(\mathbf{A}_{p}(L)\right)=0$ iff $\operatorname{dim}\left(\mathcal{S}_{L}\right)>0$.

Theorem (BoSc'09) If ord $(L)=2$, one can decide nilpotency of $\mathbf{A}_{p}(L)$ in time $\tilde{\mathcal{O}}(\sqrt{p})$.
Proof: $\mathbf{A}_{p}=\mathbf{A}_{p}(L)$ is nilpotent iff $\operatorname{trace}\left(\mathbf{A}_{p}\right)$ and $\operatorname{det}\left(\mathbf{A}_{p}\right)=0$.

Computing the characteristic polynomial of the p-curvature

Useful operator rings

- $k[x]\left\langle\partial^{ \pm 1}\right\rangle$ and $k(x)\left\langle\partial^{ \pm 1}\right\rangle$ are rings, with multiplication

$$
\partial^{-1} f=\sum_{i=0}^{p-1}(-1)^{i} f^{(i)} \partial^{-i-1}, \quad \text { for all } f \in k(x) .
$$

- $k[\theta]\left\langle\partial^{ \pm 1}\right\rangle$ and $k(\theta)\left\langle\partial^{ \pm 1}\right\rangle$ are rings, with multiplication

$$
\partial^{i} g(\theta)=g(\theta+i) \partial^{i}, \quad \text { for all } i \in \mathbb{Z} \text { and } g \in k(\theta) .
$$

- Isomorphism of k-algebras

$$
\begin{aligned}
k[x]\left\langle\partial^{ \pm 1}\right\rangle & \rightleftarrows k[\theta]\left\langle\partial^{ \pm 1}\right\rangle \\
x & \mapsto \theta \partial^{-1} \\
x \partial & \leftrightarrow \theta \\
\partial^{ \pm 1} & \leftrightarrow \partial^{ \pm 1}
\end{aligned}
$$

- The central element $\theta^{p}-\theta$ corresponds to $x^{p} \partial^{p}$, since

$$
\theta^{p}=\sum_{k=1}^{p}\left\{\begin{array}{l}
p \\
k
\end{array}\right\} x^{k} \partial^{k}, \quad \text { and } \quad p \text { divides }\left\{\begin{array}{l}
p \\
k
\end{array}\right\} \text { for } 1<k<p .
$$

p-curvature, revisited

Recall: Given L in $k(x)\langle\partial\rangle$ of degree r in $\partial, \mathbf{A}_{p}(L)$ is the matrix of ∂^{p} acting on $k(x)\langle\partial\rangle / k(x)\langle\partial\rangle L$ w.r.t. the basis $\left(1, \partial, \ldots, \partial^{r-1}\right)$.

- ∂^{p} is $k(x)$-linear, since

$$
\partial^{p}(f V)=\sum_{j=0}^{p}\binom{p}{j} f^{(j)} \partial^{p-j} V, \quad \text { and } p \text { divides }\binom{p}{j} \text { for } 1<j<p
$$

- The coefficients of the characteristic polynomial

$$
\chi\left(\mathbf{A}_{p}(L)\right)(z)=\operatorname{det}\left(z \cdot \operatorname{ld}-\mathbf{A}_{p}(L)\right)
$$

belong to $k\left(x^{p}\right)$.
Def: Given L in $k(x)\langle\partial\rangle$, define

$$
\bar{\Xi}_{x, \partial}(L)=\operatorname{lc}(L)^{p} \cdot \chi\left(\mathbf{A}_{p}(L)\right)\left(\partial^{p}\right)
$$

- By multiplicativity, $\Xi_{x, \partial}$ can be extended to $k(x)\left\langle\partial^{ \pm 1}\right\rangle$.
- $\Xi_{x, \partial}(L)$ belongs to the centre $k\left(x^{p}\right)\left[\partial^{ \pm p}\right]$ of $k(x)\left\langle\partial^{ \pm 1}\right\rangle$.

A simpler p-curvature

Def: Given L in $k(\theta)\langle\partial\rangle$ of degree r in ∂, let $\mathbf{B}_{p}(L)$ be the matrix of ∂^{p} acting on $k(\theta)\langle\partial\rangle / k(\theta)\langle\partial\rangle L$ w.r.t. the basis $\left(1, \partial, \ldots, \partial^{r-1}\right)$.

Theorem (BoCaSc'14) Let $L \in k(\theta)\langle\partial\rangle$ and let $\mathbf{B}(\theta) \in \mathscr{M}_{r}(k(\theta))$ denote its companion matrix. Then:

$$
\mathbf{B}_{p}(L)=\mathbf{B}(\theta) \cdot \mathbf{B}(\theta+1) \cdots \mathbf{B}(\theta+p-1) .
$$

- This is the analogue of Katz's formula for the usual p-curvature
- Computation of $\mathbf{B}_{p}(L)$ in time $\tilde{\mathcal{O}}(\sqrt{p})$ via matrix factorials.

Def: Given L in $k(\theta)\langle\partial\rangle$, define

$$
\bar{\Xi}_{\theta, \partial}(L)=\operatorname{lc}(L)(\theta) \cdots \operatorname{lc}(L)(\theta+p-1) \cdot \chi\left(\mathbf{B}_{p}(L)\right)\left(\partial^{p}\right)
$$

- By multiplicativity, $\bar{\Xi}_{\theta, \partial}$ can be extended to $k(\theta)\left\langle\partial^{ \pm 1}\right\rangle$.
- $\Xi_{\theta, \partial}(L)$ belongs to the centre $k\left(\theta^{p}-\theta\right)\left[\partial^{ \pm p}\right]$ of $k(\theta)\left\langle\partial^{ \pm 1}\right\rangle$.

Relation between the two p-curvatures

Theorem (BoCaSc'14) The following diagram commutes:

"Proof": $k[x]\left\langle\partial^{ \pm 1}\right\rangle$ and $k[\theta]\left\langle\partial^{ \pm 1}\right\rangle$ are Azumaya algebras, and thus isomorphic to matrix algebras (after an étale extension), and thus endowed with reduced norm maps (Revoy'73, Knus-Ojanguren'74)

Corollary (BoCaSc'14) $\Xi_{x, \partial}(L)$, and thus $\chi\left(\mathbf{A}_{p}(L)\right)$, can be computed in time $\tilde{\mathcal{O}}(\sqrt{p})$.

Implementation and timings

- For random linear differential operators of degrees (d, r) in $k[x]\langle\partial\rangle$

	p						
	83	281	983	3433	12007	42013	120011
$d=5, \quad r=5$	0.11 s	0.26 s	0.75 s	1.95 s	5.09 s	12.43 s	33.78 s
$d=5, \quad r=8$	0.19 s	0.47 s	1.32 s	3.43 s	9.20 s	22.55 s	65.25 s
$d=5, \quad r=11$	0.26 s	0.66 s	1.85 s	5.01 s	14.68 s	37.91 s	104.86 s
$d=5, \quad r=14$	0.37 s	0.86 s	2.38 s	6.61 s	20.52 s	59.47 s	154.76 s
$d=5, \quad r=17$	0.52 s	1.21 s	3.26 s	8.29 s	24.18 s	76.81 s	234.28 s
$d=5, \quad r=20$	0.76 s	1.74 s	4.67 s	11.93 s	33.88 s	109.02 s	298.72 s
$d=8, \quad r=20$	1.12 s	2.41 s	6.69 s	18.86 s	56.24 s	239.49 s	881.45 s
$d=11, \quad r=20$	1.96 s	4.33 s	10.42 s	30.87 s	92.84 s	388.50 s	922.34 s
$d=14, \quad r=20$	3.05 s	6.11 s	14.45 s	45.53 s	141.81 s	507.89 s	1224.98 s
$d=17, \quad r=20$	5.26 s	9.19 s	20.85 s	56.83 s	195.74 s	699.08 s	1996.87 s
$d=20, \quad r=20$	7.76 s	13.94 s	28.40 s	82.43 s	240.47 s	889.48 s	2419.56 s

- For operators with physical relevance: e.g., $\phi_{H}^{(5)}$ in $(\mathbb{Z} / 27449 \mathbb{Z})[x]\langle\partial\rangle$, of degree $(108,28)$ in (x, ∂) [Maillard et al. 2007]
\longrightarrow high valuation (17) of $\Xi_{x, \partial}\left(\phi_{H}^{(5)}\right)$ agrees with the empirical prediction that the (globally nilpotent) minimal-order operator for $\phi_{H}^{(5)}$ has order 17 . $\longrightarrow 27449$-curvature itself (size $28, \mathrm{deg} \approx 3 \cdot 10^{6}$) impossible to compute!

Matrix factorials

Fast multiplication and division of power series

 [Schönhage-Strassen, 1971] and [Sieveking-Kung, 1972]Schönhage-Strassen, 1971: FFT-multiplication in $k[x]_{<N}$ in $\tilde{\mathcal{O}}(N)$

Sieveking-Kung, 1972: To compute the reciprocal of $f \in k[[x]]$, use Newton iteration:

$$
\begin{gathered}
g_{0}=\frac{1}{f_{0}} \quad \text { and } \quad g_{\kappa+1}=g_{\kappa}+g_{\kappa}\left(1-f g_{\kappa}\right) \quad \bmod x^{2^{\kappa+1}} \quad \text { for } \kappa \geq 0 \\
\mathrm{R}(N)=\mathrm{R}(N / 2)+\tilde{\mathcal{O}}(N) \Longrightarrow \mathrm{R}(N)=\tilde{\mathcal{O}}(N)
\end{gathered}
$$

Corollary: Division of power series at precision N in $\tilde{\mathcal{O}}(N)$

Application: fast polynomial Euclidean division

[Strassen, 1973]

Given $F, G \in k[x]_{\leq N}$, compute (Q, R) in division $F=Q G+R$ Schoolbook algorithm:

Better idea: look at $F=Q G+R$ from the infinity: $Q \sim_{+\infty} F / G$ Formally: Let $N=\operatorname{deg}(F), n=\operatorname{deg}(G)$, then $\operatorname{deg}(Q)=N-n$, $\operatorname{deg}(R)<n$ and
$\underbrace{F(1 / x) x^{N}}_{\operatorname{rev}(F)}=\underbrace{G(1 / x) x^{n}}_{\operatorname{rev}(G)} \cdot \underbrace{Q(1 / x) x^{N-n}}_{\operatorname{rev}(Q)}+\underbrace{R(1 / x) x^{\operatorname{deg}(R)}}_{\operatorname{rev}(R)} \cdot x^{N-\operatorname{deg}(R)}$
Strassen's Algorithm:

- Compute $\operatorname{rev}(Q)=\operatorname{rev}(F) / \operatorname{rev}(G) \bmod x^{N-n+1}$
- Recover Q
- Deduce $R=F-Q G$

Subproduct tree

Problem: Given $a_{0}, \ldots, a_{n-1} \in k$, compute $A=\prod_{i=0}^{n-1}\left(x-a_{i}\right)$

Cost: $\mathrm{S}(n)=2 \cdot \mathrm{~S}(n / 2)+\tilde{\mathcal{O}}(n) \Longrightarrow \mathrm{S}(n)=\tilde{\mathcal{O}}(n)$.

Fast multipoint evaluation

[Borodin-Moenck, 1974]

Given $a_{0}, \ldots, a_{n-1} \in k, P \in k[x]_{<n}$, compute $P\left(a_{0}\right), \ldots, P\left(a_{n-1}\right)$
Naive algorithm: Compute the $P\left(a_{i}\right)$ independently Idea: Use recursively Bézout's identity $P(a)=P(x) \bmod (x-a)$ Divide and conquer: FFT-type idea, evaluation by repeated division

$$
\begin{aligned}
& \Rightarrow \quad P_{0}=P \bmod \left(x-a_{0}\right) \cdots\left(x-a_{n / 2-1}\right) \\
& \Rightarrow \quad P_{1}=P \bmod \left(x-a_{n / 2}\right) \cdots\left(x-a_{n-1}\right) \\
& \Longrightarrow \quad\left\{\begin{array}{l}
P_{0}\left(a_{0}\right)=P\left(a_{0}\right), \quad \ldots, \quad P_{0}\left(a_{n / 2-1}\right)=P\left(a_{n / 2-1}\right) \\
P_{1}\left(a_{n / 2}\right)=P\left(a_{n / 2}\right), \quad \cdots, \quad P_{1}\left(a_{n-1}\right)=P\left(a_{n-1}\right)
\end{array}\right.
\end{aligned}
$$

Fast multipoint evaluation

[Borodin-Moenck, 1974]
Given $a_{0}, \ldots, a_{n-1} \in k, P \in k[x]_{<n}$, compute $P\left(a_{0}\right), \ldots, P\left(a_{n-1}\right)$

Cost: $\mathrm{E}(n)=2 \cdot \mathrm{E}(n / 2)+\tilde{\mathcal{O}}(n) \Longrightarrow \mathrm{E}(n)=\tilde{\mathcal{O}}(n)$.

Fast factorials and matrix factorials

Problem: Compute $N!=1 \times 2 \times \cdots \times N$

Naive algorithm: unroll the recurrence
Better algorithm (Strassen, 1976): BS-GS
$\tilde{\mathcal{O}}(\sqrt{N})$
(BS) Compute $P=(x+1)(x+2) \cdots(x+\sqrt{N})$
$\tilde{\mathcal{O}}(\sqrt{N})$
(GS) Evaluate P at $0, \sqrt{N}, 2 \sqrt{N}, \ldots,(\sqrt{N}-1) \sqrt{N}$ Return $u_{N}=P((\sqrt{N}-1) \sqrt{N}) \cdots P(\sqrt{N}) \cdot P(0)$
$\mathcal{O}(\sqrt{N})$

Chudnovsky ${ }^{2}$, 1987: generalization to matrix factorials in $\mathcal{O}(\sqrt{N})$

Fast computation of the N -th term

Problem: Compute the N-th term u_{N} of a P-recursive sequence

$$
p_{r}(n) u_{n+r}+\cdots+p_{0}(n) u_{n}=0, \quad(n \in \mathbb{N})
$$

Naive algorithm: unroll the recurrence
Better algorithm: $U_{n}=\left(u_{n}, \ldots, u_{n+r-1}\right)^{T}$ satisfies the 1st order rec

$$
U_{n+1}=\frac{A(n)}{p_{r}(n)} U_{n}, \text { for } A(n)=\left[\begin{array}{cccc}
& p_{r}(n) & & \\
& & \ddots & \\
-p_{0}(n) & -p_{1}(n) & \ldots & -p_{r-1}(n)
\end{array}\right]
$$

$\Longrightarrow u_{N}$ reads off the matrix factorial $A(N-1) \cdots A(0)$ in $\tilde{\mathcal{O}}(\sqrt{N})$

Conclusion

Conclusion, open questions

So far:

- characteristic polynomial of p-curvature $\mathbf{A}_{p}(L)$ in $\tilde{\mathcal{O}}(\sqrt{p})$
- algorithm of quasi-optimal complexity for solving $L f=0$.

Still open:

- Can one compute the p-curvature in quasi-linear time? (at least for second order operators!)
- Can one decide if $\mathbf{A}_{p}(L)$ is nilpotent in time less than $\tilde{\mathcal{O}}(\sqrt{p})$?

[^0]: ${ }^{\dagger}$ Minimal polynomial $P(x, y, t, G(x, y, t))=0$ has $>10^{11}$ terms; $\approx 30 \mathrm{~Gb}(!)$

