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Spin,
or actually: Spin and Quantum Statistics∗

Jürg Fröhlich

Abstract. The history of the discovery of electron spin and the Pauli princi-
ple and the mathematics of spin and quantum statistics are reviewed. Pauli’s
theory of the spinning electron and some of its many applications in math-
ematics and physics are considered in more detail. The role of the fact that
the tree-level gyromagnetic factor of the electron has the value ge = 2 in
an analysis of stability (and instability) of matter in arbitrary external mag-
netic fields is highlighted. Radiative corrections and precision measurements
of ge are reviewed. The general connection between spin and statistics, the
CPT theorem and the theory of braid statistics, relevant in the theory of the
quantum Hall effect, are described.

“He who is deficient in the art of selection may, by showing nothing but the
truth, produce all the effects of the grossest falsehoods. It perpetually hap-
pens that one writer tells less truth than another, merely because he tells
more ‘truth’.”
(T. Macauley, ‘History’, in Essays, Vol. 1, p 387, Sheldon, NY 1860)

Dedicated to the memory of M. Fierz, R. Jost, L. Michel and V. Telegdi,
teachers, colleagues, friends.

1. Introduction to ‘Spin’1

The 21st Century appears to witness a fairly strong decline in Society’s – the
public’s, the politicians’, the media’s and the younger generations’ – interest in
the hard sciences, including Physics, and, in particular, in fundamental theoretical
science based on precise mathematical reasoning. It is hard to imagine that reports
on a discovery like the deflection of light in the gravitational field of the sun and

∗Notes prepared with efficient help by K. Schnelli and E. Szabo
1I have to refrain from quoting literature in this introductory section – apologies!
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on the underlying theory, general relativity, along with a photograph of its creator,
Albert Einstein, would make it onto the front pages of major daily newspapers, as
it did in 1919.

This development is, of course, not entirely accidental, and I could easily
present a list of reasons for it. But let’s not!

While the amount of economic wealth and added value that have been and
are still being created on the basis of Physics-driven discoveries of the 19th and 20th

Century is truly gigantic, and while one may expect that this will continue to be
the case for many more years to come, fundamental physical science is confronted
with a certain decline in public funding, e.g., in comparison with the life sciences.
Physics is perceived to have entered a baroque state, with all the beauty that goes
with it.

In this situation, it is laudable that our French colleagues are doing some-
thing to document the continuing importance and the lasting beauty of Physics:
the ‘Séminaire Poincaré’ (or “Bourbaphy”)! I hope that the organizers of the
‘Séminaire Poincaré’ will find the right format and the right selection of topics
for their series, and that their seminar will be accompanied by complementary
activities aimed at a broader public.

This time, the topic of the ‘Séminaire Poincaré’ is ‘Spin (and Quantum Sta-
tistics)’. This choice of topic is not unreasonable, because, on one hand, it involves
some interesting and quite fundamental experiments and theory and, on the other
hand, it is connected to breathtakingly interesting and important practical appli-
cations. The scientific community sees me in the corner of mathematical physics
and, thus, I have been asked to present an introductory survey of, primarily, the
mathematical aspects of ‘Spin and Quantum Statistics’. I am only moderately en-
thusiastic about my assignment, because, as I have grown older, my interests and
activities have shifted more towards general theoretical physics, and, moreover, I
have contributed a variety of results to, e.g., the theory of magnetism and of phase
transitions accompanied by various forms of magnetic order that I cannot review,
for lack of space and time.

In this short introduction, I attempt to highlight the importance of ‘Spin and
Quantum Statistics’ for many phenomena in physics, including numerous ones that
have found important technological applications, and I wish to draw attention to
some of the many unsolved theoretical problems.

Our point of departure is found in the facts that electrons, positrons, neutri-
nos, protons and neutrons are particles with spin 1

2 obeying Pauli’s exclusion prin-
ciple. With the exception of neutrinos, they have a non-vanishing magnetic dipole
moment. Moreover, those particles that carry electric charge experience Coulomb-
and Lorentz forces. In a magnetic field their magnetic moments and spins precess
(like tops in the gravitational field of the Earth). All fundamental forces appear to
be mediated by exchange of bosons of spin 1 (gauge bosons) or helicity 2 (gravi-
tons). These facts, when exploited within the framework of quantum theory, are
at the core of our theoretical description of a vast number of phenomena some of
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which we will now allude to. They are, in their majority, not very well understood,
mathematically.

(1) Chemistry. That electrons have spin 1
2 and obey the Pauli principle, i.e.,

are fermions, is one of the most crucial facts underlying all of chemistry. For
example, it is the basis of our understanding of covalent bonding. If electrons were
spinless fermions not even the simplest atoms and molecules would be the way
they are in Nature: Only ortho-helium would exist, and the hydrogen molecule
would not exist.

If electrons were not fermions, but bosons, there would exist ions of large
negative electric charge, matter would form extremely dense clumps, and bulk
matter would not be thermodynamically stable; (see section 4).

Incidentally, the hydrogen molecule is the only molecule whose stability has
been deduced directly from the Schrödinger-Pauli equation with full mathematical
rigour2. Hund’s 1st Rule in atomic physics, which says that the total spin of the
electrons in an only partially filled p-, d-, . . . shell of an atom tends to be as large
as possible, is poorly understood, mathematically, on the basis of the Schrödinger-
Pauli equation.

We do not understand how crystalline or quasi-crystalline order can be de-
rived as a consequence of equilibrium quantum statistical mechanics.

All this shows how little we understand about ‘emergent behavior’ of many-
particle systems on the basis of fundamental theory. We are not trying to make
an argument against reductionism, but one in favour of a pragmatic attitude: We
should be reductionists whenever this attitude is adequate and productive to solve
a given problem and ‘emergentists’ whenever this attitude promises more success!

(2) ‘Nuclear and hadronic chemistry’. At the level of fundamental theory,
our understanding of binding energies, spins, magnetic moments and other prop-
erties of nuclei or of the life times of radioactive nuclei remains quite rudimentary.
Presently more topical are questions concerning the ‘chemistry of hadrons’, such
as: How far are we in understanding, on the basis of QCD, that a color-singlet
bound state of three quarks (fermions with spin 1

2 ), held together by gluons, which

forms a proton or a neutron, has spin 1
2? How, in the world, can we reliably cal-

culate the magnetic dipole moments (the gyromagnetic factors) of hadrons? How
far are we in truly understanding low-energy QCD? These are questions about
strongly coupled, strongly correlated physical systems. They are notoriously hard
to answer.

(3) Magnetic spin-resonance. The fact that electrons and nuclei have spin
and magnetic dipole moments which can precess is at the basis of Bloch’s spin-
resonance phenomenon, which has enormously important applications in the sci-
ence and technology of imaging; (Nobel Prizes for Felix Bloch, Edward Purcell,
Richard Ernst, Kurt Wüthrich, . . .). Of course, in this case, the basic theory is
simple and well understood.

2by G.M. Graf, J.M. Richard, M. Seifert and myself.
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(4) Stern-Gerlach experiment : a direct experimental observation of the spin
and magnetic moment of atoms. Theory quite easy and well understood.

(5) Spin-polarized electron emission from magnetic materials. This is the
phenomenon that when massaged with light certain magnetic materials emit spin-
polarized electrons. It has been discovered and exploited by Hans-Christoph Sieg-
mann and collaborators and has important applications in, e.g., particle physics.

(6) Electron-spin precession in a Weiss exchange field. When a spin-polarized
electron beam is shot through a spontaneously magnetized iron-, cobalt or nickel
film the spins of the electrons exhibit a huge precession. This effect has been
discovered by H.-C. Siegmann and his collaborators and might have important
applications to ultrafast magnetic switching. Theoretically, it can be described
with the help of the Zeeman coupling of the electrons’ spin to the Weiss exchange
field (much larger than the magnetic field) inside the magnetized film. This effect
can be interpreted as a manifestation of the SU(2)spin-gauge-invariance of Pauli’s
electron equation; (see also section 3.3).

Related effects can presumably be exploited for the production of spin-polari-
zed electrons and for a Stern-Gerlach type experiment for electrons.

(7) Magnetism. There are many materials in Nature which exhibit magnetic
ordering at low temperatures or in an external magnetic field, often in combination
with metallic behavior. One distinguishes between paramagnetism, diamagnetism,
ferromagnetism, ferrimagnetism, anti-ferromagnetism, etc. In the context of the
quantum Hall effect, the occurrence of chiral spin liquids and of chiral edge spin
currents has been envisaged; . . ..

The theory of paramagnetism is due to Pauli; it is easy. The theoretical ba-
sis of diamagnetism is clear. The theory of anti-ferromagnetism and Néel order
at low temperatures in insulators is relatively far advanced. But the theory of
ferromagnetism and the appearance of spontaneous magnetization is disastrously
poorly understood, mathematically. Generally speaking, it is understood that spon-
taneous (ferro- or anti-ferro-) magnetic order arises, at low enough temperature,
by a conspiracy of electron spin, the Pauli principle and Coulomb repulsion among
electrons. The earliest phenomenological description of phase transitions accompa-
nied by the appearance of magnetic order goes back to Curie and Weiss. Heisenberg
proposed a quantum-mechanical model inspired by the idea of direct electron ex-
change interactions between neighboring magnetic ions (e.g. Fe) in a crystalline
back ground. While it has been shown, mathematically, that the classical Heisen-
berg model (large-spin limit) and the Heisenberg anti-ferromagnet exhibit the
expected phase transitions3, no precise understanding of the phase transition in
the Heisenberg ferromagnet (finite spin) has been achieved, yet.

Most of the time, the microscopic origin of exchange interactions between
spins in magnetic materials remains poorly understood, mathematically. No math-
ematically precise understanding of ferromagnetic order in models of itinerant

3in work by Simon, Spencer and myself, and by Dyson, Lieb and Simon; and followers.
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electrons, such as the weakly filled one-band Hubbard model, has been reached,
yet. However, there is some understanding of Néel order in the half-filled one-band
Hubbard model (‘Anderson mechanism’) and of ferromagnetic order in Kondo lat-
tice models with a weakly filled conduction band (Zener’s mechanism of indirect
exchange), which is mathematically rather precise at zero temperature.

Realistic spin glasses are extremely poorly understood, theory-wise.
Altogether, a general theory of magnetism founded on basic equilibrium quan-

tum statistical mechanics still remains to be constructed!
Of course, magnetism has numerous applications of great importance in mag-

netic data storage, used in computer memories, magnetic tapes and disks, etc.

(8) Giant and colossal magneto-resistance. The discoverers of giant magneto-
resistance, Albert Fert and Peter Grünberg, have just been awarded the 2007 Nobel
Prize in Physics. Their discovery has had fantastic applications in the area of data
storage and -retrieval. It will be described at this seminar by Fert and collabora-
tors. Suffice it to say that electron spin and the electron’s magnetic moment are
among the main characters in this story, and that heuristic, but quite compelling
theoretical understanding of these phenomena is quite advanced.

(9) Spintronics. This is about the use of electron spin and multi-spin entangle-
ment for the purposes of quantum information processing and quantum computing.
Presently, it is a hot topic in mesoscopic physics. Among its aims might be the
construction of scalable arrays of interacting quantum dots (filled with only few
electrons) for the purposes of quantum computations; (the spins of the electrons
would store the Qbits).

(10) The rôle of electron spin and the Weiss exchange field in electron – or
hole – pairing mechanisms at work in layered high-temperature superconductors.
This is the idea that the Weiss exchange field in a magnetic material can produce
a strong attractive force between two holes or electrons (introduced by doping)
in a spin-singlet state, leading to the formation of Schafroth pairs, which, after
condensation, render such materials superconducting.

(11) The rôle played by spin and by particle-pairing in the miraculous phase
diagram of 3He and in its theoretical understanding. The rôle played by spin in
the physics of ‘heavy fermions’.

(12) The rôle of the Pauli principle (and spin, in particular neutron spin) in
the physics of stars. The theory of the Chandrasekhar limit for white dwarfs and
neutron stars is based on exploiting the Pauli principle for electrons or neutrons
in an important way. The superfluidity expected to be present in the shell of a
neutron star is a phenomenon intimately related to the spin of the neutron, neutron
pairing and pair condensation.

Many of these topics have been close to my heart, over the years, and I have
written hundreds of pages of scientific articles that have been read by only few
people. One could easily offer a one-year course on these matters. But, in the
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following sections, I really have to focus on just a few basic aspects of ‘Spin and
Quantum Statistics’.

Acknowledgments. I thank C. Bachas, B. Duplantier and V. Rivasseau for
inviting me to present a lecture at the ‘Séminaire Poincaré’ and my teachers and
numerous collaborators for all they have taught me about ‘Spin and Quantum
Statistics’, over many years. I am very grateful to K. Schnelli for his help.

Remark. These notes have been written at a ‘superluminal’ speed and are
therefore likely to contain errors and weaknesses, which I wish to offer my apologies
for.

2. The Discovery of Spin and of Pauli’s Exclusion Principle,
Historically Speaking

My main sources for this section are [1–6]. Let us dive into a little history of
science, right away.

2.1. Zeeman, Thomson and others, and the discovery of the electron

Fairly shortly before his death, in 1867, Michael Faraday made experiments on the
influence of ‘strong’ magnetic fields on the frequency of light emitted by excited
atoms or molecules. He did this work in 1862 and did not find any positive evi-
dence for such an influence. In the 1880’s, the American physicist Henry Augustus
Rowland invented the famous ‘Rowland gratings’, which brought forward much
higher precision in measuring wave lengths of spectral lines.

In 1896, Pieter Zeeman, a student of Kamerlingh Onnes and Hendrik Antoon
Lorentz, took up Faraday’s last experiments again, using Rowland gratings. He
found that the two sodium D-lines are broadened when the magnetic field of an
electromagnet4 is turned on. He proposed to interpret the effect in terms of Lorentz’
theory of charges and currents carried by fundamental, point-like particles. In
1895, Lorentz had introduced the famous Lorentz force acting on charged parti-
cles moving through an electromagnetic field. When Zeeman had discovered the
effect named after him Lorentz proposed a model of harmonically bound charged

particles of charge e. When a magnetic field
→

H is turned on in a direction per-
pendicular to the plane of motion of such a particle the angular frequency of its
motion changes by the amount

∆ω =
e

mc
|

→

H | ,

where m is its mass and c is the speed of light. Using Lorentz’ formula, Zeeman
inferred from the broadening of the sodium lines that

e

m
≃ 107emu/g (1.76 × 107emu/g) .

4Concerning electromagnets, one could embark on a report of the important contributions and
inventions of Pierre Weiss, once upon a time a professor at ETH Zurich.
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In 1897, Zeeman discovered a splitting of the blue line of cadmium, in rough
agreement with Lorentz’ theoretical expectations. From polarization effects he in-
ferred that e is negative. George Stoney had earlier provided an estimate for the
elementary electric charge e. Thus, Zeeman could have predicted the mass of the
charged particle that emits electromagnetic radiation from the ‘interior’ of an atom
or molecule, the electron.

In the same year, the quotient e
m was measured in experiments with cathode

rays, first by Emil Wiechert5, who conjectured that such rays consist of charged
particles with a very small mass m (=mass of an electron); then - with very high ac-
curacy - by Walter Kaufman and, more or less simultaneously, by Joseph J. Thom-
son, who also proposed Wiechert’s charged-particle picture. In 1899, Thomson
measured the value of e by cloud chamber experiments, and, in 1894, he had ob-
tained some bounds on the speed of propagation of cathode rays, showing that
this speed is considerably smaller than the speed of light. This combination of
accomplishments led to the common view that J.J. Thomson is the discoverer of
the electron.

After the discovery of relativistic kinematics in 1905, by Einstein, experiments
with electrons became the leading tool to verify the kinematical predictions of the
special theory of relativity.

2.2. Atomic spectra

“Spectra are unambiguous visiting cards for the gases which emit them.”
(Abraham Pais [1])

Spectroscopy started in Heidelberg with the work of Gustav Kirchhoff (1859) and
Robert Bunsen. Against the philosophical prejudices of Auguste Comte, Kirch-
hoff concluded with the help of absorption spectroscopy that the solar atmosphere
must contain sodium6. Kirchhoff and Bunsen are the fathers of modern optical
spectroscopy and its application as an exploratory tool.

The first three lines of the hydrogen spectrum were first observed by Julius
Plücker in 1859, then, more precisely, by Anders Ångström in 1868. Searches for
patterns in spectral lines started in the late 1860’s. The first success came with
Stoney in 1871. The break-through was a famous formula,

λn =
Cn2

n2 − 4
,

where the λn are wave lengths of light emitted by hydrogen, C is some constant,
and n = 3, 4, . . ., discovered by Johann Jakob Balmer in 1885. In 1892, Carl Runge
and Heinrich Kayser made precise measurements of spectral lines of 22 elements.
Runge and Friedrich Paschen discovered the spectra of ortho- and parahelium.
A precursor of the Rydberg-Ritz combination principle was discovered in 1889 by
Johannes Rydberg, its general form was found by Walther Ritz in 1908.

5Of fame also in connection with the Liénard-Wiechert potentials.
6“It’s not philosophy we are after, but the behaviour of real things.” (Richard P. Feynman)
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Precursors of Rutherford’s planetary model of the atom (1911) can be found
in remarks by Heinrich Hertz (lectures about the constitution of matter in Kiel),
Hermann von Helmholtz, Jean Perrin (1901), Hantaro Nagaoka (1903), and J.J.
Thomson (1906).

In 1913, Niels Bohr came up with his quantum theory of the hydrogen atom7,
with the idea that atomic spectra arise by photon emission during transitions of
an electron from one ‘stationary state’ (a term introduced by Bohr) to another,
and with the Bohr frequency condition, which has a precursor in Einstein’s work of
1906 on Planck’s law for black-body radiation. Bohr’s results provided a quantum-
theoretical ‘explanation’ of Balmer’s formula and of a special case of the Rydberg-
Ritz combination principle.

Subsequent to Bohr’s discoveries, in attempts to interpret the so-called ‘fine
structure’ of atomic spectra discovered by Albert Michelson (1892) and Paschen
(1915), Bohr’s quantum theory was to be married with the special theory of relativ-
ity. The pioneer was Arnold Sommerfeld (1916). He introduced the fine structure
constant

α =
e2

�c
.

Sommerfeld’s formula for the relativistic hydrogen energy spectrum is

En,l = −Ry

[
1

n2
+

α2

n3

(
1

l + 1
−

3

4n

)]
+ O(α4) , (2.1)

where n = 1, 2, 3, . . . , l = 0, 1, . . . , n−1 and Ry is the Rydberg constant. Of course
→

L , with |
→

L | ≃ �(l + 1), is the (quantized) angular momentum of the electron
orbiting the nucleus.

In trying to explain experimental results of Paschen, Bohr and, indepen-
dently, Wojciech Rubinowicz (a collaborator of Sommerfeld) found the selection
rule

∆l = ±1 (2.2)

for transitions between stationary states.

This rule did not work perfectly. In 1925, in their first publication and after
ground-breaking work of Wolfgang Pauli, George Uhlenbeck and Samuel Goudsmit
proposed a modification of the Bohr-Rubinowicz selection rule: In (2.1), write

l + 1 = j +
1

2
, (2.3)

with j half-integer, and replace (2.2) by

∆j = 0,±1 . (2.4)

7His theory has a more incomplete precursor in the work of Arthur Erich Haas (1910).
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This reproduced data for the fine structure of the He+ spectrum perfectly. Here,
the half-integer quantum number j appears. Similar ideas were proposed indepen-
dently by John Slater.

Of course, the half-integer nature of j (for atoms or ions with an odd number
of bound electrons) is related to electron spin; as everybody knows nowadays.
Actually, half-integer quantum numbers were first introduced systematically by
Alfred Landé in an analysis of the Zeeman effect and correctly interpreted, by Pauli,
as “due to a peculiar classically not describable two-valuedness of the quantum
theoretical properties of the valence electron”, in 1924.

We have now reached the period when electron spin enters the scene of
physics. I shall briefly sketch how it was discovered by Pauli towards the end
of 1924.

2.3. Pauli’s discovery of electron spin and of the exclusion principle

Pauli’s papers on electron spin and the exclusion principle are [7,8,11]. In [7], he
analyzes what is known as the ‘anomalous Zeeman effect’, namely the Zeeman
effect in weak magnetic fields (when relativistic spin-orbit terms dominate over
the Zeeman term in the atomic Hamiltonian). This theme is taken up again in
[8,11] and leads him to discover electron spin and the exclusion principle. Let us
see how this happened!

In [7], Pauli started from the following facts and/or assumptions; (I follow
modern notation and conventions).

(1) Spectral terms (energies corresponding to stationary states) can be labeled
by ‘quantum numbers’:

(i) A principal quantum number, n, (labeling shells).
(ii) L = 0, 1, 2, 3, . . . (S, P, D, F, . . .) with L < n – our orbital angular mo-

mentum quantum number – and ML = −L, −L + 1, . . . , L – the mag-
netic quantum number.

(iii) S = 0, 1/2, 1, . . ., and MS = −S, −S + 1, . . . , S.
(iv) The terms of a multiplet with given L and S are labeled by a quan-

tum number J (our total angular momentum quantum number), whose
possible values are J = L + S, L + S − 1, . . . , |L − S|, and a magnetic
quantum number M = −J, −J + 1, . . . , J .

(2) There are selection rules for the allowed transitions between stationary states:
∆L = ±1, ∆S = 0, ∆J = 0,±1 (with J = 0 → J = 0 forbidden).

(3) Denoting by Z the atomic number of a neutral atom, one has the correspon-
dence

Z even ←→ S, J integer ,

Z odd ←→ S, J half-integer .

(4) Bohr’s frequency condition (i.e., the formula for the frequency of light emitted
in a transition from one stationary state to a lower-lying one.)
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(5) Line splittings in a magnetic field
→

H . If Zeeman splitting dominates fine
structure splitting (Paschen-Back effect) then the energy splitting is given
by

∆E ≃ (ML + 2MS)µ0|
→

H | , (2.5)

where µ0 = e�

2mc is Bohr’s magneton (actually introduced by Pauli in 1920).

If fine structure (spin-orbit interactions) dominates over Zeeman splitting
(anomalous Zeeman effect) a term with quantum number J splits into 2J +1
equidistant levels labeled by a ‘magnetic quantum number’ M = −J, −J +
1, . . . , J , and the energy splitting for a term with given L, S, J and M is
given by

∆E = Mgµ0|
→

H | ,

where g is the Landé factor,

g =
3

2
+

S(S + 1) − L(L + 1)

2J(J + 1)
. (2.6)

The selection rules for transitions are given by

∆M = 0,±1 .

Starting from the Paschen-Back effect, Pauli postulates that the sum of en-

ergy levels in a multiplet with given L and M is a linear function of |
→

H | when
one passes from strong to weak magnetic fields. He then determines Landé’s g-
factors uniquely from the energy splittings in large fields and the ‘sum rule’ just
stated. Nowadays, these calculations are an elementary exercise in the algebra
of quantum-mechanical angular momenta (see, e.g., [6]), which I will not repro-
duce. Pauli concludes his paper [7] with prophetic remarks that a derivation of the
‘laws’ he analyzed within the principles of the (old) quantum theory then known,
does not appear to be possible; that the connection between angular momentum
and magnetic moment predicted by Larmor’s theorem does not generally hold
(ge = 2 !); and that the appearance of half-integer values of M and J goes beyond
the quantum theory of quasi-periodic mechanical systems.

Soon afterwards, Pauli started to think about the problem of completion of
electron shells in atoms and the doublet structure of alkali spectra. This led him
to his important paper [8]. Before I sketch the contents of [8], I recall a standard

calculation of the gyromagnetic ratio between magnetic moment
→

M , and angular

momentum
→

L . We consider a distribution of rotating, charged, massive matter. If
we assume that the charge and mass densities are proportional to each other then

|
→

M |

|
→

L |
=

|q|

2mc
, (2.7)

where q is the total charge and m the total mass. Apparently, the Landé factor is
g = 1. If the same calculation is done using relativistic kinematics (as Pauli did
in [8]) one finds that
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|
→

M |

|
→

L |
=

|q|

2mc
· (γ)−1 , (2.8)

where γ = (1− v2

c2 )−1/2, v is the speed of a mass element, and (·) denotes a suitable

average. Note that (γ)−1 < 1!
When Pauli worked on paper [8] the prejudice was that, for alkaline metals,

the quantum number S was related to the angular momentum of the core (filled
shells) of an atom. It was then to be expected that it would correspond to a

magnetic moment
→

M with

|
→

M | =
e

2mc
(γ)−1S .

Thus, the Landé factor of the core should have come out to be

gcore = (γ)−1 < 1 . (2.9)

Since the electrons in the core of large-Z elements are relativistic, the prediction
of the ‘core model’ would have been that gcore is measurably smaller than 1.

However, formula (2.5), well confirmed, for large |
→

H |, in experiments by
Runge, Paschen and Back for large-Z elements, and Landé’s formula (2.6) were
only compatible with

gcore = 2 .

Pauli concluded that S could not have anything to do with the angular momentum
of the core (filled shells) of an atom. He goes on to propose that filled shells have
angular momentum 0 and do not contribute to the magnetic moment of the atom.
By studying experimental data for the Zeeman effect in alkali atoms, he arrives at
the following key conclusion:

“The closed electron configurations shall not contribute to the magnetic
moment and angular momentum of the atom. In particular, for the
alkalis, the angular momenta of, and energy changes suffered by, the
atom in an external magnetic field shall be regarded exclusively as an
effect of the valence electron (‘Leuchtelektron’), which is also the source
of the magneto-mechanical anomaly8. The doublet structure of the alkali
spectra, as well as the violation of the Larmor theorem are, according to
this point of view, a result of a classically not describable two-valuedness
of the quantum-theoretical properties of the valence electron.”

Thus, Pauli had discovered the spin of the electron and the ‘anomaly’ in its
g-factor, ge = 2. (See [9] for a recent study why g = 2 is the natural value of
the tree-level gyromagnetic ratio of charged elementary particles.)

Soon, Ralph Kronig and, independently, Uhlenbeck and Goudsmit interpreted
the quantum number S as due to an intrinsic rotation of electrons, picturing
them as little charged balls. Kronig explained his idea to Pauli, who thought

8ge = 2 !



12 Jürg Fröhlich

it was nonsense9, and Kronig did not publish it. Uhlenbeck and Goudsmit were
confronted with objections by Lorentz against their idea related to the fact that
ge = 2, and wanted to withdraw their paper from publication, but Ehrenfest
convinced them to go ahead and publish it.

Now comes the problem of the Thomas precession: As had been discovered by
Einstein and explained by him to his colleagues working on the quantum theory,

an electron traveling through an electric field
→

E with a velocity �v feels a magnetic
field

→

B ′ = −
�v

c
∧

→

E + O

(
v2

c2
|

→

E |

)
(2.10)

in its rest frame. If its magnetic moment in the rest frame is denoted by
→

M one

expects that its spin
→

S , will exhibit a precession described, in its rest frame, by

d
→

S

dt
=

→

M ∧
→

B ′ , (2.11)

corresponding to a magnetic energy

U ′ = −
→

M ·
→

B ′ . (2.12)

For an electron in the Coulomb field of a nucleus

e
→

E = −
�x

r

dV (r)

dr
, (2.13)

where r is the distance to the nucleus, and V is the Coulomb potential. Plugging
(2.13) into (2.10) and (2.10) into (2.12), we find that

U ′ =
ge

2(mc)2
(→

S ·
→

L
)1

r

dV (r)

dr
,

where
→

L is the orbital angular momentum, the well-known spin-orbit interaction
term. If this formula is taken literally and compared with Sommerfeld’s calcula-
tion of the fine structure (see Eq. (2.1)) one finds that ge must be 1. This is a
contradiction to the value ge = 2 found in the analysis of the Zeeman effect for
alkali atoms.

This contradiction vexed many people, foremost Pauli, and Heisenberg com-
municated it to Uhlenbeck and Goudsmit when he saw their paper, (“ihre mutige
Note”). It was resolved by Llewellyn Thomas, in February 1926. Thomas pointed
out that the rest frame of an electron moving in the Coulomb field of a nucleus
is actually rotating relative to the laboratory frame. The angular velocity of that
rotation is denoted by �ωT . Then the equation for the precession of the electron’s
spin in a non-rotating frame moving with the electron is given by

9One might say: correctly, (since s = 1
2

is far away from the classical limit s = ∞).
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(
d

→

S

dt

)

non-rotating

=

(
d

→

S

dt

)

rest frame

+ �ωT ∧
→

S , (2.14)

with

(
d

→

S
dt

)

rest frame

given by (2.11). The ‘magnetic energy’ in the non-rotating

frame is then given by

U = U ′ +
→

S · �ωT . (2.15)

The problem now boils down to calculating �ωT . This is an exercise in composing
Lorentz boosts whose solution can be looked up, e.g., in [10]. The formula for �ωT

is

ωT =
1

2

�a ∧ �v

c2

(
1 + O

(
v2

c2

))
, (2.16)

where �a is the acceleration of the electron, which, in an electric field, is given by

− e
m

→

E , up to corrections O
(

v
c

)
. Then U is given by

U ≃
(ge − 1)e

2mc

→

S ·

(
�v

c
∧

→

E

)
, (2.17)

which, in the Coulomb field of a nucleus, becomes

U ≃
(ge − 1)e

2(mc)2
→

S ·
→

L
1

r

dV

dr
. (2.18)

This expression reproduces the correct fine structure. Expression (2.16) for the
Thomas precession frequency and the second term on the R.S. of (2.15) have been
verified, experimentally, in data for spectra of nuclei (where the Landé g-factor
does not take the value g = 2).

Thomas’ observations convinced people, including Einstein and Pauli, and
boosted the acceptance of the naive interpretation of electron spin proposed by
Uhlenbeck and Goudsmit in the physics community.

I conclude my excursion into the history of the discovery of spin with com-
ments on precursors.

In 1900, George Francis FitzGerald had raised the question whether mag-
netism might be due to a rotation of electrons. In 1921, Arthur Compton proposed
that “it is the electron rotating about its axis which is responsible for ferromag-
netism”; (see [1], page 279). The same idea was proposed by Kennard, who also
argued (independently of Abraham), that ge could have the value 2. In 1924 (be-
fore he wrote the papers [8] and [11]), Pauli proposed that the atomic nucleus
must, in general, have a non-vanishing angular momentum, which was relevant for
an explanation of hyperfine splitting. (Whether his idea influenced Uhlenbeck and
Goudsmit, or not, is unclear but rather unlikely.) Independently of (and priorly
to) Uhlenbeck and Goudsmit, Kronig and Urey anticipated their idea, and Bose
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had the idea that photons carry an intrinsic ‘spin’ (or helicity, as we would call it
nowadays).

Almost all these ideas were somewhat flawed or incomplete. For example, we
understand – since Heisenberg’s proposal of a model of ferromagnetism – that the
Pauli principle plays as important a rôle in explaining ferromagnetism as electron
spin.

Thus, let me briefly recall the history of the discovery of Pauli’s exclusion
principle10 . This discovery was made on the basis of Bohr’s work on the periodic
table of elements, in particular his ‘permanence principle’ (electrons in the shell of
an ion keep their quantum numbers when further electrons are added), and of an
important paper by Edmund Stoner [12]. Stoner classified electron configurations
corresponding to given values of the quantum numbers L and J and found, for
alkali atoms, that the total number of electrons in such a configuration is identical
to the number of terms in the Zeeman spectrum of these atoms, namely 2(2L+1),
for every L < n (=principal quantum number). Pauli accidentally came across
Stoner’s paper. Considering alkali spectra, Pauli notices that “the number of states
in a magnetic field for given values of L and J is 2J + 1, the number of states
for both doublets together, with L fixed, is 2(2L + 1)”. Using Bohr’s permanence
principle, he extends his counting of states to more complicated atoms and to all
electrons in the hull of an atom. He concludes that “every electron in an atom can
be characterized by a principal quantum number n and three additional quantum
numbers (L, J, mJ)”, (with J = L ± 1

2 ). He notices that, for L = 0, there are
four possible states for two electrons with different principal quantum numbers,
but only one when their principal quantum numbers agree. He then goes on to
explain Stoner’s and his observations by postulating that each state characterized
by quantum numbers (n, L, J, mJ) can be occupied by at most one electron. (Pauli
had actually defined L, J = L± 1

2 , and mJ = J, J−1, . . . ,−J for single electrons.)
This is the exclusion principle. Pauli concludes his paper with the sentence:

“The problem of a more coherent justification of the general rules con-
cerning equivalent electrons in an atom here proposed can probably only
be attacked successfully after a further deepening of the fundamental
principles of quantum theory.”

Further deepening of the fundamental principles of quantum theory was to
come forward, just a few months later, starting with the work of Heisenberg [13],
followed by a paper by Max Born and Pascual Jordan [14], the “Drei-Männer-
Arbeit” [15], Dirac’s first contributions to the new matrix mechanics [16] (pub-
lished before he earned his PhD degree under Fowler in 1926), and, finally, by
Schrödinger’s work on wave mechanics, in 1926; see [17]. When Heisenberg started
to do his fundamental work resulting in the paper [13], his friend Pauli was mo-
mentarily fed up with quantum theory and worked on Kaluza-Klein theory.

10A name introduced by Dirac in 1925.
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The quantum mechanics of angular momentum, including half-integer angu-
lar momentum, was fully developed in [15]. Pauli’s exclusion principle was reformu-
lated, quantum mechanically, as saying that many-electron states (wave functions)
must be totally anti-symmetric under permutations of the positions and spins of
individual electrons. An early contribution in this direction was in a paper by
Heisenberg, the general formulation is due to Dirac (1926) and, in its definitive
version, to Eugene Wigner (1928), who profited from his friend’s, John von Neu-
mann, knowledge of the permutation groups and their representations. The first
applications to statistical mechanics were made by Jordan11, Fermi and Dirac, in
1926, (Fermi-Dirac statistics).

Bose-Einstein statistics (for particles with integer spin) was introduced by
Bose (for photons) and Einstein (for ideal monatomic quantum gases) in 1924.
Its quantum-mechanical reformulation says that wave functions of many identical
bosons must be totally symmetric under permutations of these particles. Einstein
predicted Bose-Einstein condensation for non-relativistic Bose gases (and used a
wave picture for the atoms in the gas) in 1924.

It should be added that the spin and the value ge = 2 of the gyromagnetic
factor of the electron, as well as the fine structure of the hydrogen spectrum that
led to the discovery of the Thomas precession, all found a natural explanation
when Dirac discovered his relativistic electron equation named after him, in 1927;
see [18]. We will briefly return to this equation, later.

I will now leave the history of the discoveries of spin and quantum statistics
and proceed to sketching some highlights, mathematical and physical ones, that
emerged from these discoveries, not attempting to provide a historical perspective
and jumping over many important developments. I try to provide a glimpse at the
usefulness of Mathematics in formulating and understanding the laws of Physics.

3. Some of the Mathematics of Spin and a Theorem of Weyl12

The model of space and time underlying non-relativistic quantum mechanics is in-
herited from Newtonian mechanics: Physical space is homogeneous and isotropic,
and an appropriate model is three-dimensional Euclidian space E3. Time is mod-
elled by the real line, with the standard order relation and metric. Space-time N
is given by E3 × R. Events are identified with points in N . The time difference
between two events and the spatial distance between them are invariants. Dynam-
ical symmetries of autonomous physical systems are described by the group of
Euclidian motions, boosts and time translations, the so-called Galilei group.

The model of space-time underlying special-relativistic quantum theory (grav-
ity neglected) is usually taken to be the one proposed by Poincaré and Minkowski.

11Jordan was apparently first in discovering Fermi-Dirac statistics. But the editor of ‘Zeitschrift
für Physik’, Max Born, forgot to send Jordan’s paper to the publisher during his stay in America.
I thank N. Straumann for communicating this to me.
12Sources for the material in this section are [6, 19–24].



16 Jürg Fröhlich

Space-time is denoted by N ≃ R4, events are labeled by points in N , and the only
invariant for a pair of events labeled by the points (t, �x) and (t′, �x′) is given by

c2(t − t′)2 − |�x − �x′|2 ,

where c is the speed of light. If this quantity is positive then sign(t − t′) is an
invariant, too. Symmetries of autonomous physical systems are described by the
Poincaré transformations of N , which form the Poincaré group.

The Galilei group is recovered from the Poincaré group by ‘group contraction’,
as the ‘deformation parameter’ 1/c tends to 0. As long as recoil on the gravitational
field is neglected and this field is treated as an external field, there are many good
models of Lorentzian space-times that can serve as receptacles for a quantum
theory. But a good model of space-time underlying a quantum theory of matter
and gravitation is not known, yet!

What has all this got to do with spin? Both the Galilei and the Poincaré group
in d = n+1 dimensions (with n = 3, in nature) contain the group SO(n) of spatial
rotations as a subgroup: Generally speaking, if physical space is isotropic spatial
rotations are dynamical symmetries of autonomous non-relativistic and special
relativistic quantum-mechanical systems, and we must ask how these symmetries
are represented on the space of states of such a system, and what this has got to
do with spin.

Let G be any group of symmetries of a quantum-mechanical system with a
Hilbert space H of pure state vectors. Eugene Wigner has shown that symmetry
transformations labeled by elements of G are represented as unitary or anti-unitary
operators acting on H , and that these operators must define a projective repre-
sentation of G on H , (because the phase of a vector in H is not observable; the
space of pure states being given by projective space over H ). Valentin Bargmann
has shown that if G is a connected, compact Lie group then all projective represen-
tations of G are given by unitary representations of the universal covering group
G̃ associated with G.

If G = SO(n), n = 2, 3, 4, . . . , (the rotation group in n dimensions), then

G̃ =





R , n = 2

SU(2) , n = 3

Spin(n) , n general .

The spin of a quantum-mechanical particle is viewed as its intrinsic angu-
lar momentum and is thus described in terms of the generators of rotations in
an irreducible, unitary representation of the quantum-mechanical rotation group
Spin(n), where n is the dimension of physical space. For n = 2, these represen-
tations are given by the characters of the group R, i.e., labeled by a real number
s, called the ‘spin of the representation’. For n = 3, the representation theory of
(the Lie algebra of) Spin(3) = SU(2) has been worked out in [15] and is taught
in every course on introductory quantum mechanics. Irreducible representations
are labeled by their ‘spin’ s = 0, 1

2 , 1, 3
2 , . . .. For general n, we refer, e.g., to [24].
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We do not have to go into this theory in any detail. We just note that, for n ≥ 3,
Spin(n) is a two-fold cover of SO(n) and that, as a consequence, there are irre-
ducible representations of Spin(n) that are single-valued representations of SO(n)
(rotations through an angle 2π =identity) labeled by ‘σ = 1’, and representations
of Spin(n) that are ‘double-valued representations ’ of SO(n) (rotations through an
angle 2π = −identity) labeled by ‘σ = −1’.

For an understanding of differential-geometric aspects of ‘spin’ it is useful
to consider the quantum mechanics of a single non-relativistic particle with spin
moving in a physical space described by a rather general n-dimensional manifold.
Of course we are mainly interested in the examples n = 2 (planar physics) and
n = 3; but, for purposes of applications in mathematics, it pays to be a little
general, here. We are interested in formulating non-relativistic quantum mechanics
on a space-time N of the form

N = M× R ,

where physical space, M, is a general smooth, orientable spinC manifold, equipped
with a Riemannian metric g, and R denotes time. Our goal is to derive Pauli’s wave
equation for a non-relativistic electron with spin moving in M under the influence
of an external electromagnetic field and to also consider the quantum mechanics
of positronium (a bound electron-positron pair). For the standard choice M = E3

of direct interest in physics, Pauli’s wave equation was discovered in [19].

3.1. Clifford algebras and spin groups

Let Fk be the unital ∗algebra generated by elements b1, . . . , bk and their adjoints
b1∗, . . . ,
bk∗ satisfying the canonical anti-commutation relations (CAR)

{
bi, bj

}
=

{
bi∗, bj∗

}
= 0 ,

{
bi, bj∗

}
= δij , (3.1)

where
{
A, B

}
:= AB + BA. The algebra Fk has a unique (up to unitary equiv-

alence) irreducible unitary representation on the Hilbert space S := C2k

given
by

bj = τ3 ⊗ · · · ⊗ τ3 ⊗ τ− ⊗ 2 ⊗ · · · ⊗ 2 ,

(3.2)

bj∗ = τ3 ⊗ · · · ⊗ τ3 ⊗ τ+ ⊗ 2 ⊗ · · · ⊗ 2 ,

with τ± := 1
2 (τ1 ± iτ2) in the jth factor; τ1 , τ2 and τ3 are the usual 2 × 2 Pauli

matrices. The representation (3.2) is faithful, and hence Fk ≃ M
(
2k, C

)
, the

algebra of 2k × 2k matrices over the complex numbers.

Let V be a real, oriented, n-dimensional vector space with scalar product
〈· , ·〉 . The complexified Clifford algebra Cl(V ) is the algebra generated by vectors
c(v), c(w), linear in v, w, with v and w in V ⊗ C, subject to the relations

{
c(v), c(w)

}
= −2〈v , w〉 . (3.3)
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If e1, . . . , en is an orthonormal basis of V , n = dimV , then (3.3) implies that
{
c(ei), c(ej)

}
= −2δij .

A ∗operation is defined by

c(v)∗ = −c(v̄) , (3.4)

v ∈ V ⊗ C. Let n = 2k + p, where p = 0 or 1 is the parity of n. Setting

c(e2j−1) := bj − bj∗ ,

(3.5)

c(e2j) := i
(
bj + bj∗

)
,

j = 1, . . . , k, and, for p = 1,

c(en) := ±ik+1c(e1) · · · c(e2k) , (3.6)

where b1#, . . . , bk# act on S and generate Fk, we find that c(e1), . . . , c(en) define
a representation of Cl(V ) on S. Eqs. (3.5), (3.6) define the unique, up to a sign
related to space reflection, irreducible unitary representation of Cl(V ), which is
faithful. Hence

Cl(V ) ≃ M
(
2k, C

)
. (3.7)

A scalar product on Cl(V ) extending the one on V is defined by

〈a, b〉 := 2−ktr(a∗b) , (3.8)

a, b ∈ Cl(V ).

The spin group Spin(V ) is defined by

Spin(V ) :=
{
a ∈ ClevenR (V )

∣∣ aa∗ = a∗a = , ac(V )a∗ ⊆ c(V )
}

, (3.9)

where ClevenR (V ) denotes the real subalgebra of Cl(V ) generated by products of an
even number of elements of the form c(v), v ∈ V . We also set Spin(n) = Spin(En).

The group SpinC(V ) is defined by

SpinC(V ) :=
{
eiαa

∣∣α ∈ R, a ∈ Spin(V )
}

. (3.10)

For each a ∈ SpinC(V ), we define a linear transformation Ad(a) of V by

c
(
Ad(a)v

)
:= ac(v)a∗ , v ∈ V . (3.11)

Clearly, this linear transformation preserves the scalar product on V , and we have
the short exact sequence

1 −→ U(1) −→ SpinC(V )
Ad
−→ SO(V ) −→ 1 .

The Lie algebra spinC(V ) of SpinC(V ) is given by

spinC(V ) = spin(V ) ⊕ R , (3.12)

where

spin(V ) =
{
ξ ∈ ClevenR (V )

∣∣ ξ + ξ∗ = 0 ,
[
ξ, c(V )

]
⊆ c(V )

}
. (3.13)
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One then finds that

spin(V ) =
{∑

i,j

xijc(e
i)c(ej)

∣∣∣xij = −xji ∈ R
}
≃ so(V ) . (3.14)

Given V , let
∧.(V ⊗C) denote the exterior algebra over V ⊗C. There is a canonical

scalar product on
∧.

(V ⊗ C) extending the one on V ⊗ C =
∧1

(V ⊗ C). For
v ∈ V ⊗ C, we define operators a∗(v) and a(v) on

∧.(V ⊗ C) by setting

a∗(v)w := v ∧ w , (3.15)

a(v)w := ı(Gv̄)w , (3.16)

where G is the metric on V defining the scalar product on V , so that Gv is in
the dual space of V , and ı denotes interior multiplication. Then a(v) = (a∗(v))∗,
and the operators a∗(v), a(v), v ∈ V ⊗ C, are the usual fermionic creation- and
annihilation operators satisfying the CAR, with

∧.
(V ⊗ C) ≃ fermionic Fock space over V ⊗ C . (3.17)

The operators

Γ(v) := a∗(v) − a(v) , Γ(v) := i
(
a∗(v) + a(v)

)
, (3.18)

then define two anti-commuting unitary representations of Cl(V ) on
∧.

(V ⊗ C).

Let dim V = 2k (p = 0) be even. We set

γ = ikΓ(e1) · · ·Γ(en) ,

which anti-commutes with all Γ(v), and satisfies γ2 = . Let S ≃ C2k

≃ S. We
then have that ∧.

(V ⊗ C) ≃ S ⊗ S ,

with

Γ(v) ≃ c(v) ⊗ , (3.19)

Γ(v) ≃ γ ⊗ c̄(v) , (3.20)

where c and c̄ denote the irreducible representations of Cl(V ) on S and S, respec-
tively.

If dimV = 2k + 1 is odd then

γ = ik+1Γ(e1) · · ·Γ(en)

commutes with all Γ(v), and satisfies γ2 = . The operator γ has two eigenvalues,
±1, both with multiplicity 2n−1. It follows that

∧.
(V ⊗ C) ≃ S ⊗ C2 ⊗ S ,

and

Γ(v) = c(v) ⊗ τ3 ⊗ , (3.21)

Γ(v) = ⊗ τ1 ⊗ c̄(v) . (3.22)
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3.2. Pauli’s wave equation for an ‘electron’ and for ‘positronium’ in a general
differential-geometric formulation – susy QM

We are ready, now, to formulate Pauli’s wave equation for spinning particles [19]
on a space-time N = M× R, where M is a general, n-dimensional smooth (com-

pact) spinC manifold, e.g., M = En, n = 2, 3. Let g = (gij) be a Riemannian
metric on the tangent bundle TM of M, and let G = (gij) denote the corre-
sponding inverse metric on the cotangent bundle T∗M . Let

∧.M be the bundle of
differential forms on M, with Ω

.
(M) the space of complexified sections of

∧.M.
This space is equipped with a natural scalar product 〈· , ·〉, determined by g and
by the Riemannian volume form. Let Cl(M) be the Clifford bundle over M; its
base space is M and its fibres are given by Cl(T∗

xM) ≃ Cl(En), with n = dimM.
Let A = C∞(M) be the algebra of smooth functions on M. The space of sections,
Γ(E), of a vector bundle E over M is a finitely generated, projective module for
A; E is trivial iff Γ(E) is a free A-module. Our standard examples for E are

E = TM, T∗M,
∧.

M, Cl(M) .

The Clifford bundle over M has two anti-commuting unitary representations, Γ
and Γ, on the module Ω

.
(M), which we define as follows: Given a (complex) 1-

form ω ∈ Ω1(M), we introduce creation- and annihilation operators, a∗(ω) and
a(ω), on Ω

.
(M),

a∗(ω)σ := ω ∧ σ , a(ω)σ := ı(Gω)σ , (3.23)

for σ ∈ Ω
.
(M). Then (with a# = a or a∗)
{
a#(ω1), a

#(ω2)
}

= 0 ,
{
a(ω1), a

∗(ω2)
}

= (ω1 , ω2) , (3.24)

for ω1, ω2 ∈ Ω1(M), where (· , ·) is the hermitian structure on
∧.M determined

by G. We define two anti-commuting representations Γ and Γ of Cl(M) on Ω
.
(M)

by setting

Γ(ω) := a∗(ω) − a(ω) , Γ(ω) := i
(
a∗(ω) + a(ω)

)
. (3.25)

If the manifold M is spinC (which we have assumed) then

Ω
.
(M) = Γ(S) ⊗A

(
C2 ⊗

)
Γ(S) , (3.26)

where S ≡ S(M) is the spinor bundle and S the (charge-) conjugate spinor bundle
over M. The factor C2 on the R.S. of (3.26) only appears if n = dimM is odd.
The modules Γ(S) and Γ(S) carry unitary representations c and c̄, respectively, of
Cl(M) with

Γ(ω) = c(ω) ⊗
(
τ3 ⊗

)
, (3.27)

Γ(ω) = γ ⊗
(
τ1 ⊗

)
c̄(ω) , (3.28)

with γ = if n is odd; see Sect. 3.1. (Over a coordinate chart of M, Eqs (3.26)–
(3.28) always make sense, by the results of Sect. 3.1. But, globally, they only make

sense if M is spinC!)
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Let ∇ be the Levi-Civita connection on
∧.M (unitary with respect to g and

torsion-free). A connection ∇S on S is called a spinC connection iff it satisfies the
‘Leibniz rule’

∇S
X

(
c(ξ)ψ

)
= c(∇Xξ)ψ + c(ξ)∇S

Xψ , (3.29)

where X is a vector field on M, ξ a 1-form and ψ a spinor in Γ(S), i.e., a section
of S.

If ∇S
1 and ∇S

2 are two hermitian spinC connections on S then
(
∇S

1 −∇S
2

)
ψ = iα ⊗ ψ , (3.30)

for ψ ∈ Γ(S), where α is a real, globally defined 1-form. Physically, α is the
difference of two electromagnetic vector potentials, A1 and A2, so-called ‘virtual
U(1)-connections ’ on S; (Ai, i = 1, 2, is ‘one half times a U(1)-connection’ on a
line bundle, canonically associated with S ⊗ S, with magnetic monopoles inside
non-contractible 2-spheres in the homology of M).

Given a spinC connection ∇S corresponding to a virtual U(1)-connection A,
the Pauli (-Dirac) operator DA associated with ∇S on S is defined by

DA := c ◦ ∇S , (3.31)

which is a linear operator on Γ(S). Locally, in a coordinate chart of M, with
coordinates x1, . . . , xn,

DA =
n∑

i=1

c(dxi)∇S
i , (3.32)

with {
c(dxi), c(dxj)

}
= gij(x) .

To every ∇S there corresponds a unique conjugate connection ∇
S

on S, obtained
by reversing the electric charge, i.e., A → −A, and we define

D−A := c̄ ◦ ∇
S

, (3.33)

an operator acting on Γ(S).

The bundles S and S are equipped with a natural hermitian structure. Let
dvolg denote the Riemannian volume form on M. By He we denote the Hilbert-
space completion of Γ(S) in the scalar product on Γ(S) determined by the hermit-
ian structure of S and dvolg; Hp is defined similarly, with S replaced by S.

We note, in passing, that the closures of DA, D−A are selfadjoint, elliptic
operators densely defined on He, Hp, respectively.

Thus, M equipped with a Riemannian metric g, gives rise to what Alain
Connes [23] calls spectral triples

(A, DA, He) , (A, D−A, Hp) , (3.34)

which, in turn, determine (M, g) uniquely. In the special case where M = E3,
these spectral triples are familiar to anyone who knows Pauli’s non-relativistic
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quantum theory of the spinning electron and its twin, the positron: A is the algebra
of position measurements; He (Hp) is the Hilbert space of pure state vectors of a

single electron (positron); and DA

(
D−A

)
is the ‘square-root’ of the Hamiltonian

generating the unitary time evolution of states of an electron (positron) moving
in M and coupled to an external magnetic field B = dA. More precisely, the
Hamiltonian is given by

HA =
�2

2m
D2

A , (3.35)

where m is the mass of an electron, � is Planck’s constant, and the gyromagnetic
factor g = ge = 2. (If ge were different from 2 then HA would not be the square of
DA; there would then appear an additional Zeeman term on the R.S. of (3.35), as
Pauli had introduced it in [19]. This term is proportional to Bij c(dxi)c(dxj), in
local coordinates, where B is the field strength corresponding to A.) In the presence
of an electrostatic potential Φ, the Hamiltonian of Pauli’s non-relativistic electron
is given by

H(Φ,A) := HA + Φ , (3.36)

and Pauli’s version of the time-dependent Schrödinger equation reads

i�
∂

∂t
ψt = H(Φ,A) ψt , (3.37)

for ψt ∈ He. The corresponding equation for the non-relativistic positron is

i�
∂

∂t
χt =

( �2

2m
D 2

−A − Φ
)

χt , (3.38)

for χt ∈ Hp.

We observe that when the electrostatic potential Φ vanishes H(0,A) = HA is
the square of a selfadjoint operator (a ‘super charge’)

Q :=

√
�2

2m
DA .

Let the dimension of M be even, and let {ε1, . . . , εn} be a local, orthonormal basis
of Ω1(M);

(
{ε1, . . . , εn} is called an ‘n-bein’

)
. We set

γ := i
n
2 c(ε1) · · · c(εn) .

Since M is orientable, γ extends to a globally defined involution of Cl(M) anti-
commuting with c(ω), ω ∈ Ω1(M), and hence with Q. Then (γ, Q, He) furnishes
an example of supersymmetric quantum mechanics, with N = 1 (or (1,0)) super-
symmetry. The ‘super trace’

trHe

(
γ e−βQ2

)
, β > 0 , (3.39)

is easily seen to be independent of β and invariant under small deformations of the
metric g and the vector potential A. It computes the index of the ‘Dirac operator ’
DA, which is a topological invariant of M.
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Next, we study the quantum theory of positronium, namely of a bound state
of an electron and a positron. We define He−p to be the Hilbert space completion
of the space Ω

.
(M) of differential forms in the scalar product determined by the

metric g. Then

He−p ≃ He ⊗A

(
C2 ⊗

)
Hp , (3.40)

where the factor C2 is absent if dimM is even. We introduce two anti-commuting
Pauli (-Dirac) operators D and D (densely defined and selfadjoint on He−p):

D := Γ ◦ ∇ , D := Γ ◦ ∇ , (3.41)

where ∇ is the Levi-Civita connection on Ω
.
(M), and Γ, Γ are the two anti-

commuting representations of Cl(M) on Ω
.
(M) introduced in (3.23) - (3.25).

These operators are easily seen to satisfy
{
D,D

}
= 0 , D

2
= D

2
. (3.42)

Setting

d :=
1

2

(
D − iD

)
, d∗ :=

1

2

(
D + iD

)
, (3.43)

we find that d2 = (d∗)
2

= 0. In fact, d turns out to be the exterior derivative.
The Hamiltonian (for the center-of-mass motion of the ‘groundstates’ of a bound
electron-positron pair, i.e.,) of positronium is given by

H :=
�2

2µ
D2 =

�2

2µ
D

2
=

�2

2µ
(dd∗ + d∗d) , (3.44)

where µ = 2m. Note that D, D and H are independent of the choice of the vector
potential A (and of Φ) which, physically, corresponds to the circumstance that the
electric charge of positronium is zero. The data

(
A, D, D, He−p

)
are thus well de-

fined even if M does not admit a spinC structure. These data, together with (3.44),
furnish an example of supersymmetric quantum mechanics with N = (1, 1) super-
symmetry; the supercharges are the operators D and D. They completely encode
the de Rham-Hodge theory and the Riemannian geometry of M.

One may wonder how additional geometric structure of M reveals itself in
Pauli’s quantum theory of a non-relativistic electron, positron or positronium mov-
ing in M. Suppose, e.g., that M is a symplectic manifold equipped with a sym-
plectic 2-form ω. Let Ω denote the anti-symmetric bi-vector field associated with
ω. We define three operators on He−p

L3 := T −
n

2
, L+ :=

1

2
ω ∧ ( · ) , L− :=

1

2
ı(Ω) , (3.45)

where Tλ = p λ, for any p-form λ ∈ Ω
.
(M). Then

[
L3, L±

]
= ±2L± ,

[
L+, L−

]
= L3 , (3.46)

i.e.
{
L3, L+, L−

}
define a representation of the Lie algebra sl2 on He−p commut-

ing with the representation of the algebra A on He−p. It is actually a unitary
representation, because L3

∗ = L3 and (L±)∗ = L∓, in the scalar product of He−p.
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Since ω is closed, we have that
[
L+, d

]
= 0, where d is the exterior derivative. A

differential d̃∗ of degree −1 can be defined by

d̃∗ :=
[
L−, d

]
. (3.47)

One finds that
{
d̃∗, d

}
= 0, (d̃∗)2 = 0, and

[
L−, d̃∗

]
= 0. Thus (d, d̃∗) transforms

as a doublet under the adjoint action of sl2.

One can introduce a second sl2 doublet, (d̃,−d∗), of differentials with the

same properties as (d, d̃∗). We are not claiming that {d, d̃} = 0; this equation does
not hold for general symplectic manifolds. It is natural to ask, however, what is
special about the geometry of M if

{
d, d̃

}
= 0 . (3.48)

It turns out that, in this case, M is a Kähler manifold. Defining

∂ :=
1

2

(
d − i d̃

)
, ∂ :=

1

2

(
d + i d̃

)
,

one finds that

∂
2

= ∂
2

= 0 ,
{
∂, ∂

#}
= 0 ,

{
∂, ∂∗

}
=

{
∂, ∂

∗}
.

The differentials ∂ and ∂ are the Dolbeault differentials. The complex structure J
on M generates a U(1)-symmetry on the differentials:

[
J, d

]
= −i d̃ ,

[
J, d̃

]
= i d .

J commutes with the representation of the algebra A = C∞(M) on He−p.

The data
(
A, ∂, ∂∗, ∂, ∂

∗
, He−p

)
furnish an example of a supersymmetric

quantum theory with N = (2, 2) supersymmetry. If the sl2-symmetry is broken, but
the U(1)-symmetry generated by J is preserved then M may not be symplectic,
but it is a complex-hermitian manifold.

It is possible to reformulate all special geometries of smooth manifolds in
terms of the supersymmetric quantum mechanics of a non-relativistic electron
or of positronium by analyzing the adjoint action of symmetries on the Pauli
(-Dirac) operators DA, D−A, D and D. This mathematical theme is developed
in [20]. The upshot of that analysis is that the non-relativistic quantum mechanics
of the spinning electron and of positronium encodes the differential geometry and
topology of Riemannian manifolds M (‘physical space’) in a perfect manner. There
is a complete dictionary between the geometry of M and the supersymmetries of
the quantum theory.

What about the non-relativistic quantum mechanics of particles with ‘higher
spin’? Let (M, g) be an n-dimensional, oriented, smooth, Riemannian manifold
with Riemannian metric g and volume form dvolg. Let ρ be a finite-dimensional,
unitary representation of Spin(n) on a Hilbert space Vρ. If ρ is a double-valued

representation of SO(n), i.e., σ(ρ) = −1, then M must be assumed to be spinC;
for σ(ρ) = 1, this assumption is not necessary. From the transition functions of the
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spinor bundle S (or the tangent bundle TM, for σ(ρ) = 1) and the representation
ρ of Spin(n) we can construct a hermitian vector bundle Eρ over M whose fibres
are all isomorphic to Vρ. The hermitian structure on Eρ and dvolg determine a
scalar product 〈· , ·〉ρ on the space of sections Γ(Eρ). The completion of Γ(Eρ)
in the norm determined by the scalar product 〈· , ·〉ρ is a Hilbert space Hρ. A

spinC connection ∇S on S (or the Levi-Civita connection ∇ on
∧.M if σ(ρ) = 1)

determines a connection ∇ρ on Eρ. (As a physicist, I think about these matters in
coordinate charts U of M, with Eρ|U ≃ U×Vρ, use a little representation theory of
Spin(n) and spin(n), and glue charts together using the transition functions of S,
or TM, respectively, in the representation ρ). The connection ∇ρ, the hermitian
structure on Eρ and dvolg determine a Laplace-Beltrami operator −∆g,A densely
defined on Hρ, (e.g., via the Dirichlet form on Hρ determined by ∇ρ).

Pauli’s non-relativistic quantum mechanics for a particle moving in physical
space M, with an ‘intrinsic angular momentum’ described by the representation
ρ of Spin(n), is given in terms of the following data: The Hilbert space of pure
state-vectors is given by Hρ. A real 2-form ϕ on M determines a section of the
subbundle spin(M) of Cl(M), whose fibres are all isomorphic to the Lie algebra
spin(n) ≃ so(n) of Spin(n); see (3.14). By dρ we denote the representation of
spin(n) on Vρ.

The Pauli Hamiltonian is then given by

Hρ
A = −

�2

2m
∆g,A + µρdρ(B) + Φ , (3.49)

where m is the mass of the particle, µρ its ‘magnetic moment’, B ∈ Ω2(M) the
curvature (‘magnetic field’) of the virtual U(1)-connection A (the electromagnetic
vector potential), and Φ is an external (electrostatic) potential. The second term
on the R.S. of (3.49) is the Zeeman term.

Remarks.

(1) Relativistic corrections (spin-orbit interactions) and a variety of further ef-
fects can be described in terms of additive contributions to the (U(1)- and)
Spin(n) connection and further Zeeman terms.

(2) In relativistic field theory on four-dimensional space-time, one encounters
acausality phenomena in the propagation of fields of spin > 1 minimally cou-
pled to external electromagnetic fields (‘Velo-Zwanziger phenomenon’) [25].
This may shed some light on the question why, in Nature, there do not ap-
pear to exist any charged elementary particles of spin > 1. See also section
7.1. It should be noted, however, that the Velo-Zwanziger acausality phe-
nomenon disappears in locally supersymmetric field theories [26]. (I thank N.
Straumann for pointing this out to me.)

Well, I suppose this is all we might want to know about these general matters,
right now.
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To conclude this general, mathematical section, I want to specialize to the
case where M = E3, Spin(3) = SU(2), which is what we physicists care about
most.

3.3. Back to physics: multi-electron systems, Weyl’s theorem, the Dirac equation

We first specialize the material of section 3.2 to the case where M = E3. Then
S ≡ S(M) and

∧.(M) are trivial bundles, and

He / p ≃ L2
(
R3, d3x

)
⊗ C2 , (3.50)

the space of square-integrable, two-component spinors on R3. Choosing Cartesian
coordinates x1, x2, x3 on E3, the Pauli (-Dirac) operator DA takes the form

DA =

3∑

j=1

σj

(
−i

∂

∂xj
+

e

�c
Aj(x)

)
, (3.51)

where �σ = (σ1, σ2, σ3) are the usual Pauli matrices, and
→

A(x) = (A1(x), A2(x),
A3(x)) is the electromagnetic vector potential in physical units – whence the factor
e
�c multiplying Aj(x) in (3.51), where −e is the charge of an electron and c the
speed of light. The Pauli Hamiltonian HA is given by

HA =
�2

2m
D2

A + Φ , (3.52)

where Φ is an external electrostatic potential.

We easily find that

�2

2m
D2

A = −
�2

2m
∆A +

e

mc

→

S ·
→

B , (3.53)

where ∆A is the covariant Laplacian,
→

S = �

2�σ is the spin operator of an electron,

and
→

B =
→

∇∧
→

A is the magnetic field. Thus, for the ‘supersymmetric’ Hamiltonian
HA, the gyromagnetic factor ge of the electron has the value 2! As long as spin-orbit
interactions can be neglected, i.e., in the absence of heavy nuclei, the Hamiltonian
HA in (3.52) describes the dynamics of a slow electron in an external electromag-
netic field with good accuracy. Yet, one may wonder how the relativistic effects
of spin-orbit interactions and the Thomas precession modify the expression (3.52)
for the Pauli Hamiltonian. From (2.14) and (2.17) we find that HA must then be
replaced by

HSO
A = −

�2

2m
∆2

A +
e

mc

→

S ·

(
→

B −
1

2

�v

c
∧

→

E

)
+ Φ , (3.54)

where the (gauge-invariant) velocity operator �v is given by

�v =
�

m

(
−i

→

∇ +
e

�c

→

A
)

, (3.55)
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and − �
2

2m∆A = m
2 �v 2. We introduce a spin (SU(2)-) connection w = (w0, �w) on

S(E3) in terms of its components in the ‘natural orthonormal basis’ of sections of
S(E3):

w0(x) = i
e

mc�

→

B (x) ·
→

S , (3.56)

�w(x) = −i
e

2mc�

→

E (x) ∧
→

S . (3.57)

We then define covariant derivatives,

D0 =
1

c

∂

∂t
+

i

�c
Φ′ + w0 , (3.58)

where

Φ′ = Φ −
�2

2m

e2

8(mc2)2
→

E 2 , (3.59)

(D0 is the covariant time derivative), and
→

D =
→

∇ + i
e

�c

→

A + �w . (3.60)

Here (Φ′, e
→

A ) are the components of an electromagnetic U(1)-connection. Then
the Pauli equation,

i�
∂

∂t
Ψt = HSO

A Ψt, Ψt ∈ He ,

can be rewritten in a manifestly U(1) × SU(2)spin gauge-invariant form

i�cD0 Ψt = −
�2

2m

→

D2 Ψt . (3.61)

This observation has been made in [27]; (see also the original papers quoted there).
When incorporated into the formalism of quantum-mechanical many-body theory
the U(1)×SU(2)spin gauge-invariance of Pauli’s theory has very beautiful and im-
portant applications to problems in condensed-matter physics, which are discussed
in much detail in [27]. Depending on context, the U(1)- and SU(2)-connections in-
troduced above receive further contributions, e.g., from a divergence-free velocity
field (quantum mechanics in moving coordinates, with applications, e.g., to su-
perconductivity, super-fluidity, a quantum Hall effect for rotating Bose gases [27],
nuclear physics,...), from a non-trivial spin connection on S(E3) with curvature
and torsion describing disclinations and dislocations in a microscopic crystalline
background, and/or from the ‘Weiss exchange field ’ describing a magnetic back-
ground. It is most regrettable that we cannot enter into all these applications,
here. But the reader will find a detailed exposition of these topics in [27].

Next, we recall the quantum theory of a system of many (N = 1, 2, 3, . . .)
Pauli electrons. The Hilbert space of pure state vectors of such a system is given
by

H
(N) = He ∧ · · · ∧ He ≡ H

∧N
e , (3.62)

where He is given by (3.50), and ∧ denotes an anti-symmetric tensor product.
The anti-symmetric tensor product in (3.62) incorporates the Pauli exclusion
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principle. Let H(1) denote the Pauli Hamiltonian for a single electron, as given
in (3.52) or (3.54). In applications to atomic, molecular or condensed matter
physics, Φ(x) is the Coulomb potential of the electron in the field of K nuclei
with charges eZ1, . . . , eZK , which we shall usually treat, for simplicity, as static,
(Born-Oppenheimer approximation); i.e.,

Φ(x) = −
K∑

k=1

e2Zk

4π|x − Xk|
, (3.63)

where x is the position of the electron, and X1, . . . , XK are the positions of

the nuclei. Moreover,
→

B is an arbitrary external magnetic field, and
→

E (x) ≃

− 1
e

→

∇Φ(x) is the electric field created by the nuclei (regularized or cut-off, for
x near X1, . . . , XK).

The Hamiltonian for the N electrons is chosen to be

H(N) =

N∑

j=1

∧· · ·∧H(1)∧· · ·∧ +VC (x1, . . . , xN )+V nuc
C (X1, . . . , XK) , (3.64)

where, in the jth term of the sum on the R.S. of (3.64), H(1) stands in the jth

place (factor), with ’s in other factors, and

VC (x1, . . . , xN ) =
∑

1≤i<j≤N

e2

4π|xi − xj |
, (3.65)

V nuc
C (X1, . . . , XK) =

∑

1≤k<l≤K

e2ZkZl

4π|Xk − Xl|
. (3.66)

Properties of the Hamiltonian H(N) (with H(1) as in (3.52) and Φ as in (3.63))
will be studied in the next section.

We observe that the Hilbert space H (N) is given by

H
(N) = Pa

(
L2

(
R3N , d3Nx

)
⊗ C2N

)
, (3.67)

where Pa denotes the projection onto the subspace of totally anti-symmetric spinor
wave functions. In an obvious sense, H (N) carries a tensor product representa-
tion of two representations, V orbit and V spin, of the permutation group SN of N
symbols, where

V orbit(π) = Vω(π) ⊗ ,

V spin(π) = ⊗ Vσ(π) , π ∈ SN ,

in the tensor product decomposition (3.67). The projection Pa selects the alternat-
ing representation (multiplication by sig(π), π ∈ SN ) from Vω ⊗ Vσ; only tensor
products of subrepresentations, V i

ω and V j
σ , of Vω and Vσ, respectively, are in the

range of Pa for which V i
ω(π) = sig(π)V j

σ (π), (i.e., V i
ω is ‘associated ’ to V j

σ ).
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The spin space C2N

≃
(
C2

)⊗N
carries the N -fold tensor product representa-

tion, ρ, of the spin s = 1
2 representation of SU(2). This representation is a direct

sum of irreducible representations with spin s = s0, s0 + 1, . . . , N
2 , where s0 = 0

if N is even and s0 = 1
2 if N is odd. It commutes with the representation Vσ of

SN on
(
C2

)⊗N
.

Hermann Weyl has proven the following

Theorem 3.1. (
C2

)⊗N
≃

⊕

(∆, s)

H∆ ⊗ Hs , (3.68)

with

Vσ =
⊕

(∆, s)

∆
∣∣
H∆

⊗
∣∣
Hs

(3.69)

ρ =
⊕

(∆, s)

∣∣
H∆

⊗ ρs

∣∣
Hs

, (3.70)

where the ∆’s are irreducible representations of the group SN labeled by Young
diagrams with one or two rows and a total of N boxes, and ρs is the irreducible
representation of SU(2) with spin s ∈ {s0, s0 + 1, . . . , N

2 }. Moreover, in (3.68),
every ∆ and every s occur only once, i.e., a ∆ on the R.S. of (3.68) - (3.70)
paired with a spin s is uniquely determined by s, ∆ = ∆(s), and conversely. (The
spin s = s(∆) corresponding to a representation ∆ is given by half the number of
columns in the Young diagram of ∆ that consist of a single box.)

Weyl’s theorem is a special case of a general theory of ‘dual pairs’ of groups;
see [28]. Weyl has shown that the groups SN and SU(n), N = 1, 2, 3, . . ., n =
2, 3 . . . are ‘dual pairs’. From our previous discussion we understand that a sub-
representation ∆ of Vσ can only be paired with a subrepresentation ∆ of Vω given
by

∆(π) = sig(π)∆(π), π ∈ SN ,

in order for the tensor product representation ∆⊗∆ to ‘survive’ the projection Pa.
This, together with Weyl’s theorem, implies that the spin s of an N -electron wave
function completely determines its symmetry properties under exchange of electron
positions or momenta (the ‘race’ of the orbital wave function) and under exchange
of electron spins (the ‘race’ of the spin wave function). This explains why in the
classification of atomic spectra the permutation groups do not appear; (see section
2). In a system of many electrons moving in a shell of an atom or in a crystalline
background, one might expect that, by a conspiracy of electron motion (kinetic
energy) and Coulomb repulsion between electrons (potential energy) the energies of
those states are particularly low that correspond to totally anti-symmetric orbital
wave functions, i.e., ∆(π) = sig(π), π ∈ SN . Then the spin wave functions must be
totally symmetric, i.e., ∆ must be the trivial representation of SN . This implies
that the spin s of such a state is maximal, i.e., s = N

2 (for N electrons). The
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expectation described here is at the core of explanations of Hund’s first rule and
of ferromagnetism. While, in many situations, this expectation is quite plausible
it is still poorly understood, mathematically.

What is missing? Well, maybe, a few comments on Dirac’s relativistic electron
equation. But I will cut this short, since everybody is familiar with it! A nice
approach to the Dirac equation can be extracted from the theory of projective,

unitary, irreducible representations of the Poincaré group P↑
+, which is the semi-

direct product of the group of proper, orthochronous Lorentz transformations of
Minkowski space M4 and the group of space-time translations. The Poincaré group
has two Casimir operators,

(i)

M2 = P 2
0 − �P 2 , (3.71)

where P0 ≡ H (the Hamiltonian) is the generator of time-translations, and
�P (the momentum operator) is the generator of space-translations; and

(ii)

W 2
0 −

→

W 2 , (3.72)

where (W0,
→

W ) is the Pauli-Lubanski pseudo vector ; see, e.g., [29].

For purposes of quantum physics, we are only interested in projective, unitary

representations of P↑
+ for which M2 ≥ 0 and W 2

0 −
→

W 2 is finite. In an irreducible,

projective unitary representation of P↑
+,

M2 = m2 ,

W 2
0 −

→

W 2 = −m2s(s + 1) ,

where m ≥ 0 is the mass of the representation and (for m > 0) s is the spin
of the representation of the subgroup of space rotations. All projective, unitary,

irreducible representations of P↑
+ corresponding to a given mass m ≥ 0 and a

finite s can be constructed by the method of induced representations developed
by Wigner and generalized by George Mackey. We consider an energy-momentum
vector p = (p0, �p) with p2 = p2

0 − �p2 = m2. By Hp we denote the subgroup of all
those Lorentz transformations that leave p fixed. For m > 0,

Hp ≃ SO(3) ,

while, for m = 0,
Hp ≃ E(2) ,

the group of Euclidian motions of the plane. Representations of SO(3) and E(2)

then determine representations of P↑
+. The Hilbert space of pure state vectors

of a free, relativistic particle of mass m ≥ 0 is the representation space of an
irreducible unitary representation of the quantum-mechanical Poincaré group with

mass m ≥ 0 and a finite eigenvalue for W 2
0 −

→

W 2. For an electron or positron,

m is positive, and hence W 2
0 −

→

W 2 = −m2s(s + 1) , where s is the spin of the
representation of the little group Hp ≃ SO(3). For the electron or positron, s = 1

2 !
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If we insist that space reflections should be a symmetry of the theory, we must
glue together two unitary, irreducible representations of the quantum-mechanical
Poincaré group with m > 0 and s = 1

2 . Considering that p0 can be ≥ m or ≤ −m,
we find the Dirac equation for the relativistic electron hiding in the representation

theory of P↑
+ with mass m > 0 and spin s = 1

2 . The second-quantized Dirac
theory for free electrons and positrons is obtained by considering anti-symmetric

tensor products of the positive-energy representation of P↑
+ for single electrons

and positrons in a rather standard fashion; see, e.g., [29]. All this is so exceedingly
well-known that I do not want to enter into details. Similar results can be derived
for massless particles (m = 0), with spin s replaced by “helicity”, λ, with values
in (1/2)Z. (I am grateful to my friend R. Stora for education in this matter.)

The results and methods just alluded to, above, can be generalized to
Minkowski space-times of arbitrary dimension d = n + 1 ≥ 2. Formally, a local
quantum field theory of electrons and positrons moving in quite general Lorentzian
space-time manifolds and coupled to external electromagnetic fields can be written
down without difficulty. However, in contrast to the theory of Pauli electrons and
positrons moving in a general physical space, the number of electrons and positrons
is no longer conserved (electron-positron pair creation processes happen), and one
encounters serious analytical problems when one attempts to develop Dirac theory
on general Lorentzian space-times and coupled to general electromagnetic fields.
These problems are only partially solved, and I do not wish to enter into this
matter.

Pauli’s non-relativistic theory of the spinning electron, along with a system-
atic treatment of relativistic corrections, can be recovered by studying the limit of
Dirac’s theory, as the speed of light c tends to ∞. Relativistic corrections can be
found by perturbation theory in c−1. A mathematically careful treatment of such
matters can be found in [30].

4. Stability of Non-Relativistic Matter in Arbitrary External
Magnetic Fields

In order to get a first idea of the importance of electron spin and the Pauli principle
in the physics of systems of many electrons moving in the Coulomb field of static
(light) nuclei and coupled to an arbitrary external magnetic field, I review some
fairly recent results on the stability of such systems. The reference for such results
is [31].

Let us consider a system of N electrons and K static nuclei with nuclear

charges eZ1, . . . , eZk. with
∑K

k=1 Zk ∼ N . The Hilbert space of the system is the

space H (N) introduced in (3.62), the Hamiltonian is the operator H(N) defined
in (3.64), where the one-electron operator H(1) is the Pauli operator of Eq. (3.52),
with DA as in (3.51) and Φ as in (3.63).
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Units: The energy unit is Ry = 2mc2α2, where α = e2

�c ∼ 1
137 is Sommerfeld’s

fine structure constant. The unit of length is half the Bohr radius, i.e., l = �
2

2me2 .

The magnetic field
→

B =
→

∇∧
→

A is in units of e
l2α ; the magnetic field energy is given

by ε
∫ →

B 2 d3x, with ε = 1
2α2 .

The Pauli operator DA is given, in our units, by

DA = �σ ·
(
−i

→

∇ +
→

A
)

. (4.1)

It is convenient to work in the Coulomb gauge,

→

∇ ·
→

A = 0 . (4.2)

For a vector field
→

X on R3 or a spinor ψ ∈ L2(R3, d3x) ⊗ C2, we say that
→

X ∈
Lp (ψ ∈ Lp) iff

(→

X ·
→

X
)1/2

∈ Lp(R3, d3x) ,

(ψ , ψ)1/2 ∈ Lp(R3, d3x) .

It is shown in [32] that if
→

B has finite field energy, i.e.,
→

B ∈ L2, then there exists

a unique
→

A such that

→

∇ ∧
→

A =
→

B ,
→

∇ ·
→

A = 0 ,
→

A ∈ L6 .

4.1. Zero-modes of the Pauli operator

Loss and Yau [33] have proven, by a fairly explicit construction, the following
important result:

Theorem 4.1. There exists a single-electron two-component spinor wave function

ψ ∈ H1(R3) (the usual Sobolev space) and a vector potential
→

A ∈ L6, with
→

∇·
→

A = 0

and
→

B =
→

∇ ∧
→

A ∈ L2 such that

DA ψ = 0 , (4.3)

i.e, ψ is a zero-mode of the Pauli operator DA.

An explicit choice of a magnetic field leading to a zero-mode, in the sense of
Eq. (4.3) is

→

B (x) =
12

(1 + x2)3

[
(1 − x2)n + 2 (n · x) x + 2n ∧ x

]
,

where n is a unit vector.

This result, whose proof we omit, has some rather remarkable consequences
that we will discuss next. (The proof relies on a three-dimensional analogue of the
celebrated Seiberg-Witten equations.)
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4.2. Stability and instability of atoms and one-electron molecules

We consider the Pauli Hamiltonian for a one-electron ion in a general external

magnetic field
→

B of finite field energy:

HA = D2
A −

Z

4π |x|
. (4.4)

Let E0 (
→

B, Z) denote the infimum of the spectrum of HA. If
→

B is a constant

external magnetic field,
→

B = (0, 0, B), then it is known from work of Avron,
Herbst and Simon quoted in [32] that

E0 (
→

B, Z) ∼ −const (ln B)2 .

This implies that E0 (
→

Bn, Z) −→ −∞ even for a sequence of suitably chosen

magnetic fields
→

Bn of finite, but ever larger field energy. It is then natural to ask
whether

E0 (
→

B, Z) + ε

∫
d3x |

→

B (x)|2 (4.5)

is bounded below, uniformly in
→

B , and for what range of values of the nuclear
charge.

The answer is worked out in [32]. We define a convenient space, C, of config-

urations (ψ,
→

A),

C :=
{(

ψ,
→

A
) ∣∣∣ψ ∈ H1(R3) , ‖ψ‖2

2 = 1 ,
→

A ∈ L6 ,
→

∇ ·
→

A = 0 ,
→

∇ ∧
→

A ∈ L2
}

(4.6)

and a space N of ‘zero modes’,

N :=
{ (

ψ,
→

A
) ∣∣

(
ψ,

→

A
)
∈ C , DAψ = 0

}
. (4.7)

We then define a critical nuclear charge Zc by

Zc := inf
(ψ,

→

A)∈N

{
ε ‖

→

B‖2
2

/〈
ψ , 1

4π|x|ψ
〉}

. (4.8)

(Note that, by scaling, the analogue of Zc vanishes in more than three dimensions.)

The following result has been shown in [32].

Theorem 4.2. Zc is positive and finite.

For Z > Zc,

inf
→

B∈L2

{
E0

(
→

B, Z
)

+ ε ‖
→

B‖2
2

}
= −∞ .

For Z < Zc,

inf
→

B∈L2

{
E0

(
→

B, Z
)

+ ε ‖
→

B‖2
2

}
> −∞ ,

and the infimum is a minimum reached for some pair
(
ψ ,

→

A
)
∈ C.
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Furthermore, the infimum on the R.H.S. of (4.8) is reached on a pair
(
ψ ,

→

A
)
∈ N .

In [32], Zc is estimated for the physical value of the fine structure constant and
comes out to be Zc ∼ 17′900. Thus, a single-electron ion coupled to an arbitrary

magnetic field
→

B of finite field energy is stable (the total energy is bounded from
below) if the nuclear charge Z is smaller than Zc, while it is unstable if Z > Zc.
This result crucially depends on the fact that electrons have spin and a magnetic
moment with a gyromagnetic factor ge = 2, (as long as radiative (QED) corrections
are neglected). If ge < 2 then

inf
→

B∈L2

E0

(
→

B, Z
)

> −constZ2 > −∞ ,

for all values of Z, by Kato’s ‘diamagnetic inequality’, while for ge > 2, ions would
always be unstable.

In [34], the results summarized in Theorem 4.2 are extended to many-electron
atoms and to a system consisting of a single electron moving in the Coulomb field
of arbitrarily many static nuclei, (one-electron molecule in the Born-Oppenheimer
approximation). For this purpose, one considers the energy functional

E
(
Ψ,

→

B, X, Z
)

:=
〈
Ψ , H

(N)
→

A
Ψ
〉

+ ε‖
→

B‖2
2 , (4.9)

where Ψ ∈ H (N), see (3.62), is an N -electron wave function with 〈Ψ , Ψ〉 = 1, and

H
(N)
→

A
≡ H(N) is the N -electron Hamiltonian introduced in (3.64) - (3.66), with

H(1) as in (3.52) and (3.63), (see also (4.4), with Z
4π|x| replaced by the Coulomb po-

tential (3.63) of many nuclei). There is an obvious extension of the definition (4.6)
of the space C to an N -electron system. We are interested in studying the lowest
possible energy

E0 := inf
(Ψ,

→

A)∈C

X∈R
3K

E
(
Ψ,

→

B, X, Z
)
. (4.10)

It is shown in [34] that, for K = 1 (one nucleus) and N arbitrary (arbitrarily many
electrons), or for K arbitrary and N = 1,

E0 > −∞ ,

provided Zj < Z̃c < ∞, for all j = 1, . . . , K, and provided

α < αc , (4.11)

with 0.32 < αc < 6.7, i.e., provided the fine structure constant α is sufficiently
small. The bound (4.11) comes from studying 1-electron molecules and is ‘real ’:

If α > αc there are configurations of K identical nuclei with arbitrary Z < Z̃c =
O(α−2) such that, for some choice of K, E0 = −∞, for a 1-electron molecule.
Again, the crucial role in the proofs of these results is played by the electron spin
and the fact that ge = 2!
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The punchline in this analysis of stability of non-relativistic matter was
reached, a little more than ten years ago, in works of Charles Fefferman [35] and
of Elliott H. Lieb, Michael Loss and Jan Philip Solovej [36] (whose treatment is
considerably simpler than Fefferman’s, but came a little later)13. It is summarized
in the next subsection.

4.3. Stability of matter in magnetic fields

Consider the energy functional E (Ψ,
→

B, X, Z ) introduced in (4.9) – with N elec-
trons moving in the Coulomb field of K static nuclei at positions X1, . . . , XK ,
with nuclear charges Z1, . . . , ZK , and coupled to an arbitrary external magnetic

field
→

B of finite field energy ε ‖
→

B‖2
2. Let

E0 ≡ E0(α, Z) := inf
(Ψ,

→

A)∈C

X∈R
3K

E
(
Ψ,

→

B, X, Z
)
. (4.12)

The following result is proven in [36].

Theorem 4.3. Suppose that Zk ≤ Z < ∞, for all k = 1, . . . , K, and that

Zα2 < 0.041 and α < 0.06 . (4.13)

Then
E0(α, Z) ≥ −C (N + K) , (4.14)

for some finite constant C depending on Z and α, but independent of N and K.

Remarks. The bound (4.14) expresses stability of matter in the sense that the
energy per particle (electrons and nuclei) has a lower bound (≥ −constZ2Ry)
independent of the number of electrons and nuclei in the system. This is an ex-
pression of thermodynamic stability of such systems, which is a pillar on which all
of condensed-matter physics rests; (‘independence’ of condensed-matter physics of
nuclear form factors and cut-offs imposed on the magnetic field).

For stability of matter, i.e., for the validity of (4.14), it is crucial that electrons
are fermions, i.e., that they satisfy Pauli’s exclusion principle. In Lieb-Thirring
type proofs of stability of matter, the Pauli principle enters in the form of general-
ized Sobolev inequalities (bounding the electron kinetic energy from below by the
Thomas-Fermi kinetic energy) only valid for fermions; see [31].

We know from the results in the last two subsections that E0(α, Z) = −∞,
i.e., the system becomes unstable, if either Z ≫ α−2 or if α is ‘large’ (α > 6.7). It
is somewhat tantalizing that electron spin and the fact that ge = 2 would render
systems of many electrons and nuclei – as they are studied in atomic, molecular
and condensed-matter physics – unstable if α > 6.7 and/or if Zα2 is very ‘large’.
This is reminiscent of the possibility that the Landau pole in relativistic QED will
descend to the non-relativistic regime if α is large enough.

13All this work came after ground-breaking work of Dyson and Lenard in the 1960’s, and of Lieb
and Thirring ; see [31] and references given there.
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Let us see what the source of the potential instability is! It is actually a short-

distance or ultraviolet instability: If in the definition of H
(N)
→

A
, the electromagnetic

vector potential
→

A in the Coulomb gauge is replaced by a mollified potential

→

Aκ(x) :=

∫
d3y κ(x − y)

→

A(y) ,

where κ is an arbitrary positive, smooth function, with
∫

κ = 1, (i.e., a smooth
approximate δ-function) then the bound

E0(α, Z) ≥ −C (N + K)

is true for arbitrary α and Z, but the constant C now depends on κ, and if α > 6.7
and/or Zα2 is large enough, then C = Cκ −→ ∞, as κ approaches a δ-function.
In order to arrive at a deeper understanding of these matters, we should quantize
the electromagnetic field, too.

5. Electrons Interacting with the Quantized Electromagnetic Field;
Radiative Corrections to the Gyromagnetic Factor

It is important to ask what becomes of the results in the last section if the elec-
tromagnetic field is treated quantum mechanically. One of my strong scientific
interests, during the past fifteen years, has been to find mathematically precise
answers to this question; see [37–49], and [50] for a review of some of these and
other results.

We return to the Hamiltonian (3.64), i.e.

H(N) =
N∑

j=1

{[
�σj ·

(
−i

→

∇j +
→

A(xj)
) ]2

−
K∑

k=1

Zk

4π|xj − Xk|

}

+
∑

1≤i<j≤N

1

4π|xi − xj |
+

∑

1≤k<l≤K

ZkZl

4π|Xk − Xl|
, (5.1)

acting on the N -electron Hilbert space

H
(N) =

(
L2

(
R3, d3x

)
⊗ C2

)∧N

. (5.2)

We are interested in studying the dynamics of such systems when the electromag-
netic field is quantized, i.e., electrons can emit and absorb photons. We quantize
the electromagnetic field in the Coulomb gauge, i.e.,

→

∇ ·
→

A = 0 . (5.3)

Then

→

A(x) =
1

(2π)3/2

∑

λ=±1

∫
d3k√
2|k|

[
�ελ(k)a∗

λ(k)e−ik·x + �ελ(k)aλ(k)eik·x
]
, (5.4)
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where a∗
λ(k), aλ(k) are the usual creation and annihilation operators for a photon

with wave vector k ∈ R3 and helicity λ = ±, satisfying the canonical commutation
relations (CCR),

[a#
λ (k), a#

µ (l)] = 0 , [aµ(k), a∗
λ(l)] = δµλδ(3)(k − l) , (5.5)

and �ελ(k) ⊥ k, λ = ±, are two orthonormal polarization vectors. We consider the
Fock representation of the commutation relations (5.5) uniquely characterized by
the existence of a vacuum state Ω in which none of the field modes is excited, so
that

aλ(k)Ω = 0 , for all λ and k , (5.6)

and 〈Ω , Ω〉 = 1. Fock space F is the Hilbert space completion of the linear space
obtained by applying arbitrary polynomials in creation operators smeared out
with square-integrable functions to the vacuum Ω. The Hamiltonian of the free
electromagnetic field generating the time evolution of vectors in F is given, in our
units, by the operator

Hf :=
1

2α2

∫
d3x

{
:

→

E (x)
2

: + :
→

B (x)
2

:
}

=α−2
∑

λ=±

∫
d3k a∗

λ(k)|k|aλ(k) , (5.7)

where

→

E (x) =
1

(2π)3/2

∑

λ=±1

∫
d3k

√
|k|

2

[
i�ελ(k)a∗

λ(k)e−ik·x − i�ελ(k)aλ(k)eik·x
]
,

are the transverse components of the electric field,
→

B =
→

∇ ∧
→

A is the magnetic
field, the double colons indicate standard Wick ordering, and α−2|k| is the energy
of a photon with wave vector k (in our units).

The total Hilbert space of electrons and photons is given by

H := H
(N) ⊗ F , (5.8)

and the Hamiltonian is given by

H := H(N) + ⊗ Hf . (5.9)

Alas, this operator is ill-defined. To arrive at a mathematically well defined expres-
sion for the Hamiltonian (selfadjoint on H and bounded from below), we must

replace the vector potentials
→

A(xj) on the R.S. of (5.1) by ultraviolet regularized

potentials
→

AΛ(xj), j = 1, . . . , N , where

→

AΛ(x) =

∫
d3y κΛ(x − y)

→

A(y) ,

and κΛ is the Fourier transform of, e.g., a normalized Gaussian

1

(2πΛ2)
3/2

e−(|k|2/2Λ2) ,
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where Λ is an ultraviolet cutoff energy that one may choose to be of the order of the
rest energy of an electron. Of course one will ultimately be interested in studying
the limit, as Λ −→ ∞. This limit is only meaningful if the mass and the chemical
potential of an electron are renormalized. To study the renormalization theory of
the model of quantum electrodynamics (QED) considered in this section, we must

replace the Pauli Hamiltonians,
[
�σj ·

(
− i

→

∇j +
→

A(xj)
)]2

on the R.S. of (5.1) by
operators

1

MΛ

[
�σj ·

(
−i

→

∇j +
→

AΛ(xj)
) ]2

+ µΛ , (5.10)

for j = 1, . . . , N , where MΛ is the ratio between the ‘bare mass ’ of an electron and
its observed (physical) mass, and µΛ is the bare self-energy (or chemical poten-
tial) of an electron. The Hamiltonians obtained after the replacement (5.10) are

denoted by H
(N)
Λ ≡ H

(N)
Λ (MΛ, µΛ), see (5.1), and HΛ ≡ HΛ(MΛ, µΛ), see (5.9),

respectively. A fundamental question in renormalization theory is whether MΛ > 0
and µΛ can be chosen to depend on the cutoff energy Λ in such a way that the
limiting Hamiltonian

Hren = “ lim
Λ→∞

HΛ” (5.11)

exists as a selfadjoint operator on H .

A mathematically rigorous answer to this question remains to be found. (I
rather bet it might be ‘no’.) However, there are indications of various kinds as to
how to choose MΛ and µΛ and plenty of perturbative calculations (perturbation
theory in α), which we briefly summarize next.

(1) Since, in our model of QED, the number of electrons and nuclei is conserved –
electron-positron pair creation processes are suppressed – there is no vacuum
polarization, and hence the fine structure constant α is independent of Λ.

(2) (Non-rigorous) perturbative renormalization group calculations suggest that

MΛ ∼ Λ−(8α/3π)+O(α2) , (5.12)

i.e., the bare mass of an electron must approach 0 like a small inverse power
of Λ, as Λ −→ ∞; or, in other words, the physical mass of an electron consists
entirely of radiative corrections12.

(3) There are some rather crude bounds on the self-energy µΛ:

c1Λ
3/2 ≤ µΛ ≤ c2Λ

12/7 ,

for constants c1 and c2 (but derived under the assumption that MΛ = 1);
see [50] and references given there.

(4) Perturbatively, a finite Lamb shift is found, as Λ −→ ∞, which is in rough
agreement with experimental data12; (an improved version of Bethe’s calcu-
lation of 1947).

12In these calculations, the Zeeman terms in H
(N)
Λ are neglected.
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(5) The gyromagnetic factor ge of the electron is affected by radiative corrections.
In low-order perturbation theory in α, it remains finite, as Λ −→ ∞, and is
given by

ge = 2
[
1 +

8

3

α

2π
+ O(α2)

]
; (5.13)

see [50, 51]. This result should be compared to the value for ge predicted by
perturbative fully relativistic QED,

ge = 2
[
1 +

α

2π
+ O(α2)

]
, (5.14)

where the lowest-order correction, α
2π , was first calculated by Julian

Schwinger. Experiment favours Schwinger’s result! This can be viewed – if
one likes – as a high-precision confirmation of, among other things, the special
theory of relativity.

No matter whether electrons are treated non-relativistically or relativistically,
we find that ge > 2! For a single, freely moving electron with Hamiltonian HA given
by (3.52) (with Φ = 0), this results in a breaking of the ‘supersymmetry’ (see
section 3.2) of the quantum theory, and the effects of ‘supersymmetry breaking’
offer a handle on precision measurements of ge − 2; (see section 6).

The fact that ge > 2 and the results in section 4 apparently imply that QED
with non-relativistic matter ultimately only yields a mathematically meaningful
description of physical systems if a (large, but finite) ultraviolet cutoff is imposed
on the interactions between electrons and photons, no matter how small α is
chosen. For large values of α (α > 6.7), this theory is expected to exhibit cutoff
dependence already at atomic and molecular energies.

The need for an ultraviolet cutoff in QED with non-relativistic matter is
reminiscent of the problem of the Landau pole in relativistic QED.

The following results are non-perturbative and mathematically rigorous:

(6) Stability of Matter: For an arbitrary number N of electrons and K static
nuclei with nuclear charges Zk ≤ Z < ∞, for all k = 1, . . . , K and arbitrary
K < ∞,

HΛ ≥ −Cα, Z KΛ , (5.15)

for a finite constant Cα, Z independent of Λ and K. While (5.15) proves
stability of matter if an ultraviolet cutoff Λ is imposed on the theory, the linear
dependence on Λ on the R.S. of (5.15) is disastrous, physically speaking. It is
not understood, at present, whether a lower bound on HΛ (MΛ , µΛ) can be
found that is uniform in Λ, provided MΛ and µΛ are chosen appropriately!

Present mathematically rigorous efforts towards understanding QED with non-

relativistic matter are therefore aimed at an analysis of H
(N)
Λ , for a fixed ultraviolet

cutoff Λ (∼ rest energy of an electron), and at tackling the so-called infrared
problem that is caused by the masslessness of the photons. Here there has been
tremendous progress, during the past fifteen years; see e.g. [37–50].
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The most remarkable results that have been found, during the last ten years,
are, perhaps, the following ones:

We choose an arbitrary, but fixed ultraviolet cutoff Λ.

(7) Atoms have stable ground states; [43–45].
(8) Excited states of atoms are turned into resonances (meta-stable states) whose

energies and widths (inverse life times) can be calculated to arbitrary pre-
cision by a constructive and convergent algorithm. These energies and life
times agree, to leading order in α, with those first calculated by Bethe in
order to explain the Lamb shift, [43, 44].

(9) Scattering amplitudes, Sfi, for Rayleigh scattering of photons at atoms (be-
low the ionization threshold) have asymptotic expansions of the form

Sfi =

N∑

n=0

σfi, n(α)αn + o(αN ) ,

where

lim
α→0

αδ
σfi, n(α) = 0 ,

for an arbitrarily small δ > 0. It is expected (and can be verified in examples)
that

σfi, n(α) =
n∑

k=0

σfi, n, k

(
ln

1

α

)k

.

The powers of ln 1
α come from infrared singularities that render ordinary

perturbation theory infrared-divergent in large, but finite orders in α; see [48].
Our results yield, among many other insights, a mathematically rigorous
justification of Bohr’s frequency condition for radiative transitions.

(10) Infrared-finite, constructive, convergent algorithms have been developed to
calculate the amplitudes for ionization of atoms by Laser pulses (unpublished
work of the author and Schlein based on earlier work by Fring, Kostrykin and
Schader) and for Compton scattering of photons at a freely moving electron;
see Pizzo et al. [49].

Most proofs of the results reviewed in this section rely on complex spectral defor-
mation methods, multi-scale perturbation theory and/or operator-theoretic renor-
malization group methods; see [43, 44, 48] and references given there.

I now leave this thorny territory and sketch how the gyromagnetic factor of
the electron can be measured experimentally.

6. Three Methods to Measure ge

We have already seen in section 2 that atomic spectroscopy in a magnetic field
(Zeeman splittings) offers a possibility to measure the gyromagnetic factor ge of
the electron.
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Another possibility originating in condensed-matter physics is to exploit the
Einstein–de Haas effect .

6.1. The Einstein–de Haas effect (see, e.g., [27])

Consider a cylinder of iron magnetized in the direction of its axis and suspended
in such a way that it can freely rotate around its axis. Should this cylinder rotate,
then it is advisable to treat the quantum theory of the electrons (and nuclei) in
the iron in a rotating frame.

Let
→

V (�y, t) be a (divergence-free) vector field on physical space that generates
an incompressible flow φt : E3 → E3 with the property that �y = (y1, y2, y3), given
by

�y = φ−1
t (�x) , (6.1)

are coordinates in the moving frame at time t, with �x = (x1, x2, x3) the Cartesian

laboratory coordinates. If
→

V generates space rotations around a point �x0 in space
with a fixed angular velocity �ω then

→

V (�y, t) = �ω ∧ (�y − �x0) . (6.2)

The quantum theory of electrons in the moving frame is described by a (in
general time-dependent) Hamiltonian

H
(N)
→

V
=

N∑

j=1

{ m

2
(�σj · �vj)

2 + (ge − 2)
e

2mc

�

2
�σj ·

→

B (�yj , t)

−
e

c

→

A(�yj , t) ·
→

V (�yj , t) −
m

2

→

V (�yj , t)
2}

+ UCoulomb

(
φt(�y1), . . . , φt(�yN ),

→

X 1, . . . ,
→

X K

)
, (6.3)

where the velocity operators �vj are given by

�vj =
�

m

(
−i

→

∇j +
e

�c

→

A(�yj , t) +
m

�

→

V (�yj , t)
)

, (6.4)

and UCoulomb is the total Coulomb potential of electrons and nuclei, expressed in

laboratory coordinates. The term −m
2

→

V (�yj , t)
2

appearing in (6.3) is the potential

of the centrifugal force at the position �yj of the jth electron in the moving frame.
We observe that in (6.3) and (6.4)

e

c

→

A and m
→

V (6.5)

play perfectly analogous rôles, at least if ge = 2. As one will easily guess, m
→

V is
the vector potential generating the Coriolis force, which can be obtained from the
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Lorentz force by replacing e
c

→

B = e
c

→

∇∧
→

A by m
→

∇ ∧
→

V . Note that

m

2
(�σ · �v)

2
+ (ge − 2)

e

2mc

→

S ·
→

B

=
1

2m

(
−i�

→

∇ +
e

c

→

A + m
→

V
)2

+
gee

2mc

→

S ·
→

B +
→

S ·
→

Ω , (6.6)

where
→

S = �

2�σ is the spin operator of an electron and
→

Ω =
→

∇ ∧
→

V is twice the

vorticity of
→

V .

What we are describing here is the quantum-mechanical Larmor theorem:
(see, e.g., [27] for details).

Let us now imagine that a magnetized iron cylinder is initially at rest in the
laboratory frame. An experimentalist then turns on a constant external magnetic

field
→

B in the direction opposite to that of the spontaneous magnetization of the
cylinder (parallel to its axis), so as to demagnetize the cylinder. This causes an
increase in the free energy of the cylinder, which can be released in the form of
mechanical energy. What is this mechanical energy? Well, the cylinder starts to
rotate about its axis with an angular velocity �ω it chooses so as to cancel the effect

of the external magnetic field
→

B as best it can. By formula (6.6), the total Zeeman
term in the electron Hamiltonian in the rotating frame, vanishes if

2�ω =
→

Ω = −
gee

2mc

→

B (6.7)

and the total vector potential affecting orbital motion of the electrons is then given

by e
c

→

A + m
→

V = O(ge − 2) ≃ 0. The total Coulomb potential UCoulomb is invariant

under the transformation �xj → �yj,
→

X j → �Yj . Thus, in the moving frame, the free
energy of the electrons in a cylinder rotating with an angular velocity �ω given
by (6.7) is approximately the same as the free energy in the laboratory frame

before the field
→

B was turned on and �ω = 0. This explains the Einstein–de Haas
effect.

By measuring
→

B and �ω, one can determine ge!

The Barnett effect describes the phenomenon that an iron cylinder can be
magnetized by setting it into rapid rotation; (see (6.6)).

Other effects based on the same ideas are encountered in cyclotron physics,
two-dimensional electron gases exhibiting the quantum Hall effect, molecular and
nuclear physics; see [27] and references given there.

6.2. Accelerator measurement of ge

Consider an electron circulating in an accelerator ring of radius R. It is kept in

the ring by a constant external magnetic field
→

B perpendicular to the plane of the
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ring. Its angular velocity �ωC ‖
→

B is found by balancing the centrifugal with the
Lorentz force. Thus, its angular velocity is obtained by solving the equation

|�ωC | =
e

γmc
|

→

B | , (6.8)

where γ =
(
1 − |�v|2

c2

)−1/2

, |�v| = R |�ωC |.

This means that the velocity �v of the electron precesses around the direction

of
→

B with an angular frequency |�ωC | given by (6.8). What does its spin
→

S do? The

precession of
→

S around
→

B is described by the so-called Bargmann–Michel–Telegdi
(BMT) equation. In the special situation considered here, this equation simplifies
to

d
→

S

dt
=

e

mc

→

S ∧

(
ge − 2

2
+

1

γ

)
→

B , (6.9)

see, e.g., [10]. Thus, the precession frequency of the spin is found to be

�ωS =
e

γmc

→

B +
e

2mc
(ge − 2)

→

B . (6.10)

We find that, for ge = 2, �ωS = �ωC ; but if ge �= 2 the spin- and velocity precession
frequencies differ by an amount

e

2mc
(ge − 2) |

→

B | . (6.11)

(If ge > 2 then the spin precesses faster than the velocity.) By measuring the spin
polarization of a bunch of electrons, with the property that, initially, their spins
were parallel to their velocities, after many circulations around the accelerator
ring, one can determine ge − 2 with very high accuracy.

Of course, the formula for the Thomas precession encountered in section 2
can be found as an application of the general BMT equation. How watertight the
derivation of the BMT equation is, mathematically, is still a matter of debate [52].

6.3. Single-electron synchrotron measurement of ge

Consider a single electron in a constant external magnetic field
→

B = (0, 0, B)
in the z-direction whose motion in the z-direction is quantized by a confining
(electrostatic) potential Φ(z). The time-independent Schrödinger equation for this
particle is

H(1)ψ = Eψ , (6.12)

where H(1) is given by

H(1) =
�2

2m

(
−i

→

∇ +
e

�c

→

A(�x)
)2

+
gee

2mc
S(3)B + Φ(z) , (6.13)

where
→

A(�x) = 1
2 (−yB, xB, 0), �x = (x, y, z). Eq. (6.12) can be solved by separat-

ing variables:

ψ(x, y, z) = χ(x, y)h(z) ,
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where χ is a two-component spinor wave function only depending on x and y, and
h(z) is a scalar wave function satisfying

(
−

�2

2m

d2

dz2
+ Φ(z)

)
h(z) = E h(z) , (6.14)

with h ∈ L2(R, dz). Let E0 < E1 < E2 < . . . be the energy eigenvalues of the
eigenvalue problem (6.14). As shown by Lev Landau, the energy spectrum of the
operator H(1) is then given by the energies

En, s, k = �ωC

(
n +

1

2

)
+

ge

2
�ωC s + Ek , (6.15)

where ωC = |eB|
mc , n = 0, 1, 2 . . ., s = ± 1

2 , k = 0, 1, 2 . . ., and Ek as in (6.14).
All these eigenvalues are infinitely degenerate. Their eigenfunctions corresponding
to a degenerate energy level En, s, k can be labeled by the eigenvalues of the z-
component, Lz, of the orbital angular momentum operator, which are given by

�l, with l = −n, −n + 1, . . . , 0, 1, 2 . . . .

We observe that if ge were exactly equal to 2 then

En, − 1
2

, k = En−1, + 1
2
, k , (6.16)

and
E0,− 1

2
, k = Ek .

These equations are an expression of the ‘supersymmetry’ of Pauli’s non-relativistic
quantum theory of an electron with ge = 2; (see section 3). If ge �= 2 this super-
symmetry is broken, and we have that

Em−1, 1
2
, k − En, − 1

2
, k = �ωC(m − n) +

ge − 2

2
�ωC . (6.17)

By measuring such energy differences with great precision in very slow radiative
transitions, one can determine ge with astounding accuracy. The life times of the
excited states can be made long, and hence the energy uncertainties tiny, by using
cavities obeying non-resonance conditions. Very beautiful high-precision measure-
ments of ge based on these ideas have recently been performed by Gerald Gabrielse
and collaborators; see [53].

7. KMS, Spin and Statistics, CPT

In this last section, we study the general connection between the spin of parti-
cles and their quantum statistics – particles with half-integer spin are fermions,
particles with integer spin are bosons – and the related connection between the
spin of fields and their commutation relations within the framework of local rela-
tivistic quantum field theory. Our approach to this subject yields, as a byproduct,
a proof of the celebrated CPT theorem, namely of the statement that the prod-
uct of the discrete operations of charge conjugation (C), space reflection (P ) and
time reversal (T ) is an anti-unitary symmetry of any local quantum field theory
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on an even-dimensional space-time. This symmetry maps states of matter onto
corresponding states of anti-matter. Thus the prediction of the existence of the
positron by Dirac and Weyl, on the basis of Dirac’s hole theory, can be viewed,
in hindsight, as a corollary of the locality of quantized Dirac theory and of the
general CPT theorem.

I should mention that in a three-dimensional space-time, e.g., in the physics
of two-dimensional electron gases exhibiting the quantum Hall effect, or of films,
one may encounter (quasi-) particles with fractional spin �∈ 1

2Z and a type of
‘fractional ’quantum statistics described by representations of the braid groups, or
braid groupoids (originally introduced in mathematics by Emil Artin). Moreover,
in two- and three-dimensional local quantum field theories, there are fields of
fractional spin whose commutation relations give rise to representations of the
braid groups or groupoids. It is conceivable that this exotic type of quantum
statistics is relevant in the context of the fractional quantum Hall effect, and
there are people who hope to exploit it for the purpose of (topological) quantum
computing.14

It may be appropriate to make some sketchy remarks on the history of the
discoveries of the connection between spin and statistics, of the CPT theorem and
of braid statistics.

The general connection between spin and statistics for free fields was dis-
covered, on the basis of earlier work by Heisenberg and Pauli and by Pauli and
Weisskopf, by Markus Fierz in 1939, [54]. His result was later rederived more ele-
gantly by Pauli. In axiomatic field theory, a general result was found by Lüders and
Zumino; see [55, 56]. A much more general analysis of the statistics of superselec-
tion sectors, based on the algebraic formulation of local quantum field theory, was
carried out by Doplicher, Haag and Roberts ; see [58,59]. They showed that general
para-Bose or para-Fermi statistics can always be converted into ordinary Bose or
Fermi statistics by introducing ‘internal degrees of freedom’ on which a compact
topological group of internal symmetries acts, and they rederived the general con-
nection between spin and statistics. All these results only hold in space-times of
dimension ≥ 4.

The CPT theorem, i.e., the statement that the product of C, P and T is
an anti-unitary symmetry of any local, relativistic quantum field theory, was first
derived in [60] and then, in its general form, by Res Jost in [61]; see also [55, 56].
Based on Jost’s analysis and on the KMS condition [62] characterizing thermal
equilibrium states, it was rederived in a general setting by Bisognano and Wich-
mann [63], who established a connection with Tomita-Takesaki theory [64].

We will see that the general connection between spin and statistics and the
CPT theorem are consequences of the fact that the vacuum state of a local rela-
tivistic quantum field theory is a KMS (equilibrium) state for all one-parameter
subgroups of the Poincaré group consisting of Lorentz boosts in a two-dimensional

14An idea probably first suggested by myself.
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plane containing a time-like direction. This observation has been made in [63].
Incidentally, it is at the core of the theory of the Unruh effect.

Exotic commutation relations between fields carrying ‘fractional charges’ in
local relativistic quantum field theories with soliton sectors in two space-time di-
mensions first appeared in work of R. Streater and I. Wilde [65] and of the au-
thor [66], in the early seventies. (They gave rise to certain abelian representations
of the braid groups.) In 1977, M. Leinaas and J. Myrheim [67] discovered the
first example of a system of quantum particles moving in the plane and exhibiting
braid (or ‘fractional’) statistics: Charged point particles carrying magnetic vortic-
ity. The braid statistics of such particles is a consequence of the Aharonov-Bohm
effect. Their analysis was generalized in [68] and [69]. Within the context of abelian
gauge (Higgs) theories in three dimensions, particles with fractional spin and braid
statistics were analyzed in [70]. The general theory of (abelian and non-abelian)
braid statistics was initiated by the author in [71] and completed in [72, 73], and
references given there. A general connection between fractional spin and braid
statistics was established in [73], and it was shown that, in local theories in three-
dimensional space-time, ordinary Bose or Fermi statistics implies that all spins are
integer of half-integer, and that braid statistics implies the breaking of parity (P )
and time reversal (T ).

7.1. SSC, KMS and CPT

I will now first recall the connection between spin and statistics (SSC) in the general
framework of local relativistic quantum field theory (RQFT), as formalized in the
so-called (G̊arding-) Wightman axioms [55, 56]; (see also [57]). As a corollary,
I will then show that the vacuum state of an arbitrary local RQFT is a KMS
(equilibrium) state [62] for any one-parameter group of Lorentz boosts at inverse
temperature β = 2π, [63]. The CPT theorem and SSC turn out to be consequences
of the KMS condition.

I will follow methods first introduced in [61,63], and my presentation is similar
to that in [74], where various mathematical details can be found.

We consider a local RQFT on Minkowski space Md, (d = n + 1), at zero
temperature satisfying the Wightman axioms [55, 56]. Let H denote the Hilbert
space of pure state vectors of the theory and Ω ∈ H the vacuum vector. The space

H carries a projective, unitary representation, U , of P↑
+. We first consider RQFT’s

with fields localizable in points and transforming covariantly under the adjoint
action of U ; a more general framework is considered in the next subsection, (see [76]
for a general analysis of the localization properties of fields). Let Ψ1, . . . , ΨN be the
fields of the theory. Smearing out these fields with test functions in the Schwartz
space over Md, one obtains operators densely defined on H . In fact, H turns
out to be the norm-closure of the linear space obtained by applying arbitrary
polynomials in Ψ1, . . . , ΨN (smeared out with Schwartz space test functions) to
the vacuum Ω. Let Π ⊂ Md be a two-dimensional plane containing a time-like
direction. Without loss of generality, we can choose coordinates x0, x1, . . . , xd−1
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in Md such that Π is the (x0, x1)-coordinate plane. We consider the one-parameter
subgroup of Lorentz boosts given by

x0
θ =cosh(θ)x0 + sinh(θ)x1 ,

x1
θ =sinh(θ)x0 + cosh(θ)x1 , (7.1)

xj
θ =xj , for j ≥ 2 ,

with θ ∈ R the rapidity of the boost. Let MΠ = M∗
Π denote the generator of

the boosts (7.1) in the projective, unitary representation U of P↑
+ on H . To

each field Ψj of the theory, there is associated a finite-dimensional, irreducible

projective representation Sj of the group L↑
+ of proper, orthochronous Lorentz

transformations of Md such that

eiθMΠ Ψj(x
0, x1, �x) e−iθMΠ = S−1

j (θ)Ψj(x
0
θ, x1

θ, �x) , (7.2)

with �x = (x2, . . . , xd−1), or, in components,

eiθMΠ ΨA
j (x0, x1, �x) e−iθMΠ =

∑

B

S−1
j (θ)A

B ΨB
j (x0

θ, x1
θ, �x) , (7.3)

where ΨA
j is the Ath component of Ψj .

A theorem due to Bargmann, Hall and Wightman [55, 56] guarantees that,
for an RQFT satisfying the Wightman axioms, the Wick rotation from real times
to purely imaginary times ct = iτ , τ ∈ R, is always possible. The vacuum vector
Ω turns out to be in the domain of all the operators

∏n
k=1 Ψ̂jk

(xk), where xk =

(τk, x1
k, �x) ∈ Ed (d-dim. Euclidean space),

Ψ̂j(τ, x1, �x) := Ψj(iτ, x1, �x) = e−τH Ψj(0, x1, �x) eτH , (7.4)

with H ≥ 0 the Hamiltonian of the theory, provided that

0 < τ1 < τ2 < . . . < τn ; (7.5)

see [55, 77]. The Euclidian Green- or Schwinger functions are then defined by

S(n)(j1, x1, . . . , jn, xn) :=
〈
Ω , Ψ̂j1(x1) · · · Ψ̂jn

(xn)Ω
〉
. (7.6)

By Bargmann-Hall-Wightman, the Schwinger functions S(n) are defined on all of

Edn
�= :=

{
(x1, . . . , xn)

∣∣∣xj ∈ Ed, j = 1, . . . , n, xi �= xj , for i �= j
}

. (7.7)

It is convenient to introduce polar coordinates, (α, r, �x), with r > 0, α ∈ [0, 2π),
in the (τ, x1)-plane by setting

τ = r sin α, x1 = r cosα, �x = (x2, . . . , xd−1) ; (7.8)

(the angle α is an imaginary rapidity).
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Let S+ denote the Schwartz space of test functions f(r, �x) with support in
R+ × Rd−2. We define functions Φ(n) of n angles as follows:

Φ(n)(j1, f1, α1, . . . , jn, fn, αn) :=
∫

S(n)(j1, α1, r1, �x1, . . . , jn, αn, rn, �xn)

n∏

k=1

fk(rk, �xk) drk dd−2xk . (7.9)

As shown in [74] (see also [77]), using Bargmann-Hall-Wightman (see (7.6), (7.7))
– among other things – these functions are given by

Φ(n)(j1, f1, α1, . . . , jn, fn, αn) =
〈
Ω , Ψ̂j1(fj , α1) · · · Ψ̂jn

(fn, αn)Ω
〉
, (7.10)

provided α1 < α2 < . . . < αn, with αn − α1 < 2π. On the R.S. of (7.10),

Ψ̂j(f, α + β) = e−αMΠ Rj(α) Ψ̂j(f, β) eαMΠ , (7.11)

for arbitrary angles α > 0, β ≥ 0 with α + β < π, where

Rj(α) := Sj(iα) (7.12)

is the finite-dimensional, irreducible representation of Spin(d) obtained from Sj by
analytic continuation in the rapidity. Formally, (7.10) and (7.11) follow from (7.2),
(7.3) and (7.6); (the details required by mathematical rigor are a little compli-
cated; but see [63, 74]). We note that the vacuum Ω is invariant under Poincaré
transformations; in particular

eiθMΠ Ω = Ω , for all θ ∈ C . (7.13)

We also note that two points (α1, r1, �x1) and (α2, r2, �x2) in Ed are space-like
separated whenever α1 �= α2. Thus, the local commutation relations of fields at
space-like separated points [55, 56, 77] imply that, for αk �= αk+1,

Φ(n)(. . . , jk, fk, αk, jk+1, fk+1, αk+1, . . .)

= exp(i2πθjk jk+1
)Φ(n)(. . . , jk+1, fk+1, αk+1, jk, fk, αk, . . .) , (7.14)

for arbitrary 1 ≤ k < n, where, for d ≥ 4,

θj j′ = 0 mod Z if Ψj or Ψj′ is a Bose field , (7.15)

θj j′ =
1

2
mod Z if Ψj and Ψj′ are Fermi fields . (7.16)

For details see [77] and [78]. In two space-time dimensions, the statistics of fields
localizable in points can be more complicated; see subsection 7.2, and [71–73]. In
particular, the phases θj j′ can be arbitrary real numbers, and this is related to the

fact that Spin(2) = SO(2)̃ = R, which implies that the spin (parity) sj of a field
Ψj can be an arbitrary real number. The spin (parity) sj of a field Ψj is defined
as follows: Since Rj is a finite-dimensional, irreducible representation of Spin(d),

Rj(2π) = ei2πsj , (7.17)

where sj = 0, 1
2 mod Z, for d ≥ 3, while sj ∈ [0, 1) mod Z, for d = 2.
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Given a field index j, we define the ‘adjoint’ index j through the equation
(
ΨB

j (g)
)∗

= ΨB
j

(g), g ∈ S (Md) , (7.18)

where A∗ is the adjoint of the operator A on H in the scalar product of H .

We are now prepared to prove the general spin-statistics-connection (SSC)
for fields of a local RQFT localizable in space-time points. We first note that,
by (7.11) and (7.18),

Ψ̂j(f, α)∗ =
(
e−αMΠRj(α) Ψ̂j(f, 0) eαMΠ

)∗

= eαMΠRj(α)
∗
Ψ̂j(f , 0) e−αMΠ

= Rj(α)
∗
R−1

j
(−α) Ψ̂j(f , −α)

!
= Ψ̂j(f , −α) ,

by (7.2), (7.3) and (7.18). Thus

Rj(α)∗ = Rj(−α) . (7.19)

Furthermore, by (7.3), (7.11) and (7.13),

Φ(n)(j1, f1, α1 + α, . . . , jn, fn, αn + α)

=
〈
Ω ,

n∏

k=1

Ψ̂jk
(fk, αk + α)Ω

〉

=
〈
Ω ,

n∏

k=1

(
e−αMΠ Rjk

(α)Ψ̂jk
(fk, αk) eαMΠ

)
Ω
〉

= Rj1(α) ⊗ · · · ⊗ Rjn
(α)Φ(n)(j1, f1, α1, . . . , jn, fn, αn) , (7.20)

which expresses the rotation covariance of the functions Φ(n), (a consequence of the
Poincaré covariance of the fields Ψj and the Poincaré invariance of the vacuum
Ω). Thus, using the positivity of the scalar product 〈· , ·〉 on H , we find that, for
0 < α < π,

0 <
〈
e−αMΠ Ψ̂j(f, 0)Ω , e−αMΠ Ψ̂j(f, 0)Ω

〉

(7.10),(7.11)
= R−1

j
(−α) ⊗ R−1

j (α)Φ(2)(j, f , −α, j, f, α)

(7.14),(7.19)
= R−1

j (α) ⊗ R−1

j
(−α) ei2πθj j Φ(2)(j, f, α, j, f , −α)

= R−1
j (α) ⊗ R−1

j
(−α) ei2πθj j Φ(2)(j, f, α, j, f , 2π − α)

(7.20)
= R−1

j (α − π) ⊗ R−1

j
(−α − π) ei2πθj,j Φ(2)(j, f, α − π, j, f , π − α)

(7.17)
= ei2πθj j ei2πsj R−1

j (α − π) ⊗ R−1

j
(π − α)Φ(2)(j, f, α−π, j, f , π−α)

(7.11)
= ei2πθj j ei2πsj

〈
e(α−π)MΠ Ψ̂j(f , 0)Ω , e(α−π)MΠ Ψ̂j(f , 0)Ω

〉
. (7.21)
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Note that the L.S. and the scalar product (3rd factor) on the very R.S. of (7.21)
are well defined and strictly positive, for 0 < α < π. It then follows that

sj = −sj = θj j mod Z , (7.22)

which is the usual connection between spin and statistics:

sj half-integer ←→ Ψj a Fermi field ,

sj integer ←→ Ψj a Bose field , (7.23)

and, for d = 2,

sj fractional ←→ Ψj a field with fractional (braid) statistics.

Next, we show that our results imply that the vacuum Ω is a KMS state at
inverse temperature β = 2π for the one-parameter group of Lorentz boosts in the
plane Π.

We consider the Schwinger function

Φ(n)(j1, f1, α1, . . . , jn, fn, αn) =
〈
Ω ,

n∏

k=1

Ψ̂jk
(fk, αk)Ω

〉
, (7.24)

for α1 < · · · < αn, with αn−α1 < 2π. For simplicity, we assume that d ≥ 3, so that
all spins are half-integer or integer and, by (7.22), only Fermi- or Bose statistics is
possible. Then Φ(n)(j1, f1, α1, . . . , jn, fn, αn) vanishes, unless an even number of
the fields Ψj1 , . . . , Ψjn

are Fermi fields. For every 1 ≤ m < n, we define the phase

ϕm =
∑

k=1,..., m

l=m+1,..., n

θjk jl
, (7.25)

with θjk jl
as in (7.14).

Using Eqs. (7.15) and (7.16) and the fact that the total number of Fermi
fields among Ψj1 , . . . ,Ψjn

is even, one easily deduces from the spin statistics con-
nection (7.23) that

ϕm =
m∑

k=1

sjk
mod Z . (7.26)

Next, by repeated use of (7.14), we find that

Φ(n)(j1, f1, α1, . . . , jn, fn, αn)

= ei2πϕm Φ(n)(jm+1, fm+1, αm+1, . . . , jn, fn, αn, j1, f1, α1, . . . , jm, fm, αm)

(7.26)
= exp

(
i2π

m∑

k=1

sjk

)
Φ(n)(jm+1, fm+1, αm+1, . . . , j1, f1, α1, . . .)

(7.17)
= ⊗ · · · ⊗ ⊗ Rj1(2π) ⊗ · · · ⊗ Rjm

(2π)

·Φ(n)(jm+1, fm+1, αm+1, . . . , j1, f1, α1 + 2π, . . . , jm, fm, αm + 2π) .

(7.27)
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Note that αm+1 < . . . < αn < α1 + 2π < . . . < α2m + 2π, with αm + 2π −αm+1 <
2π) (⇔ αm < αm+1). Thus, by (7.24) (applied to the L.S. and the R.S. of (7.27)),
we arrive at the identity

〈
Ω ,

m∏

k=1

Ψ̂jk
(fk, αk)

n∏

l=m+1

Ψ̂jl
(fl, αl)Ω

〉

=
〈
Ω ,

n∏

l=m+1

Ψ̂jl
(fl, αl)

m∏

k=1

(
e−2πMΠ Ψ̂jk

(fk, αk) e2πMΠ

)
Ω
〉

, (7.28)

which is the celebrated KMS condition.
Defining

ω(A) := 〈Ω , AΩ〉 , (7.29)

and

τθ(A) := eiθMΠ A e−iθMΠ , (7.30)

with (τθ(A))∗ = τθ(A
∗) and τθ(A1 · A2) = τθ(A1)τθ(A2), where A, A1, A2 are

operators on H , we find, setting
m∏

k=1

Ψ̂jk
(fk, αk) =: B ,

and
n∏

l=m+1

Ψ̂jl
(fl, αl) =: C ,

that

ω(B · C) = ω(Cτ2πi(B))

= ω(τ−2πi(C)B) , (7.31)

a more familiar form of the KMS condition for (ω, τθ) at inverse temperature
β = 2π; see [62].

It deserves to be noticed that the KMS condition (7.28), (7.31) implies the
spin-statistics connection. We calculate formally: For 0 < ε < π,

ω
(
Ψ̂j1(f1, 0)Ψ̂j2(f2, ε)

)

KMS,(7.11)
= e−i2πsj2 ω

(
Ψ̂j2(f2, 2π + ε)Ψ̂j1(f1, 0)

)

(7.14)
= e−i2πsj2 ei2πθj1 j2 ω

(
Ψ̂j1(f1, 0)Ψ̂j2(f2, 2π + ε)

)

(7.11)
= e−i2πsj2 ei2πθj1 j2 ω

(
Ψ̂j1(f1, 0)Ψ̂j2(f2, ε)

)
. (7.32)

Thus,

sj2 = θj1 j2 mod Z , (7.33)

unless ω(Ψ̂j1(f1, 0)Ψ̂j2(f2, ε)) ≡ 0. If this quantity does not vanish (and in d ≥ 3)
then either Ψj1 and Ψj2 are both Fermi fields (θj1 j2 = 1

2 mod Z) or they are both
Bose fields (θj1 j2 = 0 mod Z). Thus, (7.33) proves (a special case of ) SSC!


