Travaux Pratiques numériques pour le cours « systèmes dynamiques et chaos »

31 octobre 2020

Frédéric Faure Université Grenoble Alpes, France frederic.faure@univ-grenoble-alpes.fr Master de Physique M1

Novembre 2020.

Attention : Pour lire ce document, utiliser Firefox qui donne un bon rendu des équations.

Table des matières

1	Info	rmatio	ons pratiques	2
2	Tra	vail de	mandé	4
3	Din	nensior	n 1	4
	3.1	Dynan	nique à temps continu en dimension 1	4
		3.1.1	Exercices mathématiques préparatoires	5
		3.1.2	Exercice de programmation	5
	3.2	Dynan	nique à temps discret en dimension 1	6
		3.2.1	Exercices préparatoires	6
		3.2.2	Exercice de programmation	6
4	Din	nensior	n 2	7
	4.1	Dynan	nique à temps continu en dimension $2 \dots \dots \dots \dots \dots$	7
		4.1.1	Exercices préparatoires	7
		4.1.2	Exercice de programmation	7
		4.1.3	(Optionnel) Section de Poincaré	7
		4.1.4	(Optionnel) Autres exemples	8

	4.2	Dynar	mique à temps discret en dimension 2	8
		4.2.1	Exercices préparatoires	8
		4.2.2	Exercice de programmation	8
		4.2.3	Autres exemples	9
		4.2.4	Des résonances dans le système solaire	10
5	Din		11 11	
	5.1		1 r	
		5.1.1	r	11
		5.1.2	Exercices préparatoires	12
		5.1.3	Exercices de programmation	12
		5.1.4	Section de Poincaré	12
		5.1.5	Autres exemples de flots en dimension 3	12

1 Informations pratiques

— Prochaine séance, selon votre groupe (voir listes ci-dessous) 5 ou 6 ou 12 novembre 2020, 9h->12h ou 14h->17h, en virtuel sur le lien suivant discord. Voici la page web de ce cours.

 Jeudi	5	novembre	9h-	>12h	:

CLAVEL	CHARLES
DE NOYERS	UGO
DE SOUSA	MAXIME
DE VAULX	JEAN-BAPTISTE
DELATTRE	ALEXANDRE
DELHOMMEAU	VICTOR
DJERROUD	MOHAMED IDIR
DUBRAY	LILIAN
DUBROCA	THÉO
LE ROY	GWENVREDIG
MOREAU	JOSEPH
MORIN	ROMY
ALOU ROMAN	ANTONI

— Jeudi 5 novembre 14h->17h:

DURAND	ROBIN
GAVILANES BOWEN	FRANCISCO
GIROUD	LEO
GUERRY	THOMAS
IZEM	NOAM
LARUE	PIERRE
LE ROUZIC	GUILLAUME
LEMUR	EVAN
LEONARDO	MATHIEU
LUU	MARION
MASSON	MARINA
MENAI	NABIL
CHAZOTTE	ROMAIN

- Vendredi 6 novembre 14h->17h :

MOYER	ALICE
PAUCHET	ANAIS
PILLOT	HECTOR
ALAGUERO	ANTOINE
BARBET	CLEMENT
ROLLO	VALENTIN
SACHOT	SIMON
SOLDANO	FRANK
THUMIN	MAXIME
URIBE APRAEZ	TOMAS
VIVIER	JULIEN
ZIMNIAK	NATHAN
SCHIRMER	VERENA

- Jeudi 12 novembre 9h->12h :

BELLAVIA	EMMA
BETTAYEB	BILAL
BOUDET	LÉO
BRIGITTE	MAIMOUNA
BUISSON	CYANN
BUJAULT	NATHAN
BURGHER	MAXIME
OLSON	KYLE
PINCHAULT	JOSHUA
PONCET	VALENITN
RAVELOARIJAONA	TOJOSOA NANTENAINA
REYNAUD	LEO
KUSCHKE	VICTOR

2 Travail demandé

- (1) Avant la séance de TP faire les **exercices préparatoires** donnés ci-dessous.
- (2) En séance de TP, faire les exercices de programmation sur ordinateur.
- (3) Après la séance de TP, choisir un **projet** parmi cette liste et développer/réaliser le projet en s'aidant des exemples vus dans ce TP.

Langage informatique:

- Dans ce TP, on propose d'utiliser le **langage python**. Voici un didacticiel Python avec de nombreuses références.
- Si vous préférez C++, voici le (presque) même tutorial pour C++, et voici un didacticiel C++ avec de nombreuses références.

Objectif

- La question centrale est de comprendre et prévoir le comportement à temps longs de systèmes gouvernés par des lois.
- Dans ce TP, à l'aide de quelques exemples précis, on explore la **dynamique déterministe** à **temps continu** (flot) ou **temps discret** en dimension d, avec d = 1, 2, 3. Autrement dit à chaque instant t, l'état du système est caractérisé par les variables $x(t) = (x_1(t), x_2(t), \dots x_d(t)) \in \mathbb{R}^d$.
 - Pour une loi à temps continu, $t \in \mathbb{R}$ et la loi est de la forme

$$\frac{dx}{dt} = \mathcal{V}\left(x\left(t\right)\right),\,$$

spécifiée par une fonction $x \in \mathbb{R}^d \to \mathcal{V}(x) \in \mathbb{R}^d$ appelée **champ de vecteur**.

— Pour une loi à temps discret $t \in \mathbb{N}$ la loi est de la forme

$$x(t+1) = \phi(x(t)),$$

- avec une fonction $\phi: x \in \mathbb{R}^d \to \phi(x) \in \mathbb{R}^d$.
- Dans tous les cas, l'objectif est de comprendre, décrire le comportement des trajectoires x(t) pour $t \to \infty$.
- Rappels : une section de Poincaré discret en dimension d-1.

3 Dimension 1

3.1 Dynamique à temps continu en dimension 1

On considère $x(t) \in \mathbb{R}$ qui dépend de $t \in \mathbb{R}$ et qui satisfait l'équation de mouvement

$$\frac{dx}{dt} = \mathcal{V}(x) := \mu x (x - 1) \tag{3.1}$$

avec le paramètre $\mu \in \mathbb{R}$ fixé. On appelle (3.1) le modèle de Verhulst, voir aussi fonction de Verhulst. La fonction \mathcal{V} s'interprète comme un champ de vecteur sur \mathbb{R} .

3.1.1 Exercices mathématiques préparatoires

- (1) Selon le paramètre μ , trouver les **points fixes** de la dynamique (3.1), c'est à dire les zéros x^* du champ de vecteur \mathcal{V} , et déterminer leur **stabilité**, c'est à dire le signe de $\mathcal{V}'(x^*)$. Quels sont les **attracteurs** et **répulseurs** (i.e. attracteur dans le passé) de la dynamique?
- (2) Calculer $\operatorname{div}(\mathcal{V})(x)$ et déterminer si le flot est contractif, expansif ou conservatif selon x.
- (3) Pour $\mu = 1$, (et ensuite $\mu = -1$), tracer le graphe de la fonction \mathcal{V} et déduire l'allure du **champ de vecteur** $\mathcal{V}(x)$ sur l'axe x. Remarquer que (3.1) est équivalent à considérer l'équation de mouvement du « problème étendu » $(x(s), t(s)) \in \mathbb{R}^2$, $s \in \mathbb{R}$ suivant :

$$\begin{cases} \frac{dx}{ds} = \mathcal{V}(x) \\ \frac{dt}{ds} = 1 \end{cases}$$

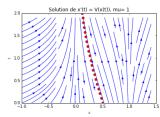
où il apparait le champ de vecteur $F(x,t) = (\mathcal{V}(x),1)$ dans le plan \mathbb{R}^2 . Tracer l'allure des trajectoires (ou « lignes d'univers ») dans le plan (x,t).

Solutions:

- (1) x^* est un zéro si $0 = \mathcal{V}(x^*) = \mu x^*(x^* 1)$ donnant $x^* = 0$ ou $x^* = 1$ qui sont les deux **points fixes** du flot. On a $\mathcal{V}'(x) = \mu(2x 1)$. Si $\mu > 0$, alors $\mathcal{V}'(0) = -\mu < 0$ montrant que pour $t \to +\infty$, le point fixe $x^* = 0$ est **stable** (ou « **attracteur** ») et $\mathcal{V}'(1) = \mu > 0$ montrant que le point fixe $x^* = 1$ est **instable** (ou « **répulseur** »).
- (2) On a div $(\mathcal{V})(x) = \frac{d\mathcal{V}}{dx} = \mathcal{V}'(x) = \mu(2x-1)$ donc, si $\mu > 0$, alors on a div $(\mathcal{V})(x) > 0$ pour $x > \frac{1}{2}$, i.e. le flot est **contractif** (dissipatif). On a div $(\mathcal{V})(x) < 0$ pour $x < \frac{1}{2}$, i.e. le flot est **expansif** (dissipatif).

3.1.2 Exercice de programmation

(1) Télécharger et exécuter le programme champ_vecteur_dim1.py qui dessine le champ de vecteur $F(x,t) = (\mathcal{V}(x),1)$ dans le plan \mathbb{R}^2 et résout l'équation (3.1) avec le schéma de Runge-Kutta. Aide : sous linux, dans un terminal écrire : python3 champ_vecteur_dim1.py



- (2) Lire et bien comprendre le programme.
- (3) Changer la condition initiale x(0) et le paramètre μ dans le programme et vérifier vos prédictions.

(4) Modifier le programme pour étudier l'équation de mouvement suivante sur l'intervalle $x \in [-1, 2]$:

$$\frac{dx}{dt} = \mathcal{V}(x) := \sin(2\pi x) \tag{3.2}$$

3.2 Dynamique à temps discret en dimension 1

On considère la variable $x(t) \in \mathbb{R}$ qui dépend du temps discret $t \in \mathbb{Z}$ et qui satisfait l'équation de récurrence

$$x(t+1) = \mu x(t)(1 - x(t)) \tag{3.3}$$

avec le paramètre $\mu > 0$. On appelle (3.3) l'application logistique.

3.2.1 Exercices préparatoires

Voir TD "Application logistique et fractale de Mandelbrot" et chapitre introduction du cours.

- (1) Tracer le graphe de $f(x) = \mu x (1-x)$ dans l'intervalle $x \in [0,1]$. Trouver le(s) point(s) fixe(s) a = f(a) et discuter leur stabilité en fonction de μ . Pour $0 < \mu < 3$, quels sont les **attracteurs** et **répulseurs** de la dynamique?
- (2) Calculer |f'(x)| et déduire si l'application est contractive, expansive ou conservative selon x.
- (3) **Optionnel**. On pose $\mu = 3 + \epsilon$ et x = a + y. On suppose $\epsilon \ll 1$, $y \ll 1$. Trouver les points fixes de b = f(f(b)) (i.e. les points périodiques de f de période deux) et discuter leur stabilité en fonction de ϵ . Tracer le graphe $b(\mu)$ appelé **diagramme de bifurcation**.
- (4) Montrer que $x = \infty$ est toujours attracteur.

3.2.2 Exercice de programmation

(1) Télécharger, compiler et exécuter le programme application_dim1.py qui dessine la fonction f et fait évoluer le point x(t).

1_home_faure_enseignement_Systemes_dynamiques_M

- (2) Changer la condition initiale x (0) et le paramètre μ dans le programme et vérifier vos prédictions.
- (3) Changer la formule de l'application f et essayer.
- (4) **Optionnel.** Faire un programme qui dessine les attracteurs et répulseurs de la dynamique en fonction de μ , comme ici.
- (5) **Optionnel.** Comme ici, considérer l'équation avec $x \in \mathbb{C}$ et $\mu \in \mathbb{C}$. Faire un programme qui pour chaque paramètre $\mu \in \mathbb{C}$, associe $M(\mu) \geq 0$ (ou une couleur) obtenu par : partant du point $x_0 = 0.5$ et $t = 10^3 \gg 1$, on pose $M(\mu) = \log(x(t))$. Cela fera apparaître l'ensemble de Mandelbrot.

4 Dimension 2

4.1 Dynamique à temps continu en dimension 2

On considère $(x\left(t\right),y\left(t\right))\in\mathbb{R}^{2}$ qui dépend de $t\in\mathbb{R}$ et qui satisfait l'équation de mouvement

$$\frac{dx^{2}}{dt^{2}} + \mu \left(x \left(t\right)^{2} - 1\right) \frac{dx}{dt} + x \left(t\right) = 0$$

$$\Leftrightarrow \begin{cases}
\frac{dx}{dt} &= \mathcal{V}_{x} \left(x\right) := y \\
\frac{dy}{dt} &= \mathcal{V}_{y} \left(x\right) := -\mu \left(x^{2} - 1\right) y - x
\end{cases} \tag{4.1}$$

avec le paramètre $\mu \in \mathbb{R}$. On appelle (4.1) le l'Oscillateur de Van der Pol. La fonction $\mathcal{V}(x,y) = (\mathcal{V}_x(x,y), \mathcal{V}_y(x,y))$ s'interprète comme un **champ de vecteur** sur \mathbb{R}^2 .

2_home_faure_enseignement_Systemes_dynamiques_M1_

4.1.1 Exercices préparatoires

- (1) Selon le paramètre μ , trouver les **points fixes** de la dynamique (3.1), c'est à dire les zéros du champ x^* de vecteur \mathcal{V} , et déterminer leur **stabilité**.
- (2) Calculer $\operatorname{div}(\mathcal{V})(x,y)$ et déterminer si le flot est contractif, expansif ou conservatif selon le point (x,y).

4.1.2 Exercice de programmation

- (1) Renommer le programme champ_vecteur_dim1.py ci-dessus en champ_vecteur_dim2.py. Le modifier afin de dessiner le champ de vecteur et la trajectoire comme l'image ci-dessus.
- (2) Changer la condition initiale x(0) et le paramètre μ dans le programme et vérifier vos prédictions.

4.1.3 (Optionnel) Section de Poincaré

— Considérer la demi droite $\Sigma = \{(0, y), y \ge 0\}$ dans le plan (x, y) et considérer la suite des intersections d'une trajectoire avec Σ . Cela définit une dynamique de dimension 1 à temps discret, appelée **Section de Poincaré du flot**. En utilisant la coordonnée $y \ge 0$ sur Σ , on a une suite $y(0), y(1) = \phi(y(0)), \dots y(n+1) = \phi(y(n)), \dots$ Exercice : avec le programme, afficher la suite $(y(n))_n$. Tracer la fonction $\phi : \mathbb{R} \to \mathbb{R}$ qui définit l'application de Poincaré et tracer les points $y(n), y(n+1) = \phi(y(n))$ comme dans la Section 3.2.

4.1.4 (Optionnel) Autres exemples

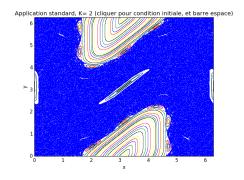
— Considérer un **pendule amorti** caractérisé par sa position angulaire θ (t). **Exercice 4.1.** Écrire les équations de mouvement comme un champ de vecteur \mathcal{V} dans l'espace de phase $(\theta, \omega = \frac{d\theta}{dt})$.

4.2 Dynamique à temps discret en dimension 2

On considère $(x_1(t), x_2(t)) \in [0, 2\pi]^2$ qui dépend du temps discret $t \in \mathbb{Z}$ et qui satisfait l'équation de récurrence $(x_1(t+1), x_2(t+1)) = \phi(x_1(t), x_2(t))$,

$$\phi: \begin{cases} x_2(t+1) &= x_2(t) + K \sin(x_1(t)) \\ x_1(t+1) &= x_1(t) + x_2(t+1) \end{cases}$$
(4.2)

avec le paramètre $K \in \mathbb{R}$. On appelle (4.2) l'application standard.

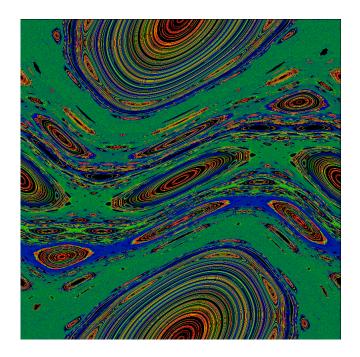


4.2.1 Exercices préparatoires

- (1) On note $\phi(x_1, x_2) = (\phi_1(x_1, x_2), \phi_2(x_1, x_2))$. Calculer $|\det(D\phi)| = \det\begin{pmatrix} \frac{\partial \phi_1}{\partial x_1} & \frac{\partial \phi_1}{\partial x_2} \\ \frac{\partial \phi_2}{\partial x_1} & \frac{\partial \phi_2}{\partial x_2} \end{pmatrix}$ et déduire si l'application est contractive, expansive ou conservative selon le point x_1, x_2 .
- (2) Allure des trajectoires si K = 0?

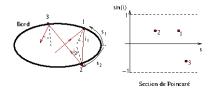
4.2.2 Exercice de programmation

- (1) Télécharger et exécuter le programme application_dim2.py qui dessine la trajectoire d'un point $(x_1(t), x_2(t))$: Cliquer « bouton gauche » pour choisir un point initial, « barre espace » pour continuer la trajectoire.
- (2) Observer les trajectoires.
- (3) Modifier le paramètre K pour reproduire la figure ci-dessous.



4.2.3 Autres exemples

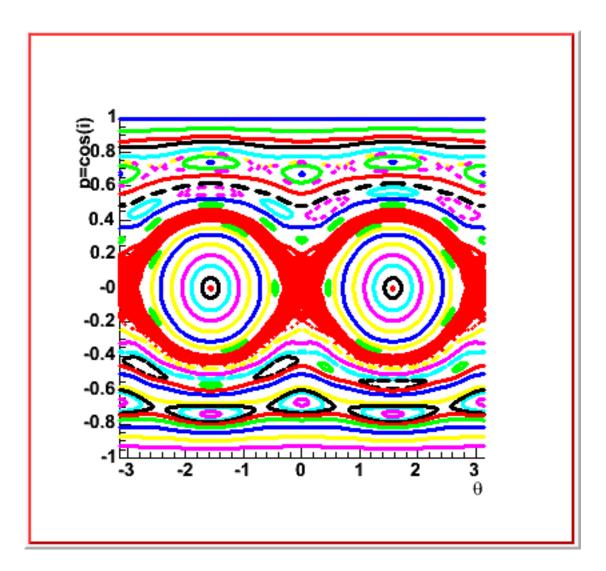
— Considérer un domaine Ω du plan \mathbb{R}^2 , par exemple un disque de rayon R. Une particule est libre de se déplacer dans ce domaine, i.e. avance en ligne droite à vitesse constante, et rebondit de façon parfaite sur le bord. A chaque rebond on note θ la position angulaire et $p = \sin(i)$ où i est l'angle par rapport à la direction normale. La suite des rebond définit une suite (θ_n, p_n) avec $n = 1, 2, \ldots$ qui est une dynamique à deux dimensions et temps discret.



rayon $r(\theta) = 1 + a \cos(4\pi\theta)$, $0 \le a < 1$: paramètre de déformation

Trajectoire = Suite : $(s_1, \sin(i_1)), (s_2, \sin(i_2)), (s_3, \sin(i_3)), \dots$

qui forme une dynamique discrète déterministe et de dimension 2. (qui conserve l'aire). Billard plus déformé (a=0.05):

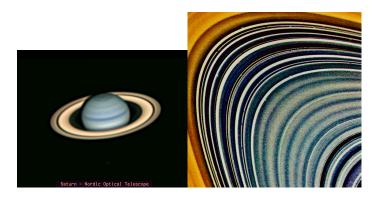


Structure très riche observée.

4.2.4 Des résonances dans le système solaire

Gaps observés dans la répartition des millions d'astéroïdes situés entre mars et Jupiter : gaps de Kirkwood (1866) si période T telle que $T = \frac{p}{q}T_{Jupiter}$ (A cause des instabilités voisines, ils subissent des chocs et se font éjecter).

Gaps dans les **anneaux de Saturne** : les cailloux de période $T = \frac{p}{q}T_{Titan}$ vont être éjectés à cause des instabilités (chocs avec d'autres cailloux).



Satellites d'Uranus prédits à partir de gaps observés dans les anneaux

5 Dimension 3

5.1 Dynamique à temps continu en dimension 3

5.1.1 Exemple du « flot de Lorenz ».

On considère $(x_1(t), x_2(t), x_3(t)) \in \mathbb{R}^2$ qui dépend de $t \in \mathbb{R}$ et qui satisfait l'équation de mouvement

$$\begin{cases} \frac{dx_{1}}{dt} &= \mathcal{V}_{1}(x) := \sigma(-x_{1} + x_{2}), \\ \frac{dx_{2}}{dt} &= \mathcal{V}_{2}(x) := rx_{1} - x_{2} - x_{1}x_{3} \\ \frac{dx_{3}}{dt} &= \mathcal{V}_{3}(x) := x_{1}x_{2} - bx_{3} \end{cases}$$
(5.1)

avec les paramètre $\sigma, r, b \in \mathbb{R}$. On appelle (5.1) les equation de Lorenz. La fonction $\mathcal{V}(x_1, x_2) = (\mathcal{V}_1(x_1, x_2), \mathcal{V}_2(x_1, x_2), \mathcal{V}_3(x_1, x_2))$ s'interprète comme un champ de vecteur sur \mathbb{R}^2 . Références.

10_home_faure_enseignement_informatique_python_images

5.1.2 Exercices préparatoires

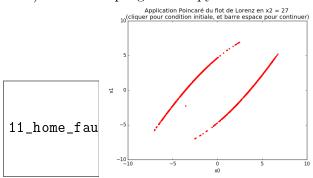
(1) Calculer div (\mathcal{V}) et déterminer si le flot est contractif, expansif ou conservatif selon le point (x_1, x_2, x_3) .

5.1.3 Exercices de programmation

— Copier et exécuter cet exemple exemple. Faire évoluer un point rouge sur l'attracteur de Lorenz.

5.1.4 Section de Poincaré

— Choisir une surface (ou plan) dans l'espace (x_1, x_2, z) appelée **Section de Poincaré**, par exemple z = C = 27, et considérer la suite des intersections de la trajectoire avec ce plan. Cela définit une dynamique de dimension 2 à temps discret, appelée **Application de Poincaré du flot**. Exercice : tracer la suite des intersections en 3D (point rouges sur trajectoire bleue) puis en 2D (points choisis à la souris dans la section de Poincaré). Solution: programme python



amiques_M1_TP_images_anim

5.1.5 Autres exemples de flots en dimension 3

(1) « Attracteur de Rossler ». Etudier la dynamique de Rossler (changer les conditions initiales, ...). Voir sujet 2 et correction. Programme python.

13_home_faure_enseignement_Systemes_dynamiques_M1_

- (2) « **Pendule pulsé** ». Considérer un pendule de longueur variable $l(t) = 1 + \cos(\Omega t)$, masse m. On pose $\theta(t)$ la position angulaire et $\omega(t) = d\theta/dt$. Ecrire l'équation de mouvement. Montrer que l'on obtient un champ de vecteur dans l'espace de dimension trois (θ, ω, s) où $s \equiv t \mod T$ avec $T = 2\pi/\Omega$. Tracer une section de Poincaré pour s = 0.
- (3) Une particule dans le plan $(x,y) \in \mathbb{R}^3$ et soumis à une force dérivant d'une énergie potentielle U(x,y). L'énergie $H = \frac{p^2}{2m} + U(x,y)$ est conservée et dans la couche d'énergie $\Sigma_E = H^{-1}(E)$ qui est de dimension 3, les équations de mouvement de Hamilton définissent un champ de vecteur.