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Symmetries and topology are central to an understanding of 
physics. In condensed matter, topology explains the precise 
quantization of the Hall effect (1), where a magnetic field 
breaks the discrete symmetry of time reversal. Interest in top-
ological properties was reinvigorated following the discovery 
of the quantum spin Hall effect, and the subsequent classifi-
cation of different states of matter according to discrete sym-
metries (2). Recently topologically protected edge excitations 
have been found in artificial lattices of various types (3–5). A 
correspondence between topological properties of waves in 
the bulk and the existence of unidirectional edge modes along 
boundaries exists in all these systems (6, 7). The edge modes 
fill frequency or energy gaps found in the bulk and are im-
mune to various types of disorder. We show that topologically 
protected edge waves also manifest in atmospheres and 
oceans. 

Equatorial Kelvin and mixed Rossby-gravity (Yanai) 
waves are edge modes that propagate energy along the 
Earth’s equator with eastward group velocity (8). Remarka-
bly, the dispersion relations for these waves (Fig. 1A) were 
derived within the framework of the rotating shallow water 
model (9) just prior to their first observation in the 1960s. 
Since then, observations of the atmosphere have revealed a 
robust signature of these trapped modes in wavenumber-fre-
quency spectra (10) (Fig. 1B). Equatorial Kelvin and Yanai 
waves have been shown to play a crucial role in several as-
pects of climate dynamics. For instance, Kelvin waves are a 
key component of the El Niño Southern Oscillation, traveling 
across the waters of the Pacific ocean (11). The waves are also 
part of the quasi-biennial oscillation in the stratosphere, and 
are thought to be an important component of the Madden 
Julian Oscillation in the troposphere (12). 

The fact that Yanai and Kelvin waves are equatorially 

trapped unidirectional modes filling a frequency gap between 
low frequency planetary (Rossby) wave band and the high 
frequency inertia-gravity (Poincaré) wave band (8), as shown 
in Fig. 1A, suggests they can be interpreted as topological 
boundary states, similar to those emerging in various topo-
logical insulating media. More precisely, bulk (Poincaré 
and/or Rossby) waves possess a topological property, that 
should be directly related to the existence of these two unidi-
rectional boundary waves, by virtue of the bulk-boundary cor-
respondence (6, 7). According to this correspondence, the 
number of states inherited by a band when the zonal (di-
rected along the equator) wavenumber kx varies from –∞ to 
+∞ is given by an integer-valued topological number called 
the first Chern number. The first Chern number is an integer 
that quantifies the number of phase singularities in a bundle 
of eigenmodes parameterized on a closed manifold. These 
singularities are somewhat analogous to amphidromic points 
(±2π phase vortices of tidal modes), but they occur in param-
eter space rather than in physical space. We demonstrate the 
existence of a non-trivial global structure in the bulk Poincaré 
modes as being encoded through the first Chern number of 
value ±2, thus ensuring the existence of 2 unidirectional edge 
modes at the equator that fill the two frequency gaps, in 
agreement with the existence of Kelvin and Yanai waves. The 
existence of the frequency gap originates from a broken time-
reversal symmetry of the flow model due to Earth’s rotation. 
The structure of tidal modes (13) and bifurcations in large 
scale geophysical flow (14) have previously invoked the effect 
of breaking time-reversal symmetry. Our study shows that 
another far reaching consequence of this broken symmetry is 
to confer non-trivial topological properties to bundles of fluid 
waves, giving rise to robust edge states. 

The rotating shallow water equations (8) that describe the 
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dynamics of a thin layer of fluid on a two-dimensional surface 
of height h(x, t) and horizontal velocity u(x, t) furnish a min-
imal model for equatorial waves: 

( ) 0t h h∂ +∇ ⋅ =u  (1) 

( ) ˆt g h f∂ + ⋅∇ = − ∇ − ×u u u n u  (2) 

The Coriolis parameter ˆ2f = Ω⋅n  is twice the projection 

of the planetary angular rotation vector on the local vertical 
axis n̂  and g is the constant of gravitational acceleration. 
When linearized about a state of rest (u = 0) and mean height 
(h = H), this dynamical system may be rewritten as 

ti∂ Ψ = Ψ , where Ψ = (u, η) is a triplet of fields describing 

the two components of the perturbed velocity field and the 
perturbed height field η, and where   is a Hermitian opera-
tor (15). Because the fields (u, η) are real, the operator   is 

equal to the negative of its complex conjugate: 1−Ξ Ξ = −   
where Ξ is the operator that effects complex conjugation, 
with Ξ2 = 1. In the quantum context, the operation is referred 
to as a particle-hole transformation because it inverts the 
spectrum. Time reversal symmetry t → –t, x′ → x, η → η, u 
→ –u is broken by nonzero Coriolis parameter f ≠ 0 in Eq. 2. 
The broken symmetry generates gaps in the shallow water 
spectrum (8). 

The f-plane approximation commonly used in geophysics 
(8) amounts to the neglect of Earth sphericity by assuming 
that the dynamics take place on a tangent plane with con-
stant f (Fig. 2A). Translational symmetry ensures that 
eigenmodes of the linearized dynamics in this geometry are 

of the form ( )ˆ exp x yi t ik x ik yωΨ − −  where Ψ̂  has three com-

ponents. Viewing f/c as an external parameter, where 

c gH=  is the speed of non-rotating shallow water gravity 

waves, the eigenmodes may be easily found at each point in 
the space (kx, ky, f/c) as depicted in Fig. 2B. There are 3 bands 
with frequencies ω± = ±(f2 + c2k2)1/2 and ω0 = 0 where 

2 2 2
x yk k k≡ + , with corresponding wavefunctions {Ψ±, Ψ0}. For 

f ≠ 0, the bands separate by gaps of frequency f (Fig. 3). The 
zero-frequency modes are in geostrophic balance; the other 
two modes are Poincaré waves with dispersions ω± that are 
symmetric with respect to the origin in (kx, ky, ω) space. 

Eigenmodes depend on the triplet of parameters (kx, ky, 
f/c) that correspond to the set of waves in all possible f-plane 
configurations. The eigenmodes do not vary with the distance 
from the origin in (kx, ky, f/c)-space and can therefore be pa-
rameterized on the surface of a sphere   that encloses the 
singular band-crossing point at the origin (kx, ky, f/c) = (0, 0, 
0) [see Fig. 2B and (15)]. Each of the eigenstates {Ψ–, Ψ0, Ψ+} 
defines a fiber bundle over   that may possess topological 
defects. The singularities reflect the impossibility of continu-
ously defining the eigenmodes everywhere on the sphere, and 

in particular over both of Earth’s two hemispheres simulta-
neously. They are quantified by the first Chern number ∆  
that can be calculated for each bulk mode n as the flux of the 

Berry curvature ( )†in p n p nB = − ∇ × Ψ ∇ Ψ  through the sphere 

 , with †
nΨ  the conjugate transpose of Ψn, and 

( ), ,p k k f cx y
∇ = ∂ ∂ ∂ . In other words, there exists a quantized 

Berry flux generated by a (Berry) monopole located at the 
center of  , where the three bands cross (16, 17). The singu-
larities are analogous to the one exhibited by an electron 
wavefunction that cannot be defined continuously around a 
Dirac magnetic monopole (18). We find 

{ } { }0, , 2,0, 2− +∆ ∆ ∆ = −    (15), namely only the Poincaré 

modes Ψ± are topologically non-trivial as the geostrophic 
modes Ψ0 have zero Chern index, in agreement with the bulk-
boundary correspondence (6, 7). 

To understand qualitatively the correspondence between 
these bulk properties and the emergence of unidirectional 
edge states in the presence of an equator, is it worth consid-
ering the case of a planar flow in an unbounded domain with 
f varying in the y-direction from –2Ω to 2Ω (see Fig. 3). Far 
from the interface, the eigenmodes are given by delocalized 
solutions, i.e., by those computed in the case of constant f. If 
one could continuously deform the whole set of positive fre-
quency eigenmodes from one hemisphere to other, for in-
stance by varying f slowly with y, then the eigenmodes would 
be given by solutions close to those calculated for constant f. 
Our previous calculation shows that this continuous defor-
mation is prohibited by the occurrence of 2+∆ =  phase sin-

gularities (positive vortices) when the plane f = 0 is crossed. 
In order to remove these two singularities, the positive fre-
quency band and the negative frequency bands must be con-
nected to each other as the sum of their Chern numbers is 
zero. This connection happens through the emergence of two 
edge states that fill the frequency gaps. For any frequency 
that lies within the bulk gaps, the number of topological edge 
states is fixed by the set of Chern numbers (6). Because 

2±∆ = ±  there are two extra unidirectional edge modes in 

the frequency gaps (15). 
It is instructive to examine the Berry curvature for the 

Poincaré modes. As shown in Fig. 3, the curvature is mainly 
concentrated around k = 0 where it reaches extremal values, 
and importantly, changes sign with f. It follows that its flux 

for each Poincaré mode ( )1 d d sgn
2 x yk k B f
π

∞

± ±−∞
= = ±∫  is an 

integer that only depends on the hemisphere. It is thus 
tempting to say that the Poincaré eigenmodes on the two 
hemispheres are topologically distinct by interpreting ±  also 

as a Chern number, as the difference 
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( ) ( )0 0 2f f± ±− = ± > <  coincides with the first Chern 

number ±∆ . This would be rigorously true if the two-dimen-

sional manifold through which this Berry flux is computed at 
fixed f were closed, for instance when the wave-numbers (kx, 
ky) live on a Brillouin zone that reflects an underlying lattice. 
For continuous fluids, only ±∆  is a well defined topological 

number, but this suffices to characterize the topological prop-
erty of the bulk modes, and thus the existence of the two 
equatorial unidirectional modes. 

We stress one important point concerning the role of the 
spherical geometry of the planet in our approach. We re-
moved this sphericity with the f-plane approximation, equiv-
alent to holding the Coriolis parameter constant in space. 
However, through the construction of the sphere   in pa-
rameter space (kx, ky, f/c), we recover the effect of a varying 
Coriolis parameter f on the shallow water eigenmodes. In this 
way, sphericity works its way back into the problem. The de-
tailed geometry of the Earth is no longer needed as topology 
itself requires the existence of Yanai and Kelvin waves. Even 
a misshapen sphere would support the waves. 

Topology guarantees the existence of equatorial Yanai and 
Kelvin waves, obviating the need to carry out the classic but 
more complex calculation on the equatorial beta plane (8). 
On the equatorial beta plane, Rossby and Poincaré waves can 
also be equatorially trapped. However, this trapping depends 
on the precise longitudinal variation of f(y), as may be 
demonstrated numerically. In contrast, the topological origin 
of Kelvin and Yanai modes makes them insensitive to the de-
tails of the interface, such as the detailed shape of f(y) (15). 
We also performed numerical scattering experiment showing 
that there is no possibility for Kelvin or Yanai wave excited 
within the bulk frequency gap, away from the other bands, to 
exchange energy with other modes that propagate energy 
westward (15). Consequently, there is no energy backscatter-
ing in the presence of topography (movies S1 and S2). This 
robustness against disorder can now be understood as a con-
sequence of topology. 

Other ideas from topology have been applied to hydrody-
namics (19–21). However, the appearance of singularities in 
the set of eigenmodes that arises from the breaking time-re-
versal symmetry has so far been overlooked in this context, 
as well as the striking physical consequence of unidirectional 
edge modes filling the frequency gaps. The general principle 
of bulk-boundary correspondence may now be applied to 
other fluid systems of interest. 

The shallow water system exhibits particle-hole symmetry 
stemming real-valued velocity and displacement fields. More 
generally, any linearized fluid flow model that can be written 
in terms of a Hermitian operator that breaks time reversal 
symmetry belong to the symmetry class with Cartan label D, 
which means that non trivial topological properties may arise 

(22, 23). Other physical systems that may belong to class D 

are chiral p-wave superconductors (16, 24) and superfluid 3

He-A (25). The linear operator of flow dynamics can be non-
Hermitian in the presence of mean-flows and dissipation, in 
which case other topological properties may appear (26). We 
expect that topology may ultimately shape the global struc-
ture of a number of other astrophysical and geophysical wave 
spectra, where similar gaps opened in the presence of sym-
metry breaking fields are known to exist. For instance, Lamb 
waves are edge states that fill the gap between acoustic and 
gravity waves because gravity breaks another discrete sym-
metry, that of inversion. Hall magnetohydrodynamics is an-
other possible setting for topological edge waves (27). It will 
also be also interesting to study in more detail the resilience 
of topological waves against dissipation, and non-linear 
wave-wave scattering processes. 
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Fig. 1. Dispersion spectrum of equatorial waves. (A) Dispersion relation for shallow water waves on an 
equatorial beta plane with linear variations of the Coriolis parameter with the latitude (f = βy). The dispersion 
relation for negative frequencies is obtained by symmetry with respect to the origin (kx = 0, ω = 0). The 
frequency gap between low frequency planetary (Rossby) waves and high frequency inertia-gravity (Poincaré) 
waves is filled by two modes with eastward group velocity, namely the equatorial Kelvin and mixed Rossby-
gravity (Yanai) waves. Horizontal dotted orange lines indicate the intermediate, and low, frequency wave trains 
used in the scattering simulations of (15). Adapted from (8). (B) Observational evidence for the appearance of 
the Kelvin mode in frequency-wavenumber spectra of the atmosphere. The component that is symmetric with 
respect to reflection about the equator is shown. Reproduced from (10). 
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Fig. 2. (A) Relation between the spherical geometry 
of a rotating planet and the unbounded f-plane 
geometry: At a given latitude, the flow is assumed to 
take place in the tangent plane, and the Coriolis 
parameter f is twice the vertical component of the 
Earth’s rotation. (B) Parameter space (kx, ky, f) for 
the eigenmodes on the unbounded f-plane geometry. 
The wave bands ω+, ω–, ω0 are well defined 
everywhere except at the origin which is a band-
crossing point. We show that the set of eigenmodes 
Ψ± parameterized on any closed surface (here a 
sphere) enclosing this band crossing point possess 
singularities that are quantified by a Chern number. 
This is an integer that can be computed by 
integrating over this surface a local Berry curvature 
that depends on the eigenmodes. The curvature can 
be viewed as generated by a Berry monopole located 
at the band-crossing point.  
 

Fig. 3. Dispersion relation in unbounded f-plane geometry for the two signs 
of f. The color indicates the Berry curvature ( )†in p n p nB ≡ − ∇ × Ψ ∇ Ψ  for each 

wave band indexed by n ∈ {–, 0, +}. The Berry curvature of the Poincaré bands 

is ( ) 3 22 2 2 2 2
x yB fc f c k k

−

±
 = ± + +  . It is concentrated around k = 0, with extremal 

value ±c2/f2, and switches sign as f changes sign. The curvature vanishes for 
the geostrophic band. When integrated over the whole plane (kx, ky), the Berry 
fluxes in the three bands give integers (–1, 0, 1) for f > 0 and (1, 0, –1) for f < 0, 
consistent with the triplet of Chern numbers { } { }0, , 2,0, 2− +∆ ∆ ∆ = −   . This 

shows that the set of delocalized bulk Poincaré modes cannot be continuously 
deformed from one hemisphere to another. 
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